Перевод: со всех языков на английский

с английского на все языки

produce+under+a+licence

  • 1 производить по лицензии

    2) Diplomatic term: (что-л.) produce under licence
    3) Patents: make under license

    Универсальный русско-английский словарь > производить по лицензии

  • 2 производить по лицензии

    make (manufacture, produce) under a licence

    Banks. Exchanges. Accounting. (Russian-English) > производить по лицензии

  • 3 licencj|a

    f (G pl licencji) 1. (zezwolenie) licence GB, license US
    - licencja na przewóz pasażerów a passenger transport licence
    - licencja na produkcję samochodów a licence to produce cars
    - licencja pilota a pilot’s licence
    - na licencji under licence
    - udzielić (komuś) licencji to grant a licence to sb
    - samochody produkowane na licencji japońskiej cars produced a. made under Japanese licence
    2. (w literaturze, sztuce) licence GB, license US
    - licencja poetycka poetic a. artistic licence

    The New English-Polish, Polish-English Kościuszko foundation dictionary > licencj|a

  • 4 McCormick, Cyrus

    [br]
    b. 1809 Walnut Grove, Virginia, USA
    d. 1884 USA
    [br]
    American inventor of the first functionally and commercially successful reaping machine; founder of the McCormick Company, which was to become one of the founding companies of International Harvester.
    [br]
    Cyrus McCormick's father, a farmer, began to experiment unsuccessfully with a harvesting machine between 1809 and 1816. His son took up the challenge and gave his first public demonstration of his machine in 1831. It cut a 4 ft swathe, but, wanting to perfect the machine, he waited until 1834 before patenting it, by which time he felt that his invention was threatened by others of similar design. In the same year he entered an article in the Mechanics Magazine, warning competitors off his design. His main rival was Obed Hussey who contested McCormick's claim to the originality of the idea, having patented his own machine six months before McCormick.
    A competition between the two machines was held in 1843, the judges favouring McCormick's, even after additional trials were conducted after objections of unfairness from Hussey. The rivalry continued over a number of years, being avidly reported in the agricultural press. The publicity did no harm to reaper sales, and McCormick sold twenty-nine machines in 1843 and fifty the following year.
    As the westward settlement movement progressed, so the demand for McCormick's machine grew. In order to be more central to his markets, McCormick established himself in Chicago. In partnership with C.M.Gray he established a factory to produce 500 harvesters for the 1848 season. By means of advertising and offers of credit terms, as well as production-line assembly, McCormick was able to establish himself as sole owner and also control all production, under the one roof. By the end of the decade he dominated reaper production but other developments were to threaten this position; however, foreign markets were appearing at the same time, not least the opportunities of European sales stimulated by the Great Exhibition in 1851. In the trials arranged by the Royal Agricultural Society of England the McCormick machine significantly outperformed that of Hussey's, and as a result McCormick arranged for 500 to be made under licence in England.
    In 1874 McCormick bought a half interest in the patent for a wire binder from Charles Withington, a watchmaker from Janesville, Wisconsin, and by 1885 a total of 50,000 wire binders had been built in Chicago. By 1881 McCormick was producing twine binders using Appleby's twine knotter under a licence agreement, and by 1885 the company was producing only twine binders. The McCormick Company was one of the co-founders of the International Harvester Company in 1901.
    [br]
    Bibliography
    1972, The Century of the Reaper, Johnson Reprint (the original is in the New York State Library).
    Further Reading
    Graeme Quick and Wesley Buchele, 1978, The Grain Harvesters, American Society of Agricultural Engineers (deals in detail with McCormick's developments).
    G.H.Wendell, 1981, 150 Years of International Harvester, Crestlink (though more concerned with the machinery produced by International Harvester, it gives an account of its originating companies).
    T.W.Hutchinson, 1930, Cyrus Hall McCormick, Seedtime 1809–1856; ——1935, Cyrus Hall McCormick, Harvest 1856–1884 (both attempt to unravel the many claims surrounding the reaper story).
    Herbert N.Casson, 1908, The Romance of the Reaper, Doubleday Page (deals with McCormick, Deering and the formation of International Harvester).
    AP

    Biographical history of technology > McCormick, Cyrus

  • 5 производить (что-л.) по лицензии

    Diplomatic term: produce under licence

    Универсальный русско-английский словарь > производить (что-л.) по лицензии

  • 6 лицензия лицензи·я

    эк.
    licence; license амер.

    выдавать лицензию — to grant / to issue a licence

    производить что-л. по лицензии — to produce smth. under licence

    генеральная лицензия — general / bloc licence

    импортная лицензия, лицензия на импорт — import permit / licence

    экспортная лицензия, лицензия на экспорт — export permit / licence

    Russian-english dctionary of diplomacy > лицензия лицензи·я

  • 7 Moulton, Alexander

    [br]
    b. 9 April 1920 Stratford-on-Avon
    [br]
    English inventor of vehicle suspension systems and the Moulton bicycle.
    [br]
    He spent his childhood at The Hall in Bradfordon-Avon. He was educated at Marlborough College, and in 1937 was apprenticed to the Sentinel Steam Wagon Company of Shrewsbury. About that same time he went to King's College, Cambridge, where he took the Mechanical Sciences Tripos. It was then wartime, and he did research on aero-engines at the Bristol Aeroplane Company, where he became Personal Assistant to Sir Roy Fedden. He left Bristol's in 1945 to join his family firm, Spencer \& Moulton, of which he eventually became Technical Director and built up the Research Department. In 1948 he invented his first suspension unit, the "Flexitor", in which an inner shaft and an outer shell were separated by an annular rubber body which was bonded to both.
    In 1848 his great-grandfather had founded the family firm in an old woollen mill, to manufacture vulcanized rubber products under Charles Goodyear's patent. The firm remained a family business with Spencer's, consultants in railway engineering, until 1956 when it was sold to the Avon Rubber Company. He then formed Moulton Developments to continue his work on vehicle suspensions in the stables attached to The Hall. Sponsored by the British Motor Corporation (BMC) and the Dunlop Rubber Company, he invented a rubber cone spring in 1951 which was later used in the BMC Mini (see Issigonis, Sir Alexander Arnold Constantine): by 1994 over 4 million Minis had been fitted with these springs, made by Dunlop. In 1954 he patented the Hydrolastic suspension system, in which all four wheels were independently sprung with combined rubber springs and damper assembly, the weight being supported by fluid under pressure, and the wheels on each side being interconnected, front to rear. In 1962 he formed Moulton Bicycles Ltd, having designed an improved bicycle system for adult use. The conventional bicycle frame was replaced by a flat-sided oval steel tube F-frame on a novel rubber front and rear suspension, with the wheel size reduced to 41 cm (16 in.) with high-pressure tyres. Raleigh Industries Ltd having refused his offer to produce the Moulton Bicycle under licence, he set up his own factory on his estate, producing 25,000 bicycles between 1963 and 1966. In 1967 he sold out to Raleigh and set up as Bicycle Consultants Ltd while continuing the suspension development of Moulton Developments Ltd. In the 1970s the combined firms employed some forty staff, nearly 50 per cent of whom were graduates.
    He won the Queen's Award for Industry in 1967 for technical innovation in Hydrolastic car suspension and the Moulton Bicycle. Since that time he has continued his innovative work on suspensions and the bicycle. In 1983 he introduced the AM bicycle series of very sophisticated space-frame design with suspension and 43 cm (17 in.) wheels; this machine holds the world speed record fully formed at 82 km/h (51 mph). The current Rover 100 and MGF use his Hydragas interconnected suspension. By 1994 over 7 million cars had been fitted with Moulton suspensions. He has won many design awards and prizes, and has been awarded three honorary doctorates of engineering. He is active in engineering and design education.
    [br]
    Principal Honours and Distinctions
    Queen's Award for Industry 1967; CBE; RDI. Fellow of the Royal Academy of Engineering.
    Further Reading
    P.R.Whitfield, 1975, Creativity in Industry, London: Penguin Books.
    IMcN

    Biographical history of technology > Moulton, Alexander

  • 8 Appleby, John F.

    [br]
    b. 1840 New York, US A
    d. ? USA
    [br]
    American inventor of the knotting mechanism used on early binders and still found on modern baling machines.
    [br]
    As a young man John Appleby worked as a labourer for a farmer near Whitewater in Wisconsin. He was 18 when the farmer bought a new reaping machine. Appleby believed that the concept had not been progressed far enough and that the machine should be able to bind sheaths as well as to cut the corn. It is claimed that while watching a dog playing with a skipping rope he noticed a particular knot created as the dog removed its head from the loop that had passed over it, and recognized the potential of the way in which this knot had been formed. From a piece of apple wood he carved a device that would produce the knot he had seen. A local school teacher backed Appleby's idea with a $50 loan, but the American Civil War and service in the Union Army prevented any further development until 1869 when he took out a patent on a wire-tying binder. A number of the devices were made for him by a company in Beloit. Trials of wire binders held in 1873 highlighted the danger of small pieces of wire caught up in the hay leading to livestock losses. Appleby looked again at the possibility of twine. In 1875 he successfully operated a machine and the following season four were in operation. A number of other developments, not least Behel's "bill hook" knotting device, were also to have an influence in the final development of Appleby's twine-tying binder. As so often happens, it was the vision of the entrepreneur which ultimately led to the success of Appleby's device. In 1877 Appleby persuaded William Deering to produce and market his binder, and 3,000 twine binders, together with the twine produced for them, were put on the market in 1880, with immediate success. Over the next dozen years all harvesting-machine manufacturers adopted the idea, under licence to Appleby.
    [br]
    Further Reading
    G.Quick and W.Buchele, 1978, The Grain Harvesters, American Society of Agricultural Engineers (provides an account of the development of harvesting machinery and the various tying devices developed for them).
    1927, "Twine knotter history", Wisconsin Magazine of History (a more specific account).
    AP

    Biographical history of technology > Appleby, John F.

  • 9 производить продукцию по лицензии

    Универсальный русско-английский словарь > производить продукцию по лицензии

  • 10 licencja

    -i; -e; gen pl; -i; f
    licence (BRIT), license (US)
    * * *
    f.
    1. (= zezwolenie na wykonywanie czynności) license; mieć licencję pilota to have pilot's license.
    2. (= zezwolenie na korzystanie z praw) license; mieć licencję na produkcję czegoś have a license to produce sth; telewizor na licencji Sony TV set under license from Sony.
    3. licencja poetycka poetic license.

    The New English-Polish, Polish-English Kościuszko foundation dictionary > licencja

  • 11 Martin, Pierre Emile

    SUBJECT AREA: Metallurgy
    [br]
    b. 18 August 1824 Bourges, France
    d. 23 May 1915 Fourchambault, France
    [br]
    French metallurgist, pioneer of open-hearth steelmaking.
    [br]
    His father Emile owned an iron-and steelworks at Sireuil, near Angoulême, and, through this, Pierre became interested in improving the steelmaking process. In England, C.W. Siemens had developed the regenerative principle of waste-heat recovery that produced a much higher furnace temperature. In 1863, the Martins applied this process in an open-hearth furnace built under licence from Siemens, with the aid of his engineers. They melted a mixture of pig-and wrought iron to produce steel with the required carbon content. Martin exhibited the product at the Paris Exhibition of 1867 and was awarded a gold medal. The open-hearth process was for a long time known as the Siemens-Martin process, but Martin did not share in the profits which others gained from its successful adoption. He had difficulty in obtaining patent rights as it was claimed that the principles of the process were already known and in use. The costs of litigation brought Martin to the brink of poverty, from which relief came only late in life, when in 1907 the Comité des Forges de France opened a subscription for him that was generously supported. A week before his death, the Iron and Steel Institute of London bestowed on him their Bessemer gold medal.
    [br]
    Principal Honours and Distinctions
    Iron and Steel Institute Bessemer Gold Medal 1915.
    Further Reading
    LRD

    Biographical history of technology > Martin, Pierre Emile

  • 12 Solvay, Ernest

    SUBJECT AREA: Chemical technology
    [br]
    b. 16 April 1838 Rebcq, near Brussels, Belgium
    d. 26 May 1922 Brussels, Belgium
    [br]
    Belgian manufacturer, first successfully to produce soda by the ammonia-soda process.
    [br]
    From the beginning of the nineteenth century, soda had been manufactured by the Leblanc process. Important though it was, serious drawbacks had shown themselves early on. The worst was the noxious alkali waste left after the extraction of the soda, in such large quantities that two tons of waste were produced for one of soda. The first attempt to work out an alternative process was by the French scientist and engineer A.J. Fresnel, but it failed. The process consisted essentially of passing carbon dioxide into a solution of ammonia in brine (sodium chloride). The product, sodium bicarbonate, could easily be converted to soda by heating. For over half a century, practical difficulties, principally the volatility of the ammonia, dogged the process and a viable solution eluded successive chemists, including James Muspratt and William Deacon.
    Finally, Ernest Solvay and his brother Alfred tackled the problem, and in 1861 they filed a Belgian patent for improvements, notably the introduction of a carbonating tower, which made the process continuous. The first works were set up at Couillet in 1863, but four further years of hard work were still needed to overcome teething troubles. Once the Solvay ammonia-soda process was working well, it made rapid strides. It was introduced into Britain in 1872 under licence to Ludwig Mond and four years later Solvay opened the large Dombaske works in France.
    Solvay was a member of the Belgian Senate and a Minister of State. International institutes of physics, chemistry and sociology are named after him.
    [br]
    Further Reading
    P.Heger and C.Lefebvre, 1919, La vie d'Ernest Solvay.
    Obituary, 1922, Ind. Eng. Chem.: 1,156.
    LRD

    Biographical history of technology > Solvay, Ernest

  • 13 Trevithick, Richard

    [br]
    b. 13 April 1771 Illogan, Cornwall, England
    d. 22 April 1833 Dartford, Kent, England
    [br]
    English engineer, pioneer of non-condensing steam-engines; designed and built the first locomotives.
    [br]
    Trevithick's father was a tin-mine manager, and Trevithick himself, after limited formal education, developed his immense engineering talent among local mining machinery and steam-engines and found employment as a mining engineer. Tall, strong and high-spirited, he was the eternal optimist.
    About 1797 it occurred to him that the separate condenser patent of James Watt could be avoided by employing "strong steam", that is steam at pressures substantially greater than atmospheric, to drive steam-engines: after use, steam could be exhausted to the atmosphere and the condenser eliminated. His first winding engine on this principle came into use in 1799, and subsequently such engines were widely used. To produce high-pressure steam, a stronger boiler was needed than the boilers then in use, in which the pressure vessel was mounted upon masonry above the fire: Trevithick designed the cylindrical boiler, with furnace tube within, from which the Cornish and later the Lancashire boilers evolved.
    Simultaneously he realized that high-pressure steam enabled a compact steam-engine/boiler unit to be built: typically, the Trevithick engine comprised a cylindrical boiler with return firetube, and a cylinder recessed into the boiler. No beam intervened between connecting rod and crank. A master patent was taken out.
    Such an engine was well suited to driving vehicles. Trevithick built his first steam-carriage in 1801, but after a few days' use it overturned on a rough Cornish road and was damaged beyond repair by fire. Nevertheless, it had been the first self-propelled vehicle successfully to carry passengers. His second steam-carriage was driven about the streets of London in 1803, even more successfully; however, it aroused no commercial interest. Meanwhile the Coalbrookdale Company had started to build a locomotive incorporating a Trevithick engine for its tramroads, though little is known of the outcome; however, Samuel Homfray's ironworks at Penydarren, South Wales, was already building engines to Trevithick's design, and in 1804 Trevithick built one there as a locomotive for the Penydarren Tramroad. In this, and in the London steam-carriage, exhaust steam was turned up the chimney to draw the fire. On 21 February the locomotive hauled five wagons with 10 tons of iron and seventy men for 9 miles (14 km): it was the first successful railway locomotive.
    Again, there was no commercial interest, although Trevithick now had nearly fifty stationary engines completed or being built to his design under licence. He experimented with one to power a barge on the Severn and used one to power a dredger on the Thames. He became Engineer to a project to drive a tunnel beneath the Thames at Rotherhithe and was only narrowly defeated, by quicksands. Trevithick then set up, in 1808, a circular tramroad track in London and upon it demonstrated to the admission-fee-paying public the locomotive Catch me who can, built to his design by John Hazledine and J.U. Rastrick.
    In 1809, by which date Trevithick had sold all his interest in the steam-engine patent, he and Robert Dickinson, in partnership, obtained a patent for iron tanks to hold liquid cargo in ships, replacing the wooden casks then used, and started to manufacture them. In 1810, however, he was taken seriously ill with typhus for six months and had to return to Cornwall, and early in 1811 the partners were bankrupt; Trevithick was discharged from bankruptcy only in 1814.
    In the meantime he continued as a steam engineer and produced a single-acting steam engine in which the cut-off could be varied to work the engine expansively by way of a three-way cock actuated by a cam. Then, in 1813, Trevithick was approached by a representative of a company set up to drain the rich but flooded silver-mines at Cerro de Pasco, Peru, at an altitude of 14,000 ft (4,300 m). Low-pressure steam engines, dependent largely upon atmospheric pressure, would not work at such an altitude, but Trevithick's high-pressure engines would. Nine engines and much other mining plant were built by Hazledine and Rastrick and despatched to Peru in 1814, and Trevithick himself followed two years later. However, the war of independence was taking place in Peru, then a Spanish colony, and no sooner had Trevithick, after immense difficulties, put everything in order at the mines then rebels arrived and broke up the machinery, for they saw the mines as a source of supply for the Spanish forces. It was only after innumerable further adventures, during which he encountered and was assisted financially by Robert Stephenson, that Trevithick eventually arrived home in Cornwall in 1827, penniless.
    He petitioned Parliament for a grant in recognition of his improvements to steam-engines and boilers, without success. He was as inventive as ever though: he proposed a hydraulic power transmission system; he was consulted over steam engines for land drainage in Holland; and he suggested a 1,000 ft (305 m) high tower of gilded cast iron to commemorate the Reform Act of 1832. While working on steam propulsion of ships in 1833, he caught pneumonia, from which he died.
    [br]
    Bibliography
    Trevithick took out fourteen patents, solely or in partnership, of which the most important are: 1802, Construction of Steam Engines, British patent no. 2,599. 1808, Stowing Ships' Cargoes, British patent no. 3,172.
    Further Reading
    H.W.Dickinson and A.Titley, 1934, Richard Trevithick. The Engineer and the Man, Cambridge; F.Trevithick, 1872, Life of Richard Trevithick, London (these two are the principal biographies).
    E.A.Forward, 1952, "Links in the history of the locomotive", The Engineer (22 February), 226 (considers the case for the Coalbrookdale locomotive of 1802).
    PJGR

    Biographical history of technology > Trevithick, Richard

См. также в других словарях:

  • licence — A paper or electronic document issued by the competent authority, authorizing and requiring the import or export of the goods specified and/or imposing other special requirements as necessary. HM Customs & Revenue Glossary * * * licence li‧cence… …   Financial and business terms

  • produce — ♦ produces, producing, produced (The verb is pronounced [[t]prədju͟ːs, AM du͟ːs[/t]]u>. The noun is pronounced [[t]prɒ̱djuːs, AM duːs[/t]]u> and is hyphenated prod+uce.) 1) VERB To produce something means to cause it to happen. [V n] The… …   English dictionary

  • Television licence — A television licence (or broadcast receiver licence) is an official licence required in many countries for the reception of television (and sometimes also radio) broadcasts. It is a form of hypothecation tax to fund public broadcasting, thus… …   Wikipedia

  • Driving licence in India — Driving licences in India are issued by individual states. Each state has a Regional Transport Authority or a Regional Transport Office (RTO) that issues licences. Usually the licence holder is authorized to drive within the state which issued it …   Wikipedia

  • BBC — For other uses, see BBC (disambiguation). British Broadcasting Corporation (BBC) Industry Broadcasting Predecessor British Broadcasting Company Founded 1 January 1927 …   Wikipedia

  • Namco (automobiles) — NAMCO logo NAMCO (National Motor Company of Greece) is a Greek vehicle manufacturer, a creation of the Kontogouris Brothers who have been in the automotive industry business since the 1950s. Contents 1 Hist …   Wikipedia

  • Zastava — Infobox Company company name = Zastava Automobiles Застава Аутомобили company company type = Private foundation = 1953 location = flagicon|Serbia Kragujevac, Serbia key people = Miljko Erić, Zoran Radojević industry = Automotive products =… …   Wikipedia

  • MG Rover Group — Industry Automobiles Fate Liquidated Successor MG Motor Founded …   Wikipedia

  • Nanjing Automobile (Group) Corporation — (Chinese: 南京汽车集团有限公司 or 南京汽車集團有限公司) Type subsidiary of SAIC Industry automotive Founded 1947 …   Wikipedia

  • Stoewer — was a German automobile manufacturer before World War II whose headquarters were in Stettin (Szczecin).The first company was founded by the Stoewer brothers, Emil (lived 1873 1942) and Bernhard (1875 1937) in 1896 for manufacturing sewing… …   Wikipedia

  • Falconry — For the unblack metal album, see Falconry (album). Flying a Saker Falcon …   Wikipedia

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»