Перевод: со всех языков на английский

с английского на все языки

process+of+manufacture

  • 101 Land, Edwin Herbert

    [br]
    b. 7 May 1909 Bridgeport, Connecticut, USA
    d. 1 March 1991 Cambridge, Massachusetts, USA
    [br]
    American scientist and inventor of the Polaroid instant-picture process.
    [br]
    Edwin Land's career began when, as a Harvard undergraduate in the late 1920s, he became interested in the possibility of developing a polarizing filter in the form of a thin sheet, to replace the crystal and stacked-glass devices then in use, which were expensive, cumbersome and limited in size. He succeeded in creating a material in which minute anisotropic iodine crystals were oriented in line, producing an efficient polarizer that was patented in 1929. After presenting the result of his researches in a Physics Department colloquium at Harvard, he left to form a partnership with George Wheelwright to manufacture the new material, which was seen to have applications as diverse as anti-glare car headlights, sunglasses, and viewing filters for stereoscopic photographs and films. In 1937 he founded the Polaroid Corporation and developed the Vectograph process, in which self-polarized photographic images could be printed, giving a stereoscopic image when viewed through polarizing viewers. Land's most significant invention, the instant picture, was stimulated by his three-year-old daughter. As he took a snapshot of her, she asked why she could not see the picture at once. He began to research the possibility, and on 21 February 1947 he demonstrated a system of one-step photography at a meeting of the Optical Society of America. Using the principle of diffusion transfer of the image, it produced a photograph in one minute. The Polaroid Land camera was launched on 26 November 1948. The original sepia-coloured images were soon replaced by black and white and, in 1963, by Polacolor instant colour film. The original peel-apart "wet" process was superseded in 1972 with the introduction of the SX-70 camera with dry picture units which developed in the light. The instant colour movie system Polavision, introduced in 1978, was less successful and was one of his few commercial failures.
    Land died in March 1991, after a career in which he had been honoured by countless scien-tific and academic bodies and had received the Medal of Freedom, the highest civilian honour in America.
    [br]
    Principal Honours and Distinctions
    Medal of Freedom.
    BC

    Biographical history of technology > Land, Edwin Herbert

  • 102 Sutton, Thomas

    [br]
    b. 1819 England
    d. 1875 Jersey, Channel Islands
    [br]
    English photographer and writer on photography.
    [br]
    In 1841, while studying at Cambridge, Sutton became interested in photography and tried out the current processes, daguerreotype, calotype and cyanotype among them. He subsequently settled in Jersey, where he continued his photographic studies. In 1855 he opened a photographic printing works in Jersey, in partnership with L.-D. Blanquart- Evrard, exploiting the latter's process for producing developed positive prints. He started and edited one of the first photographic periodicals, Photographic Notes, in 1856; until its cessation in 1867, his journal presented a fresher view of the world of photography than that given by its London-based rivals. He also drew up the first dictionary of photography in 1858.
    In 1859 Sutton designed and patented a wideangle lens in which the space between two meniscus lenses, forming parts of a sphere and sealed in a metal rim, was filled with water; the lens so formed could cover an angle of up to 120 degrees at an aperture of f12. Sutton's design was inspired by observing the images produced by the water-filled sphere of a "snowstorm" souvenir brought home from Paris! Sutton commissioned the London camera-maker Frederick Cox to make the Panoramic camera, demonstrating the first model in January 1860; it took panoramic pictures on curved glass plates 152×381 mm in size. Cox later advertised other models in a total of four sizes. In January 1861 Sutton handed over manufacture to Andrew Ross's son Thomas Ross, who produced much-improved lenses and also cameras in three sizes. Sutton then developed the first single-lens reflex camera design, patenting it on 20 August 1961: a pivoted mirror, placed at 45 degrees inside the camera, reflected the image from the lens onto a ground glass-screen set in the top of the camera for framing and focusing. When ready, the mirror was swung up out of the way to allow light to reach the plate at the back of the camera. The design was manufactured for a few years by Thomas Ross and J.H. Dallmeyer.
    In 1861 James Clerk Maxwell asked Sutton to prepare a series of photographs for use in his lecture "On the theory of three primary colours", to be presented at the Royal Institution in London on 17 May 1861. Maxwell required three photographs to be taken through red, green and blue filters, which were to be printed as lantern slides and projected in superimposition through three projectors. If his theory was correct, a colour reproduction of the original subject would be produced. Sutton used liquid filters: ammoniacal copper sulphate for blue, copper chloride for the green and iron sulphocyanide for the red. A fourth exposure was made through lemon-yellow glass, but was not used in the final demonstration. A tartan ribbon in a bow was used as the subject; the wet-collodion process in current use required six seconds for the blue exposure, about twice what would have been needed without the filter. After twelve minutes no trace of image was produced through the green filter, which had to be diluted to a pale green: a twelve-minute exposure then produced a serviceable negative. Eight minutes was enough to record an image through the red filter, although since the process was sensitive only to blue light, nothing at all should have been recorded. In 1961, R.M.Evans of the Kodak Research Laboratory showed that the red liquid transmitted ultraviolet radiation, and by an extraordinary coincidence many natural red dye-stuffs reflect ultraviolet. Thus the red separation was made on the basis of non-visible radiation rather than red, but the net result was correct and the projected images did give an identifiable reproduction of the original. Sutton's photographs enabled Maxwell to establish the validity of his theory and to provide the basis upon which all subsequent methods of colour photography have been founded.
    JW / BC

    Biographical history of technology > Sutton, Thomas

  • 103 перерабатывать

    1. manufactured; refined; processed
    2. manufacture; refine; process

    Русско-английский научный словарь > перерабатывать

  • 104 модульный центр обработки данных (ЦОД)

    1. modular data center

     

    модульный центр обработки данных (ЦОД)
    -
    [Интент]

    Параллельные тексты EN-RU

    [ http://loosebolts.wordpress.com/2008/12/02/our-vision-for-generation-4-modular-data-centers-one-way-of-getting-it-just-right/]

    [ http://dcnt.ru/?p=9299#more-9299]

    Data Centers are a hot topic these days. No matter where you look, this once obscure aspect of infrastructure is getting a lot of attention. For years, there have been cost pressures on IT operations and this, when the need for modern capacity is greater than ever, has thrust data centers into the spotlight. Server and rack density continues to rise, placing DC professionals and businesses in tighter and tougher situations while they struggle to manage their IT environments. And now hyper-scale cloud infrastructure is taking traditional technologies to limits never explored before and focusing the imagination of the IT industry on new possibilities.

    В настоящее время центры обработки данных являются широко обсуждаемой темой. Куда ни посмотришь, этот некогда малоизвестный аспект инфраструктуры привлекает все больше внимания. Годами ИТ-отделы испытывали нехватку средств и это выдвинуло ЦОДы в центр внимания, в то время, когда необходимость в современных ЦОДах стала как никогда высокой. Плотность серверов и стоек продолжают расти, все больше усложняя ситуацию для специалистов в области охлаждения и организаций в их попытках управлять своими ИТ-средами. И теперь гипермасштабируемая облачная инфраструктура подвергает традиционные технологии невиданным ранее нагрузкам, и заставляет ИТ-индустрию искать новые возможности.

    At Microsoft, we have focused a lot of thought and research around how to best operate and maintain our global infrastructure and we want to share those learnings. While obviously there are some aspects that we keep to ourselves, we have shared how we operate facilities daily, our technologies and methodologies, and, most importantly, how we monitor and manage our facilities. Whether it’s speaking at industry events, inviting customers to our “Microsoft data center conferences” held in our data centers, or through other media like blogging and white papers, we believe sharing best practices is paramount and will drive the industry forward. So in that vein, we have some interesting news to share.

    В компании MicroSoft уделяют большое внимание изучению наилучших методов эксплуатации и технического обслуживания своей глобальной инфраструктуры и делятся результатами своих исследований. И хотя мы, конечно, не раскрываем некоторые аспекты своих исследований, мы делимся повседневным опытом эксплуатации дата-центров, своими технологиями и методологиями и, что важнее всего, методами контроля и управления своими объектами. Будь то доклады на отраслевых событиях, приглашение клиентов на наши конференции, которые посвящены центрам обработки данных MicroSoft, и проводятся в этих самых дата-центрах, или использование других средств, например, блоги и спецификации, мы уверены, что обмен передовым опытом имеет первостепенное значение и будет продвигать отрасль вперед.

    Today we are sharing our Generation 4 Modular Data Center plan. This is our vision and will be the foundation of our cloud data center infrastructure in the next five years. We believe it is one of the most revolutionary changes to happen to data centers in the last 30 years. Joining me, in writing this blog are Daniel Costello, my director of Data Center Research and Engineering and Christian Belady, principal power and cooling architect. I feel their voices will add significant value to driving understanding around the many benefits included in this new design paradigm.

    Сейчас мы хотим поделиться своим планом модульного дата-центра четвертого поколения. Это наше видение и оно будет основанием для инфраструктуры наших облачных дата-центров в ближайшие пять лет. Мы считаем, что это одно из самых революционных изменений в дата-центрах за последние 30 лет. Вместе со мной в написании этого блога участвовали Дэниел Костелло, директор по исследованиям и инжинирингу дата-центров, и Кристиан Белади, главный архитектор систем энергоснабжения и охлаждения. Мне кажется, что их авторитет придаст больше веса большому количеству преимуществ, включенных в эту новую парадигму проектирования.

    Our “Gen 4” modular data centers will take the flexibility of containerized servers—like those in our Chicago data center—and apply it across the entire facility. So what do we mean by modular? Think of it like “building blocks”, where the data center will be composed of modular units of prefabricated mechanical, electrical, security components, etc., in addition to containerized servers.

    Was there a key driver for the Generation 4 Data Center?

    Наши модульные дата-центры “Gen 4” будут гибкими с контейнерами серверов – как серверы в нашем чикагском дата-центре. И гибкость будет применяться ко всему ЦОД. Итак, что мы подразумеваем под модульностью? Мы думаем о ней как о “строительных блоках”, где дата-центр будет состоять из модульных блоков изготовленных в заводских условиях электрических систем и систем охлаждения, а также систем безопасности и т.п., в дополнение к контейнеризованным серверам.
    Был ли ключевой стимул для разработки дата-центра четвертого поколения?


    If we were to summarize the promise of our Gen 4 design into a single sentence it would be something like this: “A highly modular, scalable, efficient, just-in-time data center capacity program that can be delivered anywhere in the world very quickly and cheaply, while allowing for continued growth as required.” Sounds too good to be true, doesn’t it? Well, keep in mind that these concepts have been in initial development and prototyping for over a year and are based on cumulative knowledge of previous facility generations and the advances we have made since we began our investments in earnest on this new design.

    Если бы нам нужно было обобщить достоинства нашего проекта Gen 4 в одном предложении, это выглядело бы следующим образом: “Центр обработки данных с высоким уровнем модульности, расширяемости, и энергетической эффективности, а также возможностью постоянного расширения, в случае необходимости, который можно очень быстро и дешево развертывать в любом месте мира”. Звучит слишком хорошо для того чтобы быть правдой, не так ли? Ну, не забывайте, что эти концепции находились в процессе начальной разработки и создания опытного образца в течение более одного года и основываются на опыте, накопленном в ходе развития предыдущих поколений ЦОД, а также успехах, сделанных нами со времени, когда мы начали вкладывать серьезные средства в этот новый проект.

    One of the biggest challenges we’ve had at Microsoft is something Mike likes to call the ‘Goldilock’s Problem’. In a nutshell, the problem can be stated as:

    The worst thing we can do in delivering facilities for the business is not have enough capacity online, thus limiting the growth of our products and services.

    Одну из самых больших проблем, с которыми приходилось сталкиваться Майкрософт, Майк любит называть ‘Проблемой Лютика’. Вкратце, эту проблему можно выразить следующим образом:

    Самое худшее, что может быть при строительстве ЦОД для бизнеса, это не располагать достаточными производственными мощностями, и тем самым ограничивать рост наших продуктов и сервисов.

    The second worst thing we can do in delivering facilities for the business is to have too much capacity online.

    А вторым самым худшим моментом в этой сфере может слишком большое количество производственных мощностей.

    This has led to a focus on smart, intelligent growth for the business — refining our overall demand picture. It can’t be too hot. It can’t be too cold. It has to be ‘Just Right!’ The capital dollars of investment are too large to make without long term planning. As we struggled to master these interesting challenges, we had to ensure that our technological plan also included solutions for the business and operational challenges we faced as well.
    So let’s take a high level look at our Generation 4 design

    Это заставило нас сосредоточиваться на интеллектуальном росте для бизнеса — refining our overall demand picture. Это не должно быть слишком горячим. И это не должно быть слишком холодным. Это должно быть ‘как раз, таким как надо!’ Нельзя делать такие большие капиталовложения без долгосрочного планирования. Пока мы старались решить эти интересные проблемы, мы должны были гарантировать, что наш технологический план будет также включать решения для коммерческих и эксплуатационных проблем, с которыми нам также приходилось сталкиваться.
    Давайте рассмотрим наш проект дата-центра четвертого поколения

    Are you ready for some great visuals? Check out this video at Soapbox. Click here for the Microsoft 4th Gen Video.

    It’s a concept video that came out of my Data Center Research and Engineering team, under Daniel Costello, that will give you a view into what we think is the future.

    From a configuration, construct-ability and time to market perspective, our primary goals and objectives are to modularize the whole data center. Not just the server side (like the Chicago facility), but the mechanical and electrical space as well. This means using the same kind of parts in pre-manufactured modules, the ability to use containers, skids, or rack-based deployments and the ability to tailor the Redundancy and Reliability requirements to the application at a very specific level.


    Посмотрите это видео, перейдите по ссылке для просмотра видео о Microsoft 4th Gen:

    Это концептуальное видео, созданное командой отдела Data Center Research and Engineering, возглавляемого Дэниелом Костелло, которое даст вам наше представление о будущем.

    С точки зрения конфигурации, строительной технологичности и времени вывода на рынок, нашими главными целями и задачами агрегатирование всего дата-центра. Не только серверную часть, как дата-центр в Чикаго, но также системы охлаждения и электрические системы. Это означает применение деталей одного типа в сборных модулях, возможность использования контейнеров, салазок, или стоечных систем, а также возможность подстраивать требования избыточности и надежности для данного приложения на очень специфичном уровне.

    Our goals from a cost perspective were simple in concept but tough to deliver. First and foremost, we had to reduce the capital cost per critical Mega Watt by the class of use. Some applications can run with N-level redundancy in the infrastructure, others require a little more infrastructure for support. These different classes of infrastructure requirements meant that optimizing for all cost classes was paramount. At Microsoft, we are not a one trick pony and have many Online products and services (240+) that require different levels of operational support. We understand that and ensured that we addressed it in our design which will allow us to reduce capital costs by 20%-40% or greater depending upon class.


    Нашими целями в области затрат были концептуально простыми, но трудно реализуемыми. В первую очередь мы должны были снизить капитальные затраты в пересчете на один мегаватт, в зависимости от класса резервирования. Некоторые приложения могут вполне работать на базе инфраструктуры с резервированием на уровне N, то есть без резервирования, а для работы других приложений требуется больше инфраструктуры. Эти разные классы требований инфраструктуры подразумевали, что оптимизация всех классов затрат имеет преобладающее значение. В Майкрософт мы не ограничиваемся одним решением и располагаем большим количеством интерактивных продуктов и сервисов (240+), которым требуются разные уровни эксплуатационной поддержки. Мы понимаем это, и учитываем это в своем проекте, который позволит нам сокращать капитальные затраты на 20%-40% или более в зависимости от класса.

    For example, non-critical or geo redundant applications have low hardware reliability requirements on a location basis. As a result, Gen 4 can be configured to provide stripped down, low-cost infrastructure with little or no redundancy and/or temperature control. Let’s say an Online service team decides that due to the dramatically lower cost, they will simply use uncontrolled outside air with temperatures ranging 10-35 C and 20-80% RH. The reality is we are already spec-ing this for all of our servers today and working with server vendors to broaden that range even further as Gen 4 becomes a reality. For this class of infrastructure, we eliminate generators, chillers, UPSs, and possibly lower costs relative to traditional infrastructure.

    Например, некритичные или гео-избыточные системы имеют низкие требования к аппаратной надежности на основе местоположения. В результате этого, Gen 4 можно конфигурировать для упрощенной, недорогой инфраструктуры с низким уровнем (или вообще без резервирования) резервирования и / или температурного контроля. Скажем, команда интерактивного сервиса решает, что, в связи с намного меньшими затратами, они будут просто использовать некондиционированный наружный воздух с температурой 10-35°C и влажностью 20-80% RH. В реальности мы уже сегодня предъявляем эти требования к своим серверам и работаем с поставщиками серверов над еще большим расширением диапазона температур, так как наш модуль и подход Gen 4 становится реальностью. Для подобного класса инфраструктуры мы удаляем генераторы, чиллеры, ИБП, и, возможно, будем предлагать более низкие затраты, по сравнению с традиционной инфраструктурой.

    Applications that demand higher level of redundancy or temperature control will use configurations of Gen 4 to meet those needs, however, they will also cost more (but still less than traditional data centers). We see this cost difference driving engineering behavioral change in that we predict more applications will drive towards Geo redundancy to lower costs.

    Системы, которым требуется более высокий уровень резервирования или температурного контроля, будут использовать конфигурации Gen 4, отвечающие этим требованиям, однако, они будут также стоить больше. Но все равно они будут стоить меньше, чем традиционные дата-центры. Мы предвидим, что эти различия в затратах будут вызывать изменения в методах инжиниринга, и по нашим прогнозам, это будет выражаться в переходе все большего числа систем на гео-избыточность и меньшие затраты.

    Another cool thing about Gen 4 is that it allows us to deploy capacity when our demand dictates it. Once finalized, we will no longer need to make large upfront investments. Imagine driving capital costs more closely in-line with actual demand, thus greatly reducing time-to-market and adding the capacity Online inherent in the design. Also reduced is the amount of construction labor required to put these “building blocks” together. Since the entire platform requires pre-manufacture of its core components, on-site construction costs are lowered. This allows us to maximize our return on invested capital.

    Еще одно достоинство Gen 4 состоит в том, что он позволяет нам разворачивать дополнительные мощности, когда нам это необходимо. Как только мы закончим проект, нам больше не нужно будет делать большие начальные капиталовложения. Представьте себе возможность более точного согласования капитальных затрат с реальными требованиями, и тем самым значительного снижения времени вывода на рынок и интерактивного добавления мощностей, предусматриваемого проектом. Также снижен объем строительных работ, требуемых для сборки этих “строительных блоков”. Поскольку вся платформа требует предварительного изготовления ее базовых компонентов, затраты на сборку также снижены. Это позволит нам увеличить до максимума окупаемость своих капиталовложений.
    Мы все подвергаем сомнению

    In our design process, we questioned everything. You may notice there is no roof and some might be uncomfortable with this. We explored the need of one and throughout our research we got some surprising (positive) results that showed one wasn’t needed.

    В своем процессе проектирования мы все подвергаем сомнению. Вы, наверное, обратили внимание на отсутствие крыши, и некоторым специалистам это могло не понравиться. Мы изучили необходимость в крыше и в ходе своих исследований получили удивительные результаты, которые показали, что крыша не нужна.
    Серийное производство дата центров


    In short, we are striving to bring Henry Ford’s Model T factory to the data center. http://en.wikipedia.org/wiki/Henry_Ford#Model_T. Gen 4 will move data centers from a custom design and build model to a commoditized manufacturing approach. We intend to have our components built in factories and then assemble them in one location (the data center site) very quickly. Think about how a computer, car or plane is built today. Components are manufactured by different companies all over the world to a predefined spec and then integrated in one location based on demands and feature requirements. And just like Henry Ford’s assembly line drove the cost of building and the time-to-market down dramatically for the automobile industry, we expect Gen 4 to do the same for data centers. Everything will be pre-manufactured and assembled on the pad.

    Мы хотим применить модель автомобильной фабрики Генри Форда к дата-центру. Проект Gen 4 будет способствовать переходу от модели специализированного проектирования и строительства к товарно-производственному, серийному подходу. Мы намерены изготавливать свои компоненты на заводах, а затем очень быстро собирать их в одном месте, в месте строительства дата-центра. Подумайте о том, как сегодня изготавливается компьютер, автомобиль или самолет. Компоненты изготавливаются по заранее определенным спецификациям разными компаниями во всем мире, затем собираются в одном месте на основе спроса и требуемых характеристик. И точно так же как сборочный конвейер Генри Форда привел к значительному уменьшению затрат на производство и времени вывода на рынок в автомобильной промышленности, мы надеемся, что Gen 4 сделает то же самое для дата-центров. Все будет предварительно изготавливаться и собираться на месте.
    Невероятно энергоэффективный ЦОД


    And did we mention that this platform will be, overall, incredibly energy efficient? From a total energy perspective not only will we have remarkable PUE values, but the total cost of energy going into the facility will be greatly reduced as well. How much energy goes into making concrete? Will we need as much of it? How much energy goes into the fuel of the construction vehicles? This will also be greatly reduced! A key driver is our goal to achieve an average PUE at or below 1.125 by 2012 across our data centers. More than that, we are on a mission to reduce the overall amount of copper and water used in these facilities. We believe these will be the next areas of industry attention when and if the energy problem is solved. So we are asking today…“how can we build a data center with less building”?

    А мы упоминали, что эта платформа будет, в общем, невероятно энергоэффективной? С точки зрения общей энергии, мы получим не только поразительные значения PUE, но общая стоимость энергии, затраченной на объект будет также значительно снижена. Сколько энергии идет на производство бетона? Нам нужно будет столько энергии? Сколько энергии идет на питание инженерных строительных машин? Это тоже будет значительно снижено! Главным стимулом является достижение среднего PUE не больше 1.125 для всех наших дата-центров к 2012 году. Более того, у нас есть задача сокращения общего количества меди и воды в дата-центрах. Мы думаем, что эти задачи станут следующей заботой отрасли после того как будет решена энергетическая проблема. Итак, сегодня мы спрашиваем себя…“как можно построить дата-центр с меньшим объемом строительных работ”?
    Строительство дата центров без чиллеров

    We have talked openly and publicly about building chiller-less data centers and running our facilities using aggressive outside economization. Our sincerest hope is that Gen 4 will completely eliminate the use of water. Today’s data centers use massive amounts of water and we see water as the next scarce resource and have decided to take a proactive stance on making water conservation part of our plan.

    Мы открыто и публично говорили о строительстве дата-центров без чиллеров и активном использовании в наших центрах обработки данных технологий свободного охлаждения или фрикулинга. Мы искренне надеемся, что Gen 4 позволит полностью отказаться от использования воды. Современные дата-центры расходуют большие объемы воды и так как мы считаем воду следующим редким ресурсом, мы решили принять упреждающие меры и включить экономию воды в свой план.

    By sharing this with the industry, we believe everyone can benefit from our methodology. While this concept and approach may be intimidating (or downright frightening) to some in the industry, disclosure ultimately is better for all of us.

    Делясь этим опытом с отраслью, мы считаем, что каждый сможет извлечь выгоду из нашей методологией. Хотя эта концепция и подход могут показаться пугающими (или откровенно страшными) для некоторых отраслевых специалистов, раскрывая свои планы мы, в конечном счете, делаем лучше для всех нас.

    Gen 4 design (even more than just containers), could reduce the ‘religious’ debates in our industry. With the central spine infrastructure in place, containers or pre-manufactured server halls can be either AC or DC, air-side economized or water-side economized, or not economized at all (though the sanity of that might be questioned). Gen 4 will allow us to decommission, repair and upgrade quickly because everything is modular. No longer will we be governed by the initial decisions made when constructing the facility. We will have almost unlimited use and re-use of the facility and site. We will also be able to use power in an ultra-fluid fashion moving load from critical to non-critical as use and capacity requirements dictate.

    Проект Gen 4 позволит уменьшить ‘религиозные’ споры в нашей отрасли. Располагая базовой инфраструктурой, контейнеры или сборные серверные могут оборудоваться системами переменного или постоянного тока, воздушными или водяными экономайзерами, или вообще не использовать экономайзеры. Хотя можно подвергать сомнению разумность такого решения. Gen 4 позволит нам быстро выполнять работы по выводу из эксплуатации, ремонту и модернизации, поскольку все будет модульным. Мы больше не будем руководствоваться начальными решениями, принятыми во время строительства дата-центра. Мы сможем использовать этот дата-центр и инфраструктуру в течение почти неограниченного периода времени. Мы также сможем применять сверхгибкие методы использования электрической энергии, переводя оборудование в режимы критической или некритической нагрузки в соответствии с требуемой мощностью.
    Gen 4 – это стандартная платформа

    Finally, we believe this is a big game changer. Gen 4 will provide a standard platform that our industry can innovate around. For example, all modules in our Gen 4 will have common interfaces clearly defined by our specs and any vendor that meets these specifications will be able to plug into our infrastructure. Whether you are a computer vendor, UPS vendor, generator vendor, etc., you will be able to plug and play into our infrastructure. This means we can also source anyone, anywhere on the globe to minimize costs and maximize performance. We want to help motivate the industry to further innovate—with innovations from which everyone can reap the benefits.

    Наконец, мы уверены, что это будет фактором, который значительно изменит ситуацию. Gen 4 будет представлять собой стандартную платформу, которую отрасль сможет обновлять. Например, все модули в нашем Gen 4 будут иметь общепринятые интерфейсы, четко определяемые нашими спецификациями, и оборудование любого поставщика, которое отвечает этим спецификациям можно будет включать в нашу инфраструктуру. Независимо от того производите вы компьютеры, ИБП, генераторы и т.п., вы сможете включать свое оборудование нашу инфраструктуру. Это означает, что мы также сможем обеспечивать всех, в любом месте земного шара, тем самым сводя до минимума затраты и максимальной увеличивая производительность. Мы хотим создать в отрасли мотивацию для дальнейших инноваций – инноваций, от которых каждый сможет получать выгоду.
    Главные характеристики дата-центров четвертого поколения Gen4

    To summarize, the key characteristics of our Generation 4 data centers are:

    Scalable
    Plug-and-play spine infrastructure
    Factory pre-assembled: Pre-Assembled Containers (PACs) & Pre-Manufactured Buildings (PMBs)
    Rapid deployment
    De-mountable
    Reduce TTM
    Reduced construction
    Sustainable measures

    Ниже приведены главные характеристики дата-центров четвертого поколения Gen 4:

    Расширяемость;
    Готовая к использованию базовая инфраструктура;
    Изготовление в заводских условиях: сборные контейнеры (PAC) и сборные здания (PMB);
    Быстрота развертывания;
    Возможность демонтажа;
    Снижение времени вывода на рынок (TTM);
    Сокращение сроков строительства;
    Экологичность;

    Map applications to DC Class

    We hope you join us on this incredible journey of change and innovation!

    Long hours of research and engineering time are invested into this process. There are still some long days and nights ahead, but the vision is clear. Rest assured however, that we as refine Generation 4, the team will soon be looking to Generation 5 (even if it is a bit farther out). There is always room to get better.


    Использование систем электропитания постоянного тока.

    Мы надеемся, что вы присоединитесь к нам в этом невероятном путешествии по миру изменений и инноваций!

    На этот проект уже потрачены долгие часы исследований и проектирования. И еще предстоит потратить много дней и ночей, но мы имеем четкое представление о конечной цели. Однако будьте уверены, что как только мы доведем до конца проект модульного дата-центра четвертого поколения, мы вскоре начнем думать о проекте дата-центра пятого поколения. Всегда есть возможность для улучшений.

    So if you happen to come across Goldilocks in the forest, and you are curious as to why she is smiling you will know that she feels very good about getting very close to ‘JUST RIGHT’.

    Generations of Evolution – some background on our data center designs

    Так что, если вы встретите в лесу девочку по имени Лютик, и вам станет любопытно, почему она улыбается, вы будете знать, что она очень довольна тем, что очень близко подошла к ‘ОПИМАЛЬНОМУ РЕШЕНИЮ’.
    Поколения эволюции – история развития наших дата-центров

    We thought you might be interested in understanding what happened in the first three generations of our data center designs. When Ray Ozzie wrote his Software plus Services memo it posed a very interesting challenge to us. The winds of change were at ‘tornado’ proportions. That “plus Services” tag had some significant (and unstated) challenges inherent to it. The first was that Microsoft was going to evolve even further into an operations company. While we had been running large scale Internet services since 1995, this development lead us to an entirely new level. Additionally, these “services” would span across both Internet and Enterprise businesses. To those of you who have to operate “stuff”, you know that these are two very different worlds in operational models and challenges. It also meant that, to achieve the same level of reliability and performance required our infrastructure was going to have to scale globally and in a significant way.

    Мы подумали, что может быть вам будет интересно узнать историю первых трех поколений наших центров обработки данных. Когда Рэй Оззи написал свою памятную записку Software plus Services, он поставил перед нами очень интересную задачу. Ветра перемен двигались с ураганной скоростью. Это окончание “plus Services” скрывало в себе какие-то значительные и неопределенные задачи. Первая заключалась в том, что Майкрософт собиралась в еще большей степени стать операционной компанией. Несмотря на то, что мы управляли большими интернет-сервисами, начиная с 1995 г., эта разработка подняла нас на абсолютно новый уровень. Кроме того, эти “сервисы” охватывали интернет-компании и корпорации. Тем, кому приходится всем этим управлять, известно, что есть два очень разных мира в области операционных моделей и задач. Это также означало, что для достижения такого же уровня надежности и производительности требовалось, чтобы наша инфраструктура располагала значительными возможностями расширения в глобальных масштабах.

    It was that intense atmosphere of change that we first started re-evaluating data center technology and processes in general and our ideas began to reach farther than what was accepted by the industry at large. This was the era of Generation 1. As we look at where most of the world’s data centers are today (and where our facilities were), it represented all the known learning and design requirements that had been in place since IBM built the first purpose-built computer room. These facilities focused more around uptime, reliability and redundancy. Big infrastructure was held accountable to solve all potential environmental shortfalls. This is where the majority of infrastructure in the industry still is today.

    Именно в этой атмосфере серьезных изменений мы впервые начали переоценку ЦОД-технологий и технологий вообще, и наши идеи начали выходить за пределы общепринятых в отрасли представлений. Это была эпоха ЦОД первого поколения. Когда мы узнали, где сегодня располагается большинство мировых дата-центров и где находятся наши предприятия, это представляло весь опыт и навыки проектирования, накопленные со времени, когда IBM построила первую серверную. В этих ЦОД больше внимания уделялось бесперебойной работе, надежности и резервированию. Большая инфраструктура была призвана решать все потенциальные экологические проблемы. Сегодня большая часть инфраструктуры все еще находится на этом этапе своего развития.

    We soon realized that traditional data centers were quickly becoming outdated. They were not keeping up with the demands of what was happening technologically and environmentally. That’s when we kicked off our Generation 2 design. Gen 2 facilities started taking into account sustainability, energy efficiency, and really looking at the total cost of energy and operations.

    Очень быстро мы поняли, что стандартные дата-центры очень быстро становятся устаревшими. Они не поспевали за темпами изменений технологических и экологических требований. Именно тогда мы стали разрабатывать ЦОД второго поколения. В этих дата-центрах Gen 2 стали принимать во внимание такие факторы как устойчивое развитие, энергетическая эффективность, а также общие энергетические и эксплуатационные.

    No longer did we view data centers just for the upfront capital costs, but we took a hard look at the facility over the course of its life. Our Quincy, Washington and San Antonio, Texas facilities are examples of our Gen 2 data centers where we explored and implemented new ways to lessen the impact on the environment. These facilities are considered two leading industry examples, based on their energy efficiency and ability to run and operate at new levels of scale and performance by leveraging clean hydro power (Quincy) and recycled waste water (San Antonio) to cool the facility during peak cooling months.

    Мы больше не рассматривали дата-центры только с точки зрения начальных капитальных затрат, а внимательно следили за работой ЦОД на протяжении его срока службы. Наши объекты в Куинси, Вашингтоне, и Сан-Антонио, Техас, являются образцами наших ЦОД второго поколения, в которых мы изучали и применяли на практике новые способы снижения воздействия на окружающую среду. Эти объекты считаются двумя ведущими отраслевыми примерами, исходя из их энергетической эффективности и способности работать на новых уровнях производительности, основанных на использовании чистой энергии воды (Куинси) и рециклирования отработанной воды (Сан-Антонио) для охлаждения объекта в самых жарких месяцах.

    As we were delivering our Gen 2 facilities into steel and concrete, our Generation 3 facilities were rapidly driving the evolution of the program. The key concepts for our Gen 3 design are increased modularity and greater concentration around energy efficiency and scale. The Gen 3 facility will be best represented by the Chicago, Illinois facility currently under construction. This facility will seem very foreign compared to the traditional data center concepts most of the industry is comfortable with. In fact, if you ever sit around in our container hanger in Chicago it will look incredibly different from a traditional raised-floor data center. We anticipate this modularization will drive huge efficiencies in terms of cost and operations for our business. We will also introduce significant changes in the environmental systems used to run our facilities. These concepts and processes (where applicable) will help us gain even greater efficiencies in our existing footprint, allowing us to further maximize infrastructure investments.

    Так как наши ЦОД второго поколения строились из стали и бетона, наши центры обработки данных третьего поколения начали их быстро вытеснять. Главными концептуальными особенностями ЦОД третьего поколения Gen 3 являются повышенная модульность и большее внимание к энергетической эффективности и масштабированию. Дата-центры третьего поколения лучше всего представлены объектом, который в настоящее время строится в Чикаго, Иллинойс. Этот ЦОД будет выглядеть очень необычно, по сравнению с общепринятыми в отрасли представлениями о дата-центре. Действительно, если вам когда-либо удастся побывать в нашем контейнерном ангаре в Чикаго, он покажется вам совершенно непохожим на обычный дата-центр с фальшполом. Мы предполагаем, что этот модульный подход будет способствовать значительному повышению эффективности нашего бизнеса в отношении затрат и операций. Мы также внесем существенные изменения в климатические системы, используемые в наших ЦОД. Эти концепции и технологии, если применимо, позволят нам добиться еще большей эффективности наших существующих дата-центров, и тем самым еще больше увеличивать капиталовложения в инфраструктуру.

    This is definitely a journey, not a destination industry. In fact, our Generation 4 design has been under heavy engineering for viability and cost for over a year. While the demand of our commercial growth required us to make investments as we grew, we treated each step in the learning as a process for further innovation in data centers. The design for our future Gen 4 facilities enabled us to make visionary advances that addressed the challenges of building, running, and operating facilities all in one concerted effort.

    Это определенно путешествие, а не конечный пункт назначения. На самом деле, наш проект ЦОД четвертого поколения подвергался серьезным испытаниям на жизнеспособность и затраты на протяжении целого года. Хотя необходимость в коммерческом росте требовала от нас постоянных капиталовложений, мы рассматривали каждый этап своего развития как шаг к будущим инновациям в области дата-центров. Проект наших будущих ЦОД четвертого поколения Gen 4 позволил нам делать фантастические предположения, которые касались задач строительства, управления и эксплуатации объектов как единого упорядоченного процесса.


    Тематики

    Синонимы

    EN

    Русско-английский словарь нормативно-технической терминологии > модульный центр обработки данных (ЦОД)

  • 105 качество изготовления

    1) General subject: workmanship
    2) Economy: process quality
    5) Advertising: manufacturing quality
    6) Automation: workmanship (изделия)
    7) Hi-Fi. build quality (качество электронных деталей, корпуса, конструкции аудио-или видеокомпонента)

    Универсальный русско-английский словарь > качество изготовления

  • 106 производить

    1) General subject: bear, beget, bring out, cause, create (впечатление и т. п.), deliver, derive (от чего-либо), effect, execute, experiment (опыт), fabricate, father, generate, give (the sun gives light - солнце - источник света), hand tailor, hand-tailor, manufacture, output, play off (что-л.), procure, produce, promote, reproduce, turn, yield, turn out (изделия), come out with
    2) Engineering: conduct, exert (давление), form
    3) Agriculture: parturiate, bring forth
    4) Mathematics: construct
    6) Law: give effect
    7) Economy: make
    8) Australian slang: whip up
    9) Automobile industry: process
    10) Diplomatic term: yield (что-л.)
    11) Metallurgy: make (изделие)
    12) Information technology: perform (действие)
    13) Business: turn out
    14) Drilling: make up
    15) Avuncular: deal out
    17) leg.N.P. hold (an election, investigation, etc.)
    18) Makarov: conduct (осуществлять), discharge, fabricate (особ. изделия из полуфабрикатов, напр. сваркой; изготавливать), make (изготавливать), make (осуществлять), manufacture (изготавливать), originate, dish out, carry out (осуществлять)
    19) Taboo: put out
    20) Logistics: prosecute

    Универсальный русско-английский словарь > производить

  • 107 weiterverarbeiten

    weiterverarbeiten v IND, WIWI reprocess, manufacture
    * * *
    v <Ind, Vw> reprocess, manufacture
    * * *
    weiterverarbeiten
    to process, to finish.

    Business german-english dictionary > weiterverarbeiten

  • 108 монтаж

    arrangement, assemblage, ( процесс) assembly, bonding, composition, building, buildup, final copy, cut-and-paste, ( фильма) cutting, editing тлв, erection, fabrication, fitting, ( негативов) flat, incorporation, ( компонентов) insertion, installation, ( схемы) joining-up, montage, mount, mounting, packaging, placement, packaging process, rigging, setup, ( видеомагнитофонной ленты) splicing, wiring
    * * *
    монта́ж м.
    1. ( сборка) assembly, mounting
    монта́ж ведё́тся провода́ми в жгута́х — the (electric) wiring is carried in bundles
    выполня́ть монта́ж про́водом ма́рки — N carry out the wiring with type N wire
    монта́ж осуществля́ется на обжи́мных соедине́ниях — wiring uses crimped connections
    прозвони́ть монта́ж — test the wiring for continuity
    беспа́ечный монта́ж — solderless wiring
    выдвижно́й монта́ж — drawout [telescopic] mounting
    монта́ж в яче́йках ( электрооборудования) — cell mounting
    монта́ж го́лым про́водом — piano wiring
    монта́ж диапозити́вов — stripping
    монта́ж ка́бельной прово́дки — cabling
    ко́нтурный монта́ж полигр.lay-out
    многосло́йный монта́ж — multilayer wiring
    монта́ж на пане́ли — panel mounting
    монта́ж на пла́тах — terminal-board wiring
    монта́ж на ра́ме — frame mounting
    объё́мный монта́ж — space-wired interconnections; элк. dense-packed point-to-point [three-dimensional] wiring
    откры́тый монта́ж — exposed wiring
    пере́дний монта́ж (на щите, панели) — front-of-panel mounting
    печа́тный монта́ж — ( печатные проводники без схемных элементов) printed wiring; ( печатные проводники и схемные элементы) printed circuitry (Примечание. Различие признается, но не соблюдается)
    изгота́вливать печа́тный монта́ж ва́куумным напыле́нием — manufacture the printed wiring by vacuum evaporation
    изгота́вливать печа́тный монта́ж вы́рубкой — make the printed wiring by stamping [embossing]
    изгота́вливать печа́тный монта́ж травле́нием фольги́рованной пла́ты — make the printed wiring by foil-etching
    изгота́вливать печа́тный монта́ж электроосажде́нием — manufacture the printed wiring by electroplating
    полууто́пленный монта́ж (на щите, панели) — semiflush mounting
    силово́й монта́ж — power wiring
    скры́тый монта́ж — concealed wiring
    сто́ечный монта́ж — rack mounting
    монта́ж схе́мы — circuit wiring
    телескопи́ческий монта́ж (на щите, панели) — telescopic mounting
    монта́ж трубопрово́да — pipe laying
    монта́ж фотопла́на афс. — assembly [assembling] of a mosaic
    монта́ж фо́рмы полигр. — ( в высокой печати) lay-out; ( в плоской или глубокой печати) stripping-in
    монта́ж ши́ны — (tyre) mounting, fitting of tyre

    Русско-английский политехнический словарь > монтаж

  • 109 valmistaa

    yks.nom. valmistaa; yks.gen. valmistan; yks.part. valmisti; yks.ill. valmistaisi; mon.gen. valmistakoon; mon.part. valmistanut; mon.ill. valmistettiin
    brew (verb)
    complete (verb)
    do (verb)
    dress (verb)
    finish (verb)
    make (verb)
    manufactture (verb)
    manufacture (verb)
    prepare (verb)
    produce (verb)
    tailor (verb)
    * * *
    • process
    • dress
    • do
    • construct
    • brew
    • boun
    • fabricate
    • make up
    • make
    • prepare
    • produce
    • tailor
    • turn out
    • elaborate
    • manufacture

    Suomi-Englanti sanakirja > valmistaa

  • 110 производство

    с.

    произво́дство маши́н — production of machines

    произво́дство о́буви — manufacture of shoes

    маши́нное произво́дство — mechanical [-'kæn-] production

    пото́чное произво́дство — line production

    сре́дства произво́дства — means of production

    произво́дство средств произво́дства — production of means of production

    произво́дство предме́тов потребле́ния — production of consumer goods

    произво́дство материа́льных благ — production of material values

    спо́соб произво́дства — mode of production

    изде́ржки произво́дства — the cost of production sg

    2) (выполнение, совершение) execution

    произво́дство платеже́й — effecting of payment

    произво́дство о́пытов — experimentation

    произво́дство вы́стрела воен.firing of a shot

    3) разг. (фабрика, завод) factory; works

    идти́ на произво́дство — go to work at a factory

    4) воен. ( присвоение звания) promotion (to or to the rank of)

    произво́дство в майо́ры — promotion to major sg

    5) ( судебное) process

    прекрати́ть де́ло произво́дством, прекрати́ть произво́дство по де́лу юр.dismiss a case

    Новый большой русско-английский словарь > производство

  • 111 Chevenard, Pierre Antoine Jean Sylvestre

    SUBJECT AREA: Metallurgy
    [br]
    b. 31 December 1888 Thizy, Rhône, France
    d. 15 August 1960 Fontenoy-aux-Roses, France
    [br]
    French metallurgist, inventor of the alloys Elinvar and Platinite and of the method of strengthening nickel-chromium alloys by a precipitate ofNi3Al which provided the basis of all later super-alloy development.
    [br]
    Soon after graduating from the Ecole des Mines at St-Etienne in 1910, Chevenard joined the Société de Commentry Fourchambault et Decazeville at their steelworks at Imphy, where he remained for the whole of his career. Imphy had for some years specialized in the production of nickel steels. From this venture emerged the first austenitic nickel-chromium steel, containing 6 per cent chromium and 22–4 per cent nickel and produced commercially in 1895. Most of the alloys required by Guillaume in his search for the low-expansion alloy Invar were made at Imphy. At the Imphy Research Laboratory, established in 1911, Chevenard conducted research into the development of specialized nickel-based alloys. His first success followed from an observation that some of the ferro-nickels were free from the low-temperature brittleness exhibited by conventional steels. To satisfy the technical requirements of Georges Claude, the French cryogenic pioneer, Chevenard was then able in 1912 to develop an alloy containing 55–60 per cent nickel, 1–3 per cent manganese and 0.2–0.4 per cent carbon. This was ductile down to −190°C, at which temperature carbon steel was very brittle.
    By 1916 Elinvar, a nickel-iron-chromium alloy with an elastic modulus that did not vary appreciably with changes in ambient temperature, had been identified. This found extensive use in horology and instrument manufacture, and even for the production of high-quality tuning forks. Another very popular alloy was Platinite, which had the same coefficient of thermal expansion as platinum and soda glass. It was used in considerable quantities by incandescent-lamp manufacturers for lead-in wires. Other materials developed by Chevenard at this stage to satisfy the requirements of the electrical industry included resistance alloys, base-metal thermocouple combinations, magnetically soft high-permeability alloys, and nickel-aluminium permanent magnet steels of very high coercivity which greatly improved the power and reliability of car magnetos. Thermostatic bimetals of all varieties soon became an important branch of manufacture at Imphy.
    During the remainder of his career at Imphy, Chevenard brilliantly elaborated the work on nickel-chromium-tungsten alloys to make stronger pressure vessels for the Haber and other chemical processes. Another famous alloy that he developed, ATV, contained 35 per cent nickel and 11 per cent chromium and was free from the problem of stress-induced cracking in steam that had hitherto inhibited the development of high-power steam turbines. Between 1912 and 1917, Chevenard recognized the harmful effects of traces of carbon on this type of alloy, and in the immediate postwar years he found efficient methods of scavenging the residual carbon by controlled additions of reactive metals. This led to the development of a range of stabilized austenitic stainless steels which were free from the problems of intercrystalline corrosion and weld decay that then caused so much difficulty to the manufacturers of chemical plant.
    Chevenard soon concluded that only the nickel-chromium system could provide a satisfactory basis for the subsequent development of high-temperature alloys. The first published reference to the strengthening of such materials by additions of aluminium and/or titanium occurs in his UK patent of 1929. This strengthening approach was adopted in the later wartime development in Britain of the Nimonic series of alloys, all of which depended for their high-temperature strength upon the precipitated compound Ni3Al.
    In 1936 he was studying the effect of what is now known as "thermal fatigue", which contributes to the eventual failure of both gas and steam turbines. He then published details of equipment for assessing the susceptibility of nickel-chromium alloys to this type of breakdown by a process of repeated quenching. Around this time he began to make systematic use of the thermo-gravimetrie balance for high-temperature oxidation studies.
    [br]
    Principal Honours and Distinctions
    President, Société de Physique. Commandeur de la Légion d'honneur.
    Bibliography
    1929, Analyse dilatométrique des matériaux, with a preface be C.E.Guillaume, Paris: Dunod (still regarded as the definitive work on this subject).
    The Dictionary of Scientific Biography lists around thirty of his more important publications between 1914 and 1943.
    Further Reading
    "Chevenard, a great French metallurgist", 1960, Acier Fins (Spec.) 36:92–100.
    L.Valluz, 1961, "Notice sur les travaux de Pierre Chevenard, 1888–1960", Paris: Institut de France, Académie des Sciences.
    ASD

    Biographical history of technology > Chevenard, Pierre Antoine Jean Sylvestre

  • 112 Edison, Thomas Alva

    [br]
    b. 11 February 1847 Milan, Ohio, USA
    d. 18 October 1931 Glenmont
    [br]
    American inventor and pioneer electrical developer.
    [br]
    He was the son of Samuel Edison, who was in the timber business. His schooling was delayed due to scarlet fever until 1855, when he was 8½ years old, but he was an avid reader. By the age of 14 he had a job as a newsboy on the railway from Port Huron to Detroit, a distance of sixty-three miles (101 km). He worked a fourteen-hour day with a stopover of five hours, which he spent in the Detroit Free Library. He also sold sweets on the train and, later, fruit and vegetables, and was soon making a profit of $20 a week. He then started two stores in Port Huron and used a spare freight car as a laboratory. He added a hand-printing press to produce 400 copies weekly of The Grand Trunk Herald, most of which he compiled and edited himself. He set himself to learn telegraphy from the station agent at Mount Clements, whose son he had saved from being run over by a freight car.
    At the age of 16 he became a telegraphist at Port Huron. In 1863 he became railway telegraphist at the busy Stratford Junction of the Grand Trunk Railroad, arranging a clock with a notched wheel to give the hourly signal which was to prove that he was awake and at his post! He left hurriedly after failing to hold a train which was nearly involved in a head-on collision. He usually worked the night shift, allowing himself time for experiments during the day. His first invention was an arrangement of two Morse registers so that a high-speed input could be decoded at a slower speed. Moving from place to place he held many positions as a telegraphist. In Boston he invented an automatic vote recorder for Congress and patented it, but the idea was rejected. This was the first of a total of 1180 patents that he was to take out during his lifetime. After six years he resigned from the Western Union Company to devote all his time to invention, his next idea being an improved ticker-tape machine for stockbrokers. He developed a duplex telegraphy system, but this was turned down by the Western Union Company. He then moved to New York.
    Edison found accommodation in the battery room of Law's Gold Reporting Company, sleeping in the cellar, and there his repair of a broken transmitter marked him as someone of special talents. His superior soon resigned, and he was promoted with a salary of $300 a month. Western Union paid him $40,000 for the sole rights on future improvements on the duplex telegraph, and he moved to Ward Street, Newark, New Jersey, where he employed a gathering of specialist engineers. Within a year, he married one of his employees, Mary Stilwell, when she was only 16: a daughter, Marion, was born in 1872, and two sons, Thomas and William, in 1876 and 1879, respectively.
    He continued to work on the automatic telegraph, a device to send out messages faster than they could be tapped out by hand: that is, over fifty words per minute or so. An earlier machine by Alexander Bain worked at up to 400 words per minute, but was not good over long distances. Edison agreed to work on improving this feature of Bain's machine for the Automatic Telegraph Company (ATC) for $40,000. He improved it to a working speed of 500 words per minute and ran a test between Washington and New York. Hoping to sell their equipment to the Post Office in Britain, ATC sent Edison to England in 1873 to negotiate. A 500-word message was to be sent from Liverpool to London every half-hour for six hours, followed by tests on 2,200 miles (3,540 km) of cable at Greenwich. Only confused results were obtained due to induction in the cable, which lay coiled in a water tank. Edison returned to New York, where he worked on his quadruplex telegraph system, tests of which proved a success between New York and Albany in December 1874. Unfortunately, simultaneous negotiation with Western Union and ATC resulted in a lawsuit.
    Alexander Graham Bell was granted a patent for a telephone in March 1876 while Edison was still working on the same idea. His improvements allowed the device to operate over a distance of hundreds of miles instead of only a few miles. Tests were carried out over the 106 miles (170 km) between New York and Philadelphia. Edison applied for a patent on the carbon-button transmitter in April 1877, Western Union agreeing to pay him $6,000 a year for the seventeen-year duration of the patent. In these years he was also working on the development of the electric lamp and on a duplicating machine which would make up to 3,000 copies from a stencil. In 1876–7 he moved from Newark to Menlo Park, twenty-four miles (39 km) from New York on the Pennsylvania Railway, near Elizabeth. He had bought a house there around which he built the premises that would become his "inventions factory". It was there that he began the use of his 200- page pocket notebooks, each of which lasted him about two weeks, so prolific were his ideas. When he died he left 3,400 of them filled with notes and sketches.
    Late in 1877 he applied for a patent for a phonograph which was granted on 19 February 1878, and by the end of the year he had formed a company to manufacture this totally new product. At the time, Edison saw the device primarily as a business aid rather than for entertainment, rather as a dictating machine. In August 1878 he was granted a British patent. In July 1878 he tried to measure the heat from the solar corona at a solar eclipse viewed from Rawlins, Wyoming, but his "tasimeter" was too sensitive.
    Probably his greatest achievement was "The Subdivision of the Electric Light" or the "glow bulb". He tried many materials for the filament before settling on carbon. He gave a demonstration of electric light by lighting up Menlo Park and inviting the public. Edison was, of course, faced with the problem of inventing and producing all the ancillaries which go to make up the electrical system of generation and distribution-meters, fuses, insulation, switches, cabling—even generators had to be designed and built; everything was new. He started a number of manufacturing companies to produce the various components needed.
    In 1881 he built the world's largest generator, which weighed 27 tons, to light 1,200 lamps at the Paris Exhibition. It was later moved to England to be used in the world's first central power station with steam engine drive at Holborn Viaduct, London. In September 1882 he started up his Pearl Street Generating Station in New York, which led to a worldwide increase in the application of electric power, particularly for lighting. At the same time as these developments, he built a 1,300yd (1,190m) electric railway at Menlo Park.
    On 9 August 1884 his wife died of typhoid. Using his telegraphic skills, he proposed to 19-year-old Mina Miller in Morse code while in the company of others on a train. He married her in February 1885 before buying a new house and estate at West Orange, New Jersey, building a new laboratory not far away in the Orange Valley.
    Edison used direct current which was limited to around 250 volts. Alternating current was largely developed by George Westinghouse and Nicola Tesla, using transformers to step up the current to a higher voltage for long-distance transmission. The use of AC gradually overtook the Edison DC system.
    In autumn 1888 he patented a form of cinephotography, the kinetoscope, obtaining film-stock from George Eastman. In 1893 he set up the first film studio, which was pivoted so as to catch the sun, with a hinged roof which could be raised. In 1894 kinetoscope parlours with "peep shows" were starting up in cities all over America. Competition came from the Latham Brothers with a screen-projection machine, which Edison answered with his "Vitascope", shown in New York in 1896. This showed pictures with accompanying sound, but there was some difficulty with synchronization. Edison also experimented with captions at this early date.
    In 1880 he filed a patent for a magnetic ore separator, the first of nearly sixty. He bought up deposits of low-grade iron ore which had been developed in the north of New Jersey. The process was a commercial success until the discovery of iron-rich ore in Minnesota rendered it uneconomic and uncompetitive. In 1898 cement rock was discovered in New Village, west of West Orange. Edison bought the land and started cement manufacture, using kilns twice the normal length and using half as much fuel to heat them as the normal type of kiln. In 1893 he met Henry Ford, who was building his second car, at an Edison convention. This started him on the development of a battery for an electric car on which he made over 9,000 experiments. In 1903 he sold his patent for wireless telegraphy "for a song" to Guglielmo Marconi.
    In 1910 Edison designed a prefabricated concrete house. In December 1914 fire destroyed three-quarters of the West Orange plant, but it was at once rebuilt, and with the threat of war Edison started to set up his own plants for making all the chemicals that he had previously been buying from Europe, such as carbolic acid, phenol, benzol, aniline dyes, etc. He was appointed President of the Navy Consulting Board, for whom, he said, he made some forty-five inventions, "but they were pigeonholed, every one of them". Thus did Edison find that the Navy did not take kindly to civilian interference.
    In 1927 he started the Edison Botanic Research Company, founded with similar investment from Ford and Firestone with the object of finding a substitute for overseas-produced rubber. In the first year he tested no fewer than 3,327 possible plants, in the second year, over 1,400, eventually developing a variety of Golden Rod which grew to 14 ft (4.3 m) in height. However, all this effort and money was wasted, due to the discovery of synthetic rubber.
    In October 1929 he was present at Henry Ford's opening of his Dearborn Museum to celebrate the fiftieth anniversary of the incandescent lamp, including a replica of the Menlo Park laboratory. He was awarded the Congressional Gold Medal and was elected to the American Academy of Sciences. He died in 1931 at his home, Glenmont; throughout the USA, lights were dimmed temporarily on the day of his funeral.
    [br]
    Principal Honours and Distinctions
    Member of the American Academy of Sciences. Congressional Gold Medal.
    Further Reading
    M.Josephson, 1951, Edison, Eyre \& Spottiswode.
    R.W.Clark, 1977, Edison, the Man who Made the Future, Macdonald \& Jane.
    IMcN

    Biographical history of technology > Edison, Thomas Alva

  • 113 Halske, Johann Georg

    [br]
    b. 30 July 1814 Hamburg, Germany
    d. 18 March 1890 Berlin, Germany
    [br]
    German engineer who introduced precision methods into the manufacture of electrical equipment; co-founder of Siemens \& Halske.
    [br]
    Halske moved to Berlin when he was a young man, and in 1844 was working for the university, at first independently and then jointly with F. Bötticher, developing and building electric medical appliances. In 1845 he met Werner von Siemens and together they became founder members of the Berlin Physics Society. It was in Halske's workshop that Siemens, assisted by the skill of the former, was able to work out his inventions in telegraphy. In 1847 the two men entered into partnership to manufacture telegraph equipment, laying the foundations of the successful firm of Siemens \& Halske. At the outset, before Werner von Siemens gave up his army career, Halske acted as the sole manager of the firm and was also involved in testing the products. Inventions they developed included electric measuring instruments and railway signalling equipment, and they installed many telegraph lines, notably those for the Russian Government. When gutta-percha became available on the market, the two men soon developed an extrusion process for applying this new material to copper conductors. To the disappointment of Halske, who was opposed to mass production, the firm introduced series production and piece wages in 1857. The expansion of the business, particularly into submarine cable laying, caused some anxiety to Halske, who left the firm on amicable terms in 1867. He then worked for a few years developing the Arts and Crafts Museum in Berlin and became a town councillor.
    [br]
    Further Reading
    S. von Weihr and H.Götzeler, 1983, The Siemens Company. Its Historical Role in the Progress of Electrical Engineering 1847–1983, Berlin (provides a full account).
    Neue Deutsche Biographie, 1966, Vol. 7, Berlin, pp. 572–3.
    S.von Weiher, 1972–3, "The Siemens brothers, pioneers of the electrical age in Europe", Transactions of the Newcomen Society 45:1–11.
    GW

    Biographical history of technology > Halske, Johann Georg

  • 114 Johnson, Eldridge Reeves

    SUBJECT AREA: Recording
    [br]
    b. 18 February 1867 Wilmington, Delaware, USA
    d. 14 November 1945 Moorestown, New Jersey, USA
    [br]
    American industrialist, founder and owner of the Victor Talking Machine Company; developer of many basic constructions in mechanical sound recording and the reproduction and manufacture of gramophone records.
    [br]
    He graduated from the Dover Academy (Delaware) in 1882 and was apprenticed in a machine-repair firm in Philadelphia and studied in evening classes at the Spring Garden Institute. In 1888 he took employment in a small Philadelphia machine shop owned by Andrew Scull, specializing in repair and bookbinding machinery. After travels in the western part of the US, in 1891 he became a partner in Scull \& Johnson, Manufacturing Machinists, and established a further company, the New Jersey Wire Stitching Machine Company. He bought out Andrew Scull's interest in October 1894 (the last instalment being paid in 1897) and became an independent general machinist. In 1896 he had perfected a spring motor for the Berliner flat-disc gramophone, and he started experimenting with a more direct method of recording in a spiral groove: that of cutting in wax. Co-operation with Berliner eventually led to the incorporation of the Victor Talking Machine Company in 1901. The innumerable court cases stemming from the fact that so many patents for various elements in sound recording and reproduction were in very many hands were brought to an end in 1903 when Johnson was material in establishing cross-licencing agreements between Victor, Columbia Graphophone and Edison to create what is known as a patent pool. Early on, Johnson had a thorough experience in all matters concerning the development and manufacture of both gramophones and records. He made and patented many major contributions in all these fields, and his approach was very business-like in that the contribution to cost of each part or process was always a decisive factor in his designs. This attitude was material in his consulting work for the sister company, the Gramophone Company, in London before it set up its own factories in 1910. He had quickly learned the advantages of advertising and of providing customers with durable equipment and records. This motivation was so strong that Johnson set up a research programme for determining the cause of wear in records. It turned out to depend on groove profile, and from 1911 one particular profile was adhered to and processes for transforming the grooves of valuable earlier records were developed. Without precise measuring instruments, he used the durability as the determining factor. Johnson withdrew more and more to the role of manager, and the Victor Talking Machine Company gained such a position in the market that the US anti-trust legislation was used against it. However, a generation change in the Board of Directors and certain erroneous decisions as to product line started a decline, and in February 1926 Johnson withdrew on extended sick leave: these changes led to the eventual sale of Victor. However, Victor survived due to the advent of radio and the electrification of replay equipment and became a part of Radio Corporation of America. In retirement Johnson took up various activities in the arts and sciences and financially supported several projects; his private yacht was used in 1933 in work with the Smithsonian Institution on a deep-sea hydrographie and fauna-collecting expedition near Puerto Rico.
    [br]
    Bibliography
    Johnson's patents were many, and some were fundamental to the development of the gramophone, such as: US patent no. 650,843 (in particular a recording lathe); US patent nos. 655,556, 655,556 and 679,896 (soundboxes); US patent no. 681,918 (making the original conductive for electroplating); US patent no. 739,318 (shellac record with paper label).
    Further Reading
    Mrs E.R.Johnson, 1913, "Eldridge Reeves Johnson (1867–1945): Industrial pioneer", manuscript (an account of his early experience).
    E.Hutto, Jr, "Emile Berliner, Eldridge Johnson, and the Victor Talking Machine Company", Journal of AES 25(10/11):666–73 (a good but brief account based on company information).
    E.R.Fenimore Johnson, 1974, His Master's Voice was Eldridge R.Johnson, Milford, Del.
    (a very personal biography by his only son).
    GB-N

    Biographical history of technology > Johnson, Eldridge Reeves

  • 115 Krupp, Alfred

    [br]
    b. 26 April 1812 Essen, Germany
    d. 14 July 1887 Bredeney, near Essen, Germany
    [br]
    German manufacturer of steel and armaments.
    [br]
    Krupp's father founded a small cast-steel works at Essen, but at his early death in 1826 the firm was left practically insolvent to his sons. Alfred's formal education ended at that point and he entered the ailing firm. The expansion of trade brought about by the Zollverein, or customs union, enabled him to increase output, and by 1843 he had 100 workers under him, making steel springs and machine parts. Five years later he was able to buy out his co-heirs, and in 1849 he secured his first major railway contract. The quality of his product was usefully advertised by displaying a flawless 2-ton steel ingot at the Great Exhibition of 1851. Krupp was then specializing in the manufacture of steel parts for railways and steamships, notably a weldless steel tire for locomotives, from which was derived the three-ring emblem of the Krupp concern. Krupp made a few cannon from 1847 but sold his first to the Khedive of Egypt in 1857. Two years later he won a major order of 312 cannon from the Prussian Government. With the development of this side of the business, he became the largest steel producer in Europe. In 1862 he adopted the Bessemer steelmaking process. The quality and design of his cannon were major factors in the victory of the Prussian artillery bombardment at Sedan in the Franco- Prussian War of 1870. Krupp expanded further during the boom years of the early 1870s and he was able to gain control of German coal and Spanish iron-ore supplies. He went on to manufacture heavy artillery, with a celebrated testing ground at Osnabrück. By this time he had a workforce of 21,000, whom he ruled with benevolent but strict control. His will instructed that the firm should not be divided.
    [br]
    Further Reading
    P.Batty, 1966, The House of Krupp (includes a bibliography). G.von Klass, 1954, Krupp: The Story of an Industrial Empire.
    LRD

    Biographical history of technology > Krupp, Alfred

  • 116 Muspratt, James

    SUBJECT AREA: Chemical technology
    [br]
    b. 12 August 1793 Dublin, Ireland
    d. 4 May 1886 Seaforth Hall, near Liverpool, England
    [br]
    British industrial chemist.
    [br]
    Educated in Dublin, Muspratt was apprenticed at the age of 14 to a wholesale chemist and druggist, with whom he remained for three or four years. Muspratt then went in search of the Napoleonic War and found it first in Spain and finally as Second Officer on a naval vessel. Finding the life unpleasantly harsh, he left his ship off Swansea and returned to Dublin around 1814. Soon afterwards, he received an inheritance, much reduced and delayed by litigation in Chancery. He began manufacturing chemicals in a small way and from 1818 set up as a manufacturer of prussiate of potash. In 1823, Muspratt took advantage of the removal of the salt tax to establish the first plant in England for the largescale manufacture of soda by the Leblanc process. His first soda works was on the outskirts of Liverpool, but when this proved inadequate, he established a larger factory at St Helens, Lancashire, where the raw materials lay close at hand. This district has remained an important centre of the British chemical industry ever since. Although the plant was successful commercially, there were environmental problems. The equipment for condensing the hydrochloric acid gas produced were inadequate and this caused extensive damage to local vegetation, so that Muspratt had to contend with legal action lasting from 1832 to 1850. Eventually Muspratt moved his alkali manufacture to Widnes, which also became a great centre for the chemical industry.
    [br]
    Further Reading
    Obituary, 1886, Journal of the Society of Chemical Industry 5:314. J.F.Allen, 1890, Memoir of James Muspratt, London.
    LRD

    Biographical history of technology > Muspratt, James

  • 117 Walton, Frederick

    [br]
    fl. 1860s Chiswick, Middlesex, England
    [br]
    English inventor and early manufacturer of linoleum.
    [br]
    Walton's linoleum consisted of a burlap base coated with a cement made from linseed oil, gum, resin and colour pigments. The linseed oil was oxidized in order to produce a rubbery consistency, and this was achieved either by adding the oil to the burlap in a series of coats, allowing each coat to dry in a heated room and so absorb the oxygen from the atmosphere, or by inserting the product into a steam-heated container, thereby hastening the process. The coated fabric was then calendered so that the heat and pressure of the rollers would soften the coating mixture, making it adhere firmly to the fabric backing. On 19 December 1863 Walton applied for a patent for the manufacture of his invention at British Grove Works in Chiswick, Middlesex. The patent was granted on 31 May 1864 for "Improvements in the Manufacture of Floor Cloths and Coverings and Similar Fabrics and in Pavements". Later in 1864 Walton set up a factory in Staines.
    The term linoleum derives from the Latin words linum, meaning linen thread, and oleum, meaning oil. Linoleum was made in rolls in everincreasing quantity until about 1950, by which time it was being replaced by synthetic vinyl-type coverings.
    [br]
    Further Reading
    See "Linoleum" in Children's Britannica, Chicago, Ill.: Encyclopaedia Britannica, and in Encyclopaedia Americana, Danbury, Conn.: Americana.
    DY

    Biographical history of technology > Walton, Frederick

  • 118 обработка

    4) Obsolete: preparation
    5) Military: handing, (механическая) machining, message output processing, processing (информации, данных), processing (информации. данных), reduction (данных)
    6) Engineering: blading (стругом), cutting, machining, process (технологическая), processing (переработка), roughing, sizing, steaming, tillage, tooling, treating (придание нужных свойств), treatment (придание нужных свойств), turning
    7) Agriculture: (предпосевная) cultivation, development, dressing (земли)
    8) Law: handling (документов, грузов)
    9) Economy: machining (на станке), processing operations, working-up (напр. сырья)
    10) Accounting: processing (данных)
    11) Statistics: analysis
    13) Architecture: treatment (процесс)
    16) Polygraphy: preparing
    17) Telecommunications: interpretation
    19) Textile: conditioning, run
    22) Astronautics: dressing
    23) Metrology: processing (например, данных)
    24) Ecology: evaluation (данных), laboring (почвы), refuse treatment
    27) Polymers: finish, finishing
    28) Programming: catching
    29) Automation: handling (данных), (механическая) machining, process work, production, production work, working (см. тж. work)
    30) Quality control: handling (напр. данных)
    33) Medical appliances: cleaning
    34) Makarov: cultivation (почвы), development (фотоматериалов), digesting, digestion, dressing (птицы, рыбы), finish operation, handling (почвы), management (почвы), operation, processing (напр. данных), processing (напр., данных), processing (перерабатывание), retrieval (информации), treatment (придание нужных св-в)
    36) SAP.tech. editing, hdlg, prcssg

    Универсальный русско-английский словарь > обработка

  • 119 полуфабрикат

    3) Construction: blank, semifinished goods
    4) Railway term: half manufactured
    9) Food industry: junk food (Осторожнее с употреблением! Касается только замороженных готовых блюд.), prepared food, uncooked food
    11) Cellulose: first stuff
    13) Taxes: semi-manufacture
    15) Industrial economy: unfinished product
    17) Robots: half( - finished) product
    20) Gold mining: half-finished
    21) Logistics: semiprepared product
    22) Cement: raw material

    Универсальный русско-английский словарь > полуфабрикат

  • 120 производственное здание

    Универсальный русско-английский словарь > производственное здание

См. также в других словарях:

  • manufacture — manufacturable, adj. manufactural, adj. /man yeuh fak cheuhr/, n., v., manufactured, manufacturing. n. 1. the making of goods or wares by manual labor or by machinery, esp. on a large scale: the manufacture of television sets. 2. the making or… …   Universalium

  • manufacture — {{Roman}}I.{{/Roman}} noun ADJECTIVE ▪ local ▪ cotton ropes of local manufacture ▪ metal, steel, etc. ▪ cloth, cotton …   Collocations dictionary

  • process — pro·cess / prä ˌses, prō / n 1: a continuous operation, art, or method esp. in manufacture whoever invents or discovers any new and useful process...may obtain a patent therefor U.S. Code 2 a: procedure (1) see also …   Law dictionary

  • Process costing — is an accounting methodology that traces and accumulates direct costs, and allocates indirect costs of a manufacturing process. Costs are assigned to products, usually in a large batch, which might include an entire month s production. Eventually …   Wikipedia

  • Manufacture d'horlogerie — (literally watchmaking manufacturer ) is a French horological term of art that is also used in English. In horology, the term is usually encountered in its abbreviated form manufacture. This term of art is used when describing either a wrist… …   Wikipedia

  • manufacture — I noun assemblage, assembly, composition, construction, creation, development, execution, fabrica, fabrication, fashioning, forging, formation, forming, making, molding, origination, preparation, production, synthesis II verb assemble, build,… …   Law dictionary

  • manufacture — [v1] build, produce accomplish, assemble, carve, cast, cobble*, complete, compose, construct, create, execute, fabricate, fashion, forge, form, frame, fudge together*, machine, make, make up, mass produce, mill, mold, prefab, process, put… …   New thesaurus

  • manufacture — ► VERB 1) make (something), especially on a large scale using machinery. 2) (manufactured) made or produced in a merely mechanical way. 3) invent or fabricate (evidence or a story). ► NOUN ▪ the process of manufacturing. DERIVATIVES …   English terms dictionary

  • Manufacture of Cheddar cheese — Contents 1 Food ingredients used during manufacture 1.1 Milk 1.2 Rennet/chymosin/rennin 2 Equipment …   Wikipedia

  • process — I. noun (plural processes) Etymology: Middle English proces, from Anglo French procés, from Latin processus, from procedere Date: 14th century 1. a. progress, advance < in the process of time > b. someth …   New Collegiate Dictionary

  • manufacture — ▪ I. manufacture manufacture 2 noun [uncountable] 1. MANUFACTURING when large quantities of goods are produced to be sold, using machinery: • Cigarettes become stale from one to three months after the date of manufacture. manufacture of …   Financial and business terms

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»