-
41 aircraft
воздушное судно [суда], атмосферный летательный аппарат [аппараты]; самолёт (ы) ; вертолёты); авиация; авиационный; см. тж. airplane, boostaircraft in the barrier — самолёт, задержанный аварийной (аэродромной) тормозной установкой
aircraft off the line — новый [только что построенный] ЛА
B through F aircraft — самолёты модификаций B, C, D, E и F
carrier(-based, -borne) aircraft — палубный ЛА; авианосная авиация
conventional takeoff and landing aircraft — самолёт с обычными взлетом и посадкой (в отличие от укороченного или вертикального)
keep the aircraft (headed) straight — выдерживать направление полёта ЛА (при выполнении маневра); сохранять прямолинейный полет ЛА
keep the aircraft stalled — сохранять режим срыва [сваливания] самолёта, оставлять самолёт в режиме срыва [сваливания]
nearly wing borne aircraft — верт. ЛА в конце режима перехода к горизонтальному полёту
pull the aircraft off the deck — разг. отрывать ЛА от земли (при взлете)
put the aircraft nose-up — переводить [вводить] ЛА на кабрирование [в режим кабрирования]
put the aircraft through its paces — определять предельные возможности ЛА, «выжимать все из ЛА»
reduced takeoff and landing aircraft — самолёт укороченного взлета и посадки (с укороченным разбегом и пробегом)
rocket(-powered, -propelled) aircraft — ракетный ЛА, ЛА с ракетным двигателем
roll the aircraft into a bank — вводить ЛА в крен, накренять ЛА
rotate the aircraft into the climb — увеличивать угол тангажа ЛА для перехода к набору высоты, переводить ЛА в набор высоты
short takeoff and landing aircraft — самолёт короткого взлета и посадки (с коротким разбегом и пробегом)
single vertical tail aircraft — ЛА с одинарным [центральным] вертикальным оперением
strategic(-mission, -purpose) aircraft — ЛА стратегического назначения; стратегический самолёт
take the aircraft throughout its entire envelope — пилотировать ЛА во всем диапазоне полётных режимов
trim the aircraft to fly hands-and-feet off — балансировать самолёт для полёта с брошенным управлением [с брошенными ручкой и педалями]
turbofan(-engined, -powered) aircraft — ЛА с турбовентиляторными двигателями, ЛА с ТРДД
turbojet(-powered, -propelled) aircraft — ЛА с ТРД
undergraduate navigator training aircraft — учебно-тренировочный самолёт для повышенной лётной подготовки штурманов
water(-based, takeoff and landing) aircraft — гидросамолёт
-
42 arrangement
расположение в определённом порядке; система размещения [расположения]; компоновка; ( аэродинамическая) схема; планировка; переделка, приспособление; монтаж; устройство; pl. приготовления; мероприятия; планыmultiple arrangement of engines — группа [связка] двигателей
-
43 construction
конструкция; сооружение; стройка, строительство; см. тж. structurering stiffened semi-monocoque construction — полумонококовая конструкция, подкрепленная шпангоутами
-
44 hardware
металлические изделия [детали, элементы, фурнитура]; реальные образцы ( выполненные в металле) ; готовые изделия [агрегаты, детали]; самолёты; ракеты; оборудование; материальная часть вооружения, военная техника -
45 version
вариант, см. тж. variant; модификация; вариант исполнения ( прибора) -
46 Albone, Daniel
[br]b. c.1860 Biggleswade, Bedfordshire, Englandd. 1906 England[br]English engineer who developed and manufactured the first commercially successful lightweight tractor.[br]The son of a market gardener, Albone's interest lay in mechanics, and by 1880 he had established his own business as a cycle maker and repairer. His inventive mind led to a number of patents relating to bicycle design, but his commercial success was particularly assisted by his achievements in cycle racing. From this early start he diversified his business, designing and supplying, amongst other things, axle bearings for the Great Northern Railway, and also building motor cycles and several cars. It is possible that he began working on tractors as early as 1896. Certainly by 1902 he had built his first prototype, to the three-wheeled design that was to remain in later production models. Weighing only 30 cwt, yet capable of pulling two binders or a two-furrow plough, Albone's Ivel tractor was ahead of anything in its time, and its power-to-weight ratio was to be unrivalled for almost a decade. Albone's commercial success was not entirely due to the mechanical tractor's superiority, but owed a considerable amount to his ability as a showman and demonstrator. He held two working demonstrations a month in the village of Biggleswade in Bedfordshire, where the tractors were made. The tractor was named after the river Ivel, which flowed through the village. The Ivel tractor gained twenty-six gold and silver medals at agricultural shows between 1902 and 1906, and was a significant contributor to Britain's position as the world's largest exporter of tractors between 1904 and 1914. Albone tried other forms of his tractor to increase its sales. He built a fire engine, and also an armoured vehicle, but failed to impress the War Office with its potential.Albone died at the age of 46. His tractor continued in production but remained essentially unimproved, and the company finally lost its sales to other designs, particularly those of American origin.[br]Further ReadingDetailed contemporary accounts of tractor development occur in the British periodical Implement and Machinery Review. Accounts of the Ivel appear in "The Trials of Agricultural Motors", Journal of the Royal Agricultural Society of England (1910), pp. 179–99. A series of general histories by Michael Williams have been published by Blandfords, of which Classic Farm Tractors (1984) includes an entry on the Ivel.AP -
47 Booth, Hubert Cecil
SUBJECT AREA: Civil engineering, Domestic appliances and interiors, Mechanical, pneumatic and hydraulic engineering, Ports and shipping[br]b. 1871 Gloucester, England d. 1955[br]English mechanical, civil and construction engineer best remembered as the inventor of the vacuum cleaner.[br]As an engineer Booth contributed to the design of engines for Royal Navy battleships, designed and supervised the erection of a number of great wheels (in Blackpool, Vienna and Paris) and later designed factories and bridges.In 1900 he attended a demonstration, at St Paneras Station in London, of a new form of railway carriage cleaner that was supposed to blow the dirt into a container. It was not a very successful experiment and Booth, having considered the problem carefully, decided that sucking might be better than blowing. He tried out his idea by placing a piece of damp cloth over an upholstered armchair. When he sucked air by mouth through his cloth the dirt upon it was tangible proof of his theory.Various attempts were being made at this time, especially in America, to find a successful cleaner of carpets and upholstery. Booth produced the first truly satisfactory machine, which he patented in 1901, and coined the term "vacuum cleaner". He formed the Vacuum Cleaner Co. (later to become Goblin BVC Ltd) and began to manufacture his machines. For some years the company provided a cleaning service to town houses, using a large and costly vacuum cleaner (the first model cost £350). Painted scarlet, it measured 54×10×42 in. (137×25×110 cm) and was powered by a petrol-driven 5 hp piston engine. It was transported through the streets on a horse-driven van and was handled by a team of operators who parked outside the house to be cleaned. With the aid of several hundred feet of flexible hose extending from the cleaner through the windows into all the rooms, the machine sucked the dirt of decades from the carpets; at the first cleaning the weight of many such carpets was reduced by 50 per cent as the dirt was sucked away.Many attempts were made in Europe and America to produce a smaller and less expensive machine. Booth himself designed the chief British model in 1906, the Trolley- Vac, which was wheeled around the house on a trolley. Still elaborate, expensive and heavy, this machine could, however, be operated inside a room and was powered from an electric light fitting. It consisted of a sophisticated electric motor and a belt-driven rotary vacuum pump. Various hoses and fitments made possible the cleaning of many different surfaces and the dust was trapped in a cloth filter within a small metal canister. It was a superb vacuum cleaner but cost 35 guineas and weighed a hundredweight (50 kg), so it was difficult to take upstairs.Various alternative machines that were cheaper and lighter were devised, but none was truly efficient until a prototype that married a small electric motor to the machine was produced in 1907 in America.[br]Further ReadingThe Story of the World's First Vacuum Cleaner, Leatherhead: BSR (Housewares) Ltd. See also Hoover, William Henry.DY -
48 Brown, Andrew
SUBJECT AREA: Ports and shipping[br]b. October 1825 Glasgow, Scotlandd. 6 May 1907 Renfrew, Scotland[br]Scottish engineer and specialist shipbuilder, dredge-plant authority and supplier.[br]Brown commenced his apprenticeship on the River Clyde in the late 1830s, working for some of the most famous marine engineering companies and ultimately with the Caledonian Railway Company. In 1850 he joined the shipyard of A. \& J.Inglis Ltd of Partick as Engineering Manager; during his ten years there he pioneered the fitting of link-motion valve gear to marine engines. Other interesting engines were built, all ahead of their time, including a three-cylinder direct-acting steam engine.His real life's work commenced in 1860 when he entered into partnership with the Renfrew shipbuilder William Simons. Within one year he had designed the fast Clyde steamer Rothesay Castle, a ship less than 200 ft (61 m) long, yet which steamed at c.20 knots and subsequently became a notable American Civil War blockade runner. At this time the company also built the world's first sailing ship with wire-rope rigging. Within a few years of joining the shipyard on the Cart (a tributary of the Clyde), he had designed the first self-propelled hopper barges built in the United Kingdom. He then went on to design, patent and supervise the building of hopper dredges, bucket ladder dredges and sand dredges, which by the end of the century had capacity of 10,000 tons per hour. In 1895 they built an enclosed hopper-type ship which was the prototype of all subsequent sewage-dumping vessels. Typical of his inventions was the double-ended screw-elevating deck ferry, a ship of particular value in areas where there is high tidal range. Examples of this design are still to be found in many seaports of the world. Brown ultimately became Chairman of Simons shipyard, and in his later years took an active part in civic affairs, serving for fifteen years as Provost of Renfrew. His influence in establishing Renfrew as one of the world's centres of excellence in dredge design and building was considerable, and he was instrumental in bringing several hundred ship contracts of a specialist nature to the River Clyde.[br]Principal Honours and DistinctionsVice-President, Institution of Engineers and Shipbuilders in Scotland.BibliographyA Century of Shipbuilding 1810 to 1910, Renfrew: Wm Simons.Further ReadingF.M.Walker, 1984, Song of the Clyde. A History of Clyde Shipbuilding, Cambridge.FMW -
49 Ridley, John
SUBJECT AREA: Agricultural and food technology[br]b. 1806 West Boldon, Co. Durham, Englandd. 1887 Malvern, England[br]English developer of the stripper harvester which led to a machine suited to the conditions of Australia and South America.[br]John Ridley was a preacher in his youth, and then became a mill owner before migrating to Australia with his wife and daughters in 1839. Intending to continue his business in the new colony, he took with him a "Grasshopper" overbeam steam-engine made by James Watt, together with milling equipment. Cereal acreages were insufficient for the steam power he had available, and he expanded into saw milling as well as farming 300 acres. Aware of the Adelaide trials of reaping machines, he eventually built a prototype using the same principles as those developed by Wrathall Bull. After a successful trial in 1843 Ridley began the patent procedure in England, although he never completed the project. The agricultural press was highly enthusiastic about his machine, but when trials took place in 1855 the award went to a rival. The development of the stripper enabled a spectacular increase in the cereal acreage planted over the next decade. Ridley left Australia in 1853 and returned to England. He built a number of machines to his design in Leeds; however, these failed to perform in the much damper English climate. All of the machines were exported to South America, anticipating a substantial market to be exploited by Australian manufacturers.[br]Principal Honours and DistinctionsIn 1913 a Ridley scholarship was established by the faculty of Agriculture at Adelaide University.Further ReadingG.Quick and W.Buchele, 1978, The Grain Harvesters, American Society of Agricultural Engineers (includes a chapter devoted to the Australian developments).A.E.Ridley, 1904, A Backward Glance (describes Ridley's own story).G.L.Sutton, 1937, The Invention of the Stripper (a review of the disputed claims between Ridley and Bull).L.J.Jones, 1980, "John Ridley and the South Australian stripper", The History ofTechnology, pp. 55–103 (a more detailed study).——1979, "The early history of mechanical harvesting", The History of Technology, pp. 4,101–48 (discusses the various claims to the first invention of a machine for mechanical harvesting).AP -
50 Short, Hugh Oswald
SUBJECT AREA: Aerospace[br]b. 16 January 1883 Derbyshire, Englandd. 4 December 1969 Haslemere, England[br]English co-founder, with his brothers Horace Short (1872–1917) and Eustace (1875–1932), of the first company to design and build aeroplanes in Britain.[br]Oswald Short trained as an engineer; he was largely self-taught but was assisted by his brothers Eustace and Horace. In 1898 Eustace and the young Oswald set up a balloon business, building their first balloon in 1901. Two years later they sold observation balloons to the Government of India, and further orders followed. Meanwhile, in 1906 Horace designed a high-altitude balloon with a spherical pressurized gondola, an idea later used by Auguste Piccard, in 1931. Horace, a strange genius with a dominating character, joined his younger brothers in 1908 to found Short Brothers. Their first design, based on the Wright Flyer, was a limited success, but No. 2 won a Daily Mail prize of £1,000. In the same year, 1909, the Wright brothers chose Shorts to build six of their new Model A biplanes. Still using the basic Wright layout, Horace designed the world's first twin-engined aeroplane to fly successfully: it had one engine forward of the pilot, and one aft. During the years before the First World War the Shorts turned to tractor biplanes and specialized in floatplanes for the Admiralty.Oswald established a seaplane factory at Rochester, Kent, during 1913–14, and an airship works at Cardington, Bedfordshire, in 1916. Short Brothers went on to build the rigid airship R 32, which was completed in 1919. Unfortunately, Horace died in 1917, which threw a greater responsibility onto Oswald, who became the main innovator. He introduced the use of aluminium alloys combined with a smooth "stressed-skin" construction (unlike Junkers, who used corrugated skins). His sleek biplane the Silver Streak flew in 1920, well ahead of its time, but official support was not forthcoming. Oswald Short struggled on, trying to introduce his all-metal construction, especially for flying boats. He eventually succeeded with the biplane Singapore, of 1926, which had an all-metal hull. The prototype was used by Sir Alan Cobham for his flight round Africa. Several successful all-metal flying boats followed, including the Empire flying boats (1936) and the ubiquitous Sunderland (1937). The Stirling bomber (1939) was derived from the Sunderland. The company was nationalized in 1942 and Oswald Short retired the following year.[br]Principal Honours and DistinctionsHonorary Fellow of the Royal Aeronautical Society. Freeman of the City of London. Oswald Short turned down an MBE in 1919 as he felt it did not reflect the achievements of the Short Brothers.Bibliography1966, "Aircraft with stressed skin metal construction", Journal of the Royal Aeronautical Society (November) (an account of the problems with patents and officialdom).Further ReadingC.H.Barnes, 1967, Shorts Aircraft since 1900, London; reprinted 1989 (a detailed account of the work of the Short brothers).JDS -
51 Sopwith, Sir Thomas (Tommy) Octave Murdoch
SUBJECT AREA: Aerospace[br]b. 18 January 1888 London, Englandd. 27 January 1989 Stockbridge, Hampshire, England[br]English aeronautical engineer and industrialist.[br]Son of a successful mining engineer, Sopwith did not shine at school and, having been turned down by the Royal Navy as a result, attended an engineering college. His first interest was motor cars and, while still in his teens, he set up a business in London with a friend in order to sell them; he also took part in races and rallies.Sopwith's interest in aviation came initially through ballooning, and in 1906 he purchased his own balloon. Four years later, inspired by the recent flights across the Channel to France and after a joy-ride at Brooklands, he bought an Avis monoplane, followed by a larger biplane, and taught himself to fly. He was awarded the Royal Aero Society's Aviator Certificate No. 31 on 21 November 1910, and he quickly distinguished himself in flying competitions on both sides of the Atlantic and started his own flying school. In his races he was ably supported by his friend Fred Sigrist, a former motor engineer. Among the people Sopwith taught to fly were an Australian, Harry Hawker, and Major Hugh Trenchard, who later became the "father" of the RAF.In 1912, depressed by the poor quality of the aircraft on trial for the British Army, Sopwith, in conjunction with Hawker and Sigrist, bought a skating rink in Kingston-upon-Thames and, assisted by Fred Sigrist, started to design and build his first aircraft, the Sopwith Hybrid. He sold this to the Royal Navy in 1913, and the following year his aviation manufacturing company became the Sopwith Aviation Company Ltd. That year a seaplane version of his Sopwith Tabloid won the Schneider Trophy in the second running of this speed competition. During 1914–18, Sopwith concentrated on producing fighters (or "scouts" as they were then called), with the Pup, the Camel, the 1½ Strutter, the Snipe and the Sopwith Triplane proving among the best in the war. He also pioneered several ideas to make flying easier for the pilot, and in 1915 he patented his adjustable tailplane and his 1 ½ Strutter was the first aircraft to be fitted with air brakes. During the four years of the First World War, Sopwith Aviation designed thirty-two different aircraft types and produced over 16,000 aircraft.The end of the First World War brought recession to the aircraft industry and in 1920 Sopwith, like many others, put his company into receivership; none the less, he immediately launched a new, smaller company with Hawker, Sigrist and V.W.Eyre, which they called the H.G. Hawker Engineering Company Ltd to avoid any confusion with the former company. He began by producing cars and motor cycles under licence, but was determined to resume aircraft production. He suffered an early blow with the death of Hawker in an air crash in 1921, but soon began supplying aircraft to the Royal Air Force again. In this he was much helped by taking on a new designer, Sydney Camm, in 1923, and during the next decade they produced a number of military aircraft types, of which the Hart light bomber and the Fury fighter, the first to exceed 200 mph (322 km/h), were the best known. In the mid-1930s Sopwith began to build a large aviation empire, acquiring first the Gloster Aircraft Company and then, in quick succession, Armstrong-Whitworth, Armstrong-Siddeley Motors Ltd and its aero-engine counterpart, and A.V.Roe, which produced Avro aircraft. Under the umbrella of the Hawker Siddeley Aircraft Company (set up in 1935) these companies produced a series of outstanding aircraft, ranging from the Hawker Hurricane, through the Avro Lancaster to the Gloster Meteor, Britain's first in-service jet aircraft, and the Hawker Typhoon, Tempest and Hunter. When Sopwith retired as Chairman of the Hawker Siddeley Group in 1963 at the age of 75, a prototype jump-jet (the P-1127) was being tested, later to become the Harrier, a for cry from the fragile biplanes of 1910.Sopwith also had a passion for yachting and came close to wresting the America's Cup from the USA in 1934 when sailing his yacht Endeavour, which incorporated a number of features years ahead of their time; his greatest regret was that he failed in his attempts to win this famous yachting trophy for Britain. After his retirement as Chairman of the Hawker Siddeley Group, he remained on the Board until 1978. The British aviation industry had been nationalized in April 1977, and Hawker Siddeley's aircraft interests merged with the British Aircraft Corporation to become British Aerospace (BAe). Nevertheless, by then the Group had built up a wide range of companies in the field of mechanical and electrical engineering, and its board conferred on Sopwith the title Founder and Life President.[br]Principal Honours and DistinctionsKnighted 1953. CBE 1918.Bibliography1961, "My first ten years in aviation", Journal of the Royal Aeronautical Society (April) (a very informative and amusing paper).Further ReadingA.Bramson, 1990, Pure Luck: The Authorized Biography of Sir Thomas Sopwith, 1888– 1989, Wellingborough: Patrick Stephens.B.Robertson, 1970, Sopwith. The Man and His Aircraft, London (a detailed publication giving plans of all the Sopwith aircraft).CM / JDSBiographical history of technology > Sopwith, Sir Thomas (Tommy) Octave Murdoch
-
52 Westinghouse, George
[br]b. 6 October 1846 Central Bridge, New York, USAd. 12 March 1914 New York, New York, USA[br]American inventor and entrepreneur, pioneer of air brakes for railways and alternating-current distribution of electricity.[br]George Westinghouse's father was an ingenious manufacturer of agricultural implements; the son, after a spell in the Union Army during the Civil War, and subsequently in the Navy as an engineer, went to work for his father. He invented a rotary steam engine, which proved impracticable; a rerailing device for railway rolling stock in 1865; and a cast-steel frog for railway points, with longer life than the cast-iron frogs then used, in 1868–9. During the same period Westinghouse, like many other inventors, was considering how best to meet the evident need for a continuous brake for trains, i.e. one by which the driver could apply the brakes on all vehicles in a train simultaneously instead of relying on brakesmen on individual vehicles. By chance he encountered a magazine article about the construction of the Mont Cenis Tunnel, with a description of the pneumatic tools invented for it, and from this it occurred to him that compressed air might be used to operate the brakes along a train.The first prototype was ready in 1869 and the Westinghouse Air Brake Company was set up to manufacture it. However, despite impressive demonstration of the brake's powers when it saved the test train from otherwise certain collision with a horse-drawn dray on a level crossing, railways were at first slow to adopt it. Then in 1872 Westinghouse added to it the triple valve, which enabled the train pipe to charge reservoirs beneath each vehicle, from which the compressed air would apply the brakes when pressure in the train pipe was reduced. This meant that the brake was now automatic: if a train became divided, the brakes on both parts would be applied. From then on, more and more American railways adopted the Westinghouse brake and the Railroad Safety Appliance Act of 1893 made air brakes compulsory in the USA. Air brakes were also adopted in most other parts of the world, although only a minority of British railway companies took them up, the remainder, with insular reluctance, preferring the less effective vacuum brake.From 1880 Westinghouse was purchasing patents relating to means of interlocking railway signals and points; he combined them with his own inventions to produce a complete signalling system. The first really practical power signalling scheme, installed in the USA by Westinghouse in 1884, was operated pneumatically, but the development of railway signalling required an awareness of the powers of electricity, and it was probably this that first led Westinghouse to become interested in electrical processes and inventions. The Westinghouse Electric Company was formed in 1886: it pioneered the use of electricity distribution systems using high-voltage single-phase alternating current, which it developed from European practice. Initially this was violently opposed by established operators of direct-current distribution systems, but eventually the use of alternating current became widespread.[br]Principal Honours and DistinctionsLégion d'honneur. Order of the Crown of Italy. Order of Leopold.BibliographyWestinghouse took out some 400 patents over forty-eight years.Further ReadingH.G.Prout, 1922, A Life of "George Westinghouse", London (biography inclined towards technicalities).F.E.Leupp, 1918, George Westinghouse: His Life and Achievements, Boston (London 1919) (biography inclined towards Westinghouse and his career).J.F.Stover, 1961, American Railroads, Chicago: University of Chicago Press, pp. 152–4.PJGR
См. также в других словарях:
Prototype (Computerspiel) — Prototype Entwickler … Deutsch Wikipedia
Prototype JavaScript Framework — Infobox Software name = Prototype JavaScript Framework developer = [http://prototypejs.org/core Prototype Core Team] latest release version = 1.6.0.3 latest release date = release date|2008|09|28 genre = JavaScript toolkit license = MIT License… … Wikipedia
Prototype (video game) — Infobox VG title = PROTOTYPE caption = developer = Radical Entertainment publisher = Sierra Entertainment distributor = designer = license = series = engine = version = released = April 2009 genre = Action/Sandbox modes = Single player ratings =… … Wikipedia
Engine Alliance GP7200 — GP7200 sur un A380 Le GP7200 est un réacteur d avion spécialement conçu pour l Airbus A380, il a été pensé et réalisé par Engine Alliance, un groupement né de l’association de General Electric et de Pratt Whitney, avec pour but la conception de… … Wikipédia en Français
Aircraft diesel engine — Thielert Centurion aircraft diesel engine. The aircraft diesel engine or aero diesel has not been widely used as an aircraft engine. Diesel engines were used in airships and were tried in aircraft in the late 1920s … Wikipedia
Controlled Combustion Engine — REVETEC X4v2 Prototype Engine Controlled Combustion Engine (CCE) is a term used by Revetec, an engine design company, to identify a type of experimental internal combustion engine (ICE) designed by Brad Howell Smith. It uses two counter rotating… … Wikipedia
Nutating disc engine — A nutating disc engine (also sometimes called a disc engine) is an internal combustion engine comprising fundamentally of one moving part and a direct drive onto the crankshaft. Initially patented in 1993, it differs from earlier internal… … Wikipedia
De Rivaz engine — Model of de Rivaz 1807 prototype internal combustion engine driven automobile. Reconstruction by the Conservatoire National des Arts et Métiers. The de Rivaz engine was a pioneering reciprocating engine designed and developed from 1804 by the… … Wikipedia
Chrysler Hemi-6 Engine — The Chrysler Hemi 6 engine is a family of inline six cylinder petrol engines produced by Chrysler Australia in three piston displacements and multiple configurations. Hemi 6 engines were installed in Australian market Chrysler Valiants from 1970… … Wikipedia
Stirling engine — Alpha type Stirling engine. There are two cylinders. The expansion cylinder (red) is maintained at a high temperature while the compression cylinder (blue) is cooled. The passage between the two cylinders contains the regenerator … Wikipedia
Henry the Green Engine — is a fictional anthropomorphic 4 6 0 steam locomotive from The Railway Series books written by the Reverend Wilbert Vere Awdry and his son, Christopher Awdry, and the spin off children s television series, Thomas the Tank Engine and Friends .… … Wikipedia