Перевод: со всех языков на английский

с английского на все языки

process+network

  • 101 Elitism

       In spite of the national commitment to the principles of Liberty, Equality and Fraternity, France remains marked by traditions of elitism that are ingrained in the very fibre of society. The French Revolution was supposed to have done away with privileges and elites, and usher in an age of greater equality; in the event, it - and subsequent upheavals - changed the nature of the elites in France, without making a great impact on the underlying system. Indeed, the notion of 'republican elites' is one that was fundamental in the shaping of post-Revolutionary France.
       In terms of local power, the role of local notables - important figures - remains strong. Notables frequently fulfil multiple roles in local administration and structures, sometimes combining these with elected positions on a regional or national scale, giving them and their close supporters a considerable degree of power. (See Cumul des mandats). They are frequently referred to as les elites locales. The process of devolution in France, set in motion in 1982, has had the effect of strengthening the power base of local elites.
       The French education system, while offering a good quality non-selective education to all children at lower levels, is increasingly elitist towards the top, particularly when it comes to preparing for higher education. Manyclasses préparatoires, particularly those preparing students for entrance to the top institutions of higher education, called Grandes Ecoles, are very selective, and the selection process - and for that matter the system itself - often disfavours students from humble or poorer backgrounds. The Grandes Ecoles themselves, tailor-made to the needs of the nation, train the future leaders and decision makers in specific fields of the public or private sector, producing very close networks of former students, that make the British concept of the "old-boy network" seem rather informal.
       Places in the top grandes écoles and some other institutions are highly sought after, as graduates from these schools are seen in France as a sort of caste, membership of which is highly recommended, if not essential, for anyone wanting to reach the top. The classic example of this is the ENA, Ecole Normale d'Administration, the Grande Ecole designed to train top civil servants and future political leaders. In the corridors of French power, many if not most of the top positions are occupied by Enarques, graduates of the ENA. In 1967, Jean-Pierre Chevènement - himself an Enarque, and later to be Minister of the Interior under François Mitterrand - coined the word Enarchie, to define the French system of state elites.
       As for business elites, a 2006 review in the Economist observed that they "often seem to owe more allegiance to the group from which they are drawn than to the international corporations they work for."

    Dictionnaire Français-Anglais. Agriculture Biologique > Elitism

  • 102 Reynolds, Richard

    [br]
    b. 1 November 1735 Bristol, England
    d. 10 September 1816 Cheltenham, Gloucestershire, England
    [br]
    English ironmaster who invented iron rails.
    [br]
    Reynolds was born into a Quaker family, his father being an iron merchant and a considerable customer for the products of the Darbys (see Abraham Darby) of Coalbrookdale in Shropshire. After education at a Quaker boarding school in Pickwick, Wiltshire, Reynolds was apprenticed to William Fry, a grocer of Bristol, from whom he would have learned business methods. The year before the expiry of his apprenticeship in 1757, Reynolds was being sent on business errands to Coalbrookdale. In that year he met and married Hannah Darby, the daughter of Abraham Darby II. At the same time, he acquired a half-share in the Ketley ironworks, established not long before, in 1755. There he supervised not only the furnaces at Ketley and Horsehay and the foundry, but also the extension of the railway, linking this site to Coalbrookdale itself.
    On the death of Abraham Darby II in 1763, Reynolds took charge of the whole works during the minority of Abraham Darby III. During this period, the most notable development was the introduction by the Cranage brothers of a new way of converting pig-iron to wrought iron, a process patented in 1766 that used coal in a reverberatory furnace. This, with other processes for the same purpose, remained in use until superseded by the puddling process patented by Henry Cort in 1783 and 1784. Reynolds's most important innovation was the introduction of cast-iron rails in 1767 on the railway around Coalbrookdale. A useful network had been in operation for some time with wooden rails, but these wore out quickly and were expensive to maintain. Reynolds's iron rails were an immediate improvement, and some 20 miles (32 km) were laid within a short time. In 1768 Abraham Darby III was able to assume control of the Coalbrookdale works, but Reynolds had been extending his own interest in other ironworks and various other concerns, earning himself considerable wealth. When Darby was oppressed with loan repayments, Reynolds bought the Manor of Madely, which made him Landlord of the Coalbrookdale Company; by 1780 he was virtually banker to the company.
    [br]
    Further Reading
    A.Raistrick, 1989, Dynasty of Iron Founders, 2nd edn, Ironbridge Gorge Museum Trust (contains many details of Reynolds's life).
    LRD

    Biographical history of technology > Reynolds, Richard

  • 103 дистанционное техническое обслуживание

    1. remote sevice
    2. remote maintenance

     

    дистанционное техническое обслуживание
    Техническое обслуживание объекта, проводимое под управлением персонала без его непосредственного присутствия.
    [ОСТ 45.152-99 ]

    Параллельные тексты EN-RU из ABB Review. Перевод компании Интент

    Service from afar

    Дистанционный сервис

    ABB’s Remote Service concept is revolutionizing the robotics industry

    Разработанная АББ концепция дистанционного обслуживания Remote Service революционизирует робототехнику

    ABB robots are found in industrial applications everywhere – lifting, packing, grinding and welding, to name a few. Robust and tireless, they work around the clock and are critical to a company’s productivity. Thus, keeping these robots in top shape is essential – any failure can lead to serious output consequences. But what happens when a robot malfunctions?

    Роботы АББ используются во всех отраслях промышленности для перемещения грузов, упаковки, шлифовки, сварки – всего и не перечислить. Надежные и неутомимые работники, способные трудиться день и ночь, они представляют большую ценность для владельца. Поэтому очень важно поддерживать их в надлежащей состоянии, ведь любой отказ может иметь серьезные последствия. Но что делать, если робот все-таки сломался?

    ABB’s new Remote Service concept holds the answer: This approach enables a malfunctioning robot to alarm for help itself. An ABB service engineer then receives whole diagnostic information via wireless technology, analyzes the data on a Web site and responds with support in just minutes. This unique service is paying off for customers and ABB alike, and in the process is revolutionizing service thinking.

    Ответом на этот вопрос стала новая концепция Remote Service от АББ, согласно которой неисправный робот сам просит о помощи. C помощью беспроводной технологии специалист сервисной службы АББ получает всю необходимую диагностическую информацию, анализирует данные на web-сайте и через считанные минуты выдает рекомендации по устранению отказа. Эта уникальная возможность одинаково ценна как для заказчиков, так и для самой компании АББ. В перспективе она способна в корне изменить весь подход к организации технического обслуживания.

    Every minute of production downtime can have financially disastrous consequences for a company. Traditional reactive service is no longer sufficient since on-site service engineer visits also demand great amounts of time and money. Thus, companies not only require faster help from the service organization when needed but they also want to avoid disturbances in production.

    Каждая минута простоя производства может привести к губительным финансовым последствиям. Традиционная организация сервиса, предусматривающая ликвидацию возникающих неисправностей, становится все менее эффективной, поскольку вызов сервисного инженера на место эксплуатации робота сопряжен с большими затратами времени и денег. Предприятия требуют от сервисной организации не только более быстрого оказания помощи, но и предотвращения возможных сбоев производства.

    In 2006, ABB developed a new approach to better meet customer’s expectations: Using the latest technologies to reach the robots at customer sites around the world, ABB could support them remotely in just minutes, thereby reducing the need for site visits. Thus the new Remote Service concept was quickly brought to fruition and was launched in mid-2007. Statistics show that by using the system the majority of production stoppages can be avoided.

    В 2006 г. компания АББ разработала новый подход к удовлетворению ожиданий своих заказчиков. Использование современных технологий позволяет специалистам АББ получать информацию от роботов из любой точки мира и в считанные минуты оказывать помощь дистанционно, в результате чего сокращается количество выездов на место установки. Запущенная в середине 2007 г. концепция Remote Service быстро себя оправдала. Статистика показывает, что её применение позволило предотвратить большое число остановок производства.

    Reactive maintenance The hardware that makes ABB Remote Service possible consists of a communication unit, which has a function similar to that of an airplane’s so-called black box 1. This “service box” is connected to the robot’s control system and can read and transmit diagnostic information. The unit not only reads critical diagnostic information that enables immediate support in the event of a failure, but also makes it possible to monitor and analyze the robot’s condition, thereby proactively detecting the need for maintenance.

    Устранение возникающих неисправностей Аппаратное устройство, с помощью которого реализуется концепция Remote Service, представляет собой коммуникационный блок, работающий аналогично черному ящику самолета (рис. 1). Этот блок считывает диагностические данные из контроллера робота и передает их по каналу GSM. Считывается не только информация, необходимая для оказания немедленной помощи в случае отказа, но и сведения, позволяющие контролировать и анализировать состояние робота для прогнозирования неисправностей и планирования технического обслуживания.

    If the robot breaks down, the service box immediately stores the status of the robot, its historical data (as log files), and diagnostic parameters such as temperature and power supply. Equipped with a built-in modem and using the GSM network, the box transmits the data to a central server for analysis and presentation on a dedicated Web site. Alerts are automatically sent to the nearest of ABB’s 1,200 robot service engineers who then accesses the detailed data and error log to analyze the problem.

    При поломке робота сервисный блок немедленно сохраняет данные о его состоянии, сведения из рабочего журнала, а также значения диагностических параметров (температура и характеристики питания). Эти данные передаются встроенным GSM-модемом на центральный сервер для анализа и представления на соответствующем web-сайте. Аварийные сообщения автоматически пересылаются ближайшему к месту аварии одному из 1200 сервисных инженеров-робототехников АББ, который получает доступ к детальной информации и журналу аварий для анализа возникшей проблемы.

    A remotely based ABB engineer can then quickly identify the exact fault, offering rapid customer support. For problems that cannot be solved remotely, the service engineer can arrange for quick delivery of spare parts and visit the site to repair the robot. Even if the engineer must make a site visit, service is faster, more efficient and performed to a higher standard than otherwise possible.

    Специалист АББ может дистанционно идентифицировать отказ и оказать быструю помощь заказчику. Если неисправность не может быть устранена дистанционно, сервисный инженер организовывает доставку запасных частей и выезд ремонтной бригады. Даже если необходимо разрешение проблемы на месте, предшествующая дистанционная диагностика позволяет минимизировать объем работ и сократить время простоя.

    Remote Service enables engineers to “talk” to robots remotely and to utilize tools that enable smart, fast and automatic analysis. The system is based on a machine-to-machine (M2M) concept, which works automatically, requiring human input only for analysis and personalized customer recommendations. ABB was recognized for this innovative solution at the M2M United Conference in Chicago in 2008 Factbox.

    Remote Service позволяет инженерам «разговаривать» с роботами на расстоянии и предоставляет в их распоряжение интеллектуальные средства быстрого автоматизированного анализа. Система основана на основе технологии автоматической связи машины с машиной (M2M), где участие человека сводится к анализу данных и выдаче рекомендаций клиенту. В 2008 г. это инновационное решение от АББ получило приз на конференции M2M United Conference в Чикаго (см. вставку).

    Proactive maintenance 
    Remote Service also allows ABB engineers to monitor and detect potential problems in the robot system and opens up new possibilities for proactive maintenance.

    Прогнозирование неисправностей
    Remote Service позволяет инженерам АББ дистанционно контролировать состояние роботов и прогнозировать возможные неисправности, что открывает новые возможности по организации профилактического обслуживания.

    The service box regularly takes condition measurements. By monitoring key parameters over time, Remote Service can identify potential failures and when necessary notify both the end customer and the appropriate ABB engineer. The management and storage of full system backups is a very powerful service to help recover from critical situations caused, for example, by operator errors.

    Сервисный блок регулярно выполняет диагностические измерения. Непрерывно контролируя ключевые параметры, Remote Service может распознать потенциальные опасности и, при необходимости, оповещать владельца оборудования и соответствующего специалиста АББ. Резервирование данных для возможного отката является мощным средством, обеспечивающим восстановление системы в критических ситуациях, например, после ошибки оператора.

    The first Remote Service installation took place in the automotive industry in the United States and quickly proved its value. The motherboard in a robot cabinet overheated and the rise in temperature triggered an alarm via Remote Service. Because of the alarm, engineers were able to replace a faulty fan, preventing a costly production shutdown.

    Первая система Remote Service была установлена на автозаводе в США и очень скоро была оценена по достоинству. Она обнаружила перегрев материнской платы в шкафу управления роботом и передала сигнал о превышении допустимой температуры, благодаря чему инженеры смогли заменить неисправный вентилятор и предотвратить дорогостоящую остановку производства.

    MyRobot: 24-hour remote access

    Having regular access to a robot’s condition data is also essential to achieving lean production. At any time, from any location, customers can verify their robots’ status and access maintenance information and performance reports simply by logging in to ABB’s MyRobot Web site. The service enables customers to easily compare performances, identify bottlenecks or developing issues, and initiate the most

    Сайт MyRobot: круглосуточный дистанционный доступ
    Для того чтобы обеспечить бесперебойное производство, необходимо иметь регулярный доступ к информации о состоянии робота. Зайдя на соответствующую страницу сайта MyRobot компании АББ, заказчики получат все необходимые данные, включая сведения о техническом обслуживании и отчеты о производительности своего робота. Эта услуга позволяет легко сравнивать данные о производительности, обнаруживать возможные проблемы, а также оптимизировать планирование технического обслуживания и модернизации. С помощью MyRobot можно значительно увеличить выпуск продукции и уменьшить количество выбросов.

    Award-winning solution
    In June 2008, the innovative Remote Service solution won the Gold Value Chain award at the M2M United Conference in Chicago. The value chain award honors successful corporate adopters of M2M (machine–to-machine) technology and highlights the process of combining multiple technologies to deliver high-quality services to customers. ABB won in the categoryof Smart Services.

    Приз за удачное решение
    В июне 2008 г. инновационное решение Remote Service получило награду Gold Value Chain (Золотая цепь) на конференции M2M United Conference в Чикаго. «Золотая цепь» присуждается за успешное масштабное внедрение технологии M2M (машина – машина), а также за достижения в объединении различных технологий для предоставления высококачественных услуг заказчикам. АББ одержала победу в номинации «Интеллектуальный сервис».

    Case study: Tetley Tetley GB Ltd is the world’s second-largest manufacturer and distributor of tea. The company’s manufacturing and distribution business is spread across 40 countries and sells over 60 branded tea bags. Tetley’s UK tea production facility in Eaglescliffe, County Durham is the sole producer of Tetley tea bags 2.

    Пример применения: Tetley Компания TetleyGB Ltd является вторым по величине мировым производителем и поставщиком чая. Производственные и торговые филиалы компании имеются в 40 странах, а продукция распространяется под 60 торговыми марками. Чаеразвесочная фабрика в Иглсклифф, графство Дарем, Великобритания – единственный производитель чая Tetley в пакетиках (рис. 2).

    ABB offers a flexible choice of service agreements for both new and existing robot installations, which can help extend the mean time between failures, shorten the time to repair and lower the cost of automated production.

    Предлагаемые АББ контракты на выполнение технического обслуживания как уже имеющихся, так и вновь устанавливаемых роботов, позволяют значительно увеличить среднюю наработку на отказ, сократить время ремонта и общую стоимость автоматизированного производства.

    Robots in the plant’s production line were tripping alarms and delaying the whole production cycle. The spurious alarms resulted in much unnecessary downtime that was spent resetting the robots in the hope that another breakdown could be avoided. Each time an alarm was tripped, several hours of production time was lost. “It was for this reason that we were keen to try out ABB’s Remote Service agreement,” said Colin Trevor, plant maintenance manager.

    Установленные в технологической линии роботы выдавали аварийные сигналы, задерживающие выполнение производственного цикла. Ложные срабатывания вынуждали перезапускать роботов в надежде предотвратить возможные отказы, в результате чего после каждого аварийного сигнала производство останавливалось на несколько часов. «Именно поэтому мы решили попробовать заключить с АББ контракт на дистанционное техническое обслуживание», – сказал Колин Тревор, начальник технической службы фабрики.

    To prevent future disruptions caused by unplanned downtime, Tetley signed an ABB Response Package service agreement, which included installing a service box and system infrastructure into the robot control systems. Using the Remote Service solution, ABB remotely monitors and collects data on the “wear and tear” and productivity of the robotic cells; this data is then shared with the customer and contributes to smooth-running production cycles.

    Для предотвращения ущерба в результате незапланированных простоев Tetley заключила с АББ контракт на комплексное обслуживание Response Package, согласно которому системы управления роботами были дооборудованы сервисными блоками с необходимой инфраструктурой. С помощью Remote Service компания АББ дистанционно собирает данные о наработке, износе и производительности роботизированных модулей. Эти данные предоставляются заказчику для оптимизации загрузки производственного оборудования.

    Higher production uptime
    Since the implementation of Remote Service, Tetley has enjoyed greatly reduced robot downtime, with no further disruptions caused by unforeseen problems. “The Remote Service package has dramatically changed the plant,” said Trevor. “We no longer have breakdown issues throughout the shift, helping us to achieve much longer periods of robot uptime. As we have learned, world-class manufacturing facilities need world-class support packages. Remote monitoring of our robots helps us to maintain machine uptime, prevent costly downtime and ensures my employees can be put to more valuable use.”

    Увеличение полезного времени
    С момента внедрения Remote Service компания Tetley была приятно удивлена резким сокращением простоя роботов и отсутствием незапланированных остановок производства. «Пакет Remote Service резко изменил ситуацию на предприятии», – сказал Тревор. «Мы избавились от простоев роботов и смогли резко увеличить их эксплуатационную готовность. Мы поняли, что для производственного оборудования мирового класса необходим сервисный пакет мирового класса. Дистанционный контроль роботов помогает нам поддерживать их в рабочем состоянии, предотвращать дорогостоящие простои и задействовать наш персонал для выполнения более важных задач».

    Service access
    Remote Service is available worldwide, connecting more than 500 robots. Companies that have up to 30 robots are often good candidates for the Remote Service offering, as they usually have neither the engineers nor the requisite skills to deal with robotics faults themselves. Larger companies are also enthusiastic about Remote Service, as the proactive services will improve the lifetime of their equipment and increase overall production uptime.

    Доступность сервиса
    Сеть Remote Service охватывает более 700 роботов по всему миру. Потенциальными заказчиками Remote Service являются компании, имеющие до 30 роботов, но не имеющие инженеров и техников, способных самостоятельно устранять их неисправности. Интерес к Remote Service проявляют и более крупные компании, поскольку они заинтересованы в увеличении срока службы и эксплуатационной готовности производственного оборудования.

    In today’s competitive environment, business profitability often relies on demanding production schedules that do not always leave time for exhaustive or repeated equipment health checks. ABB’s Remote Service agreements are designed to monitor its customers’ robots to identify when problems are likely to occur and ensure that help is dispatched before the problem can escalate. In over 60 percent of ABB’s service calls, its robots can be brought back online remotely, without further intervention.

    В условиях современной конкуренции окупаемость бизнеса часто зависит от соблюдения жестких графиков производства, не оставляющих времени для полномасштабных или периодических проверок исправности оборудования. Контракт Remote Service предусматривает мониторинг состояния роботов заказчика для прогнозирования возможных неисправностей и принятие мер по их предотвращению. В более чем 60 % случаев для устранения неисправности достаточно дистанционной консультации в сервисной службе АББ, дальнейшего вмешательства не требуется.

    ABB offers a flexible choice of service agreements for both new and existing robot installations, which helps extend the mean time between failures, shorten the time to repair and lower the total cost of ownership. With four new packages available – Support, Response, Maintenance and Warranty, each backed up by ABB’s Remote Service technology – businesses can minimize the impact of unplanned downtime and achieve improved production-line efficiency.

    Компания АББ предлагает гибкий выбор контрактов на выполнение технического обслуживания как уже имеющихся, так и вновь устанавливаемых роботов, которые позволяют значительно увеличить среднюю наработку на отказ, сократить время ремонта и эксплуатационные расходы. Четыре новых пакета на основе технологии Remote Service Support, Response, Maintenance и Warranty – позволяют минимизировать внеплановые простои и значительно повысить эффективность производства.

    The benefits of Remote Sevice are clear: improved availability, fewer service visits, lower maintenance costs and maximized total cost of ownership. This unique service sets ABB apart from its competitors and is the beginning of a revolution in service thinking. It provides ABB with a great opportunity to improve customer access to its expertise and develop more advanced services worldwide.

    Преимущества дистанционного технического обслуживания очевидны: повышенная надежность, уменьшение выездов ремонтных бригад, уменьшение затрат на обслуживание и общих эксплуатационных расходов. Эта уникальная услуга дает компании АББ преимущества над конкурентами и демонстрирует революционный подход к организации сервиса. Благодаря ей компания АББ расширяет доступ заказчиков к опыту своих специалистов и получает возможность более эффективного оказания технической помощи по всему миру.

    Тематики

    • тех. обсл. и ремонт средств электросвязи

    Обобщающие термины

    EN

    Русско-английский словарь нормативно-технической терминологии > дистанционное техническое обслуживание

  • 104 прямой пуск вращающегося электродвигателя

    1. full voltage starter application
    2. DOL
    3. direct-on-line starting
    4. direct starting
    5. direct operation of a motor
    6. direct line starting
    7. across-the-line starting (US)

     

    прямой пуск вращающегося электродвигателя
    Пуск вращающегося электродвигателя путем непосредственного подключения его к питающей сети.
    [ ГОСТ 27471-87]

    EN

    direct-on-line starting
    across-the-line starting (US)
    the process of starting a motor by connecting it directly to the supply at rated voltage
    [IEV number 411-52-15]

    FR

    démarrage direct
    mode de démarrage d'un moteur, consistant à lui appliquer directement sa pleine tension assignée
    [IEV number 411-52-15]

    0855
    Рис. ABB
    Схема прямого пуска электродвигателя

    Magnetic only circuit-breaker - Автоматический выключатель с электромагнитным расцепителем

    Contactor KL - Контактор KL

    Thermal relay - Тепловое реле

     

    Параллельные тексты EN-RU

    Direct-on-line starting

    Direct-on-line starting, which is often abbreviated as DOL, is perhaps the most traditional system and consists in connecting the motor directly to the supply network, thus carrying out starting at full voltage.

    Direct-on-line starting represents the simplest and the most economical system to start a squirrel-cage asynchronous motor and it is the most used.

    As represented in Figure 5, it provides the direct connection to the supply network and therefore starting is carried out at full voltage and with constant frequency, developing a high starting torque with very reduced acceleration times.

    The typical applications are relevant to small power motors also with full load starting.

    These advantages are linked to some problems such as, for example, the high inrush current, which - in the first instants - can reach values of about 10 to 12 times the rated current, then can decrease to about 6 to 8 times the rated current and can persist to reach the maximum torque speed.

    The effects of such currents can be identified with the high electro-dynamical stresses on the motor connection cables and could affect also the windings of the motor itself; besides, the high inrush torques can cause violent accelerations which stress the transmission components (belts and joints) generating distribution problems with a reduction in the mechanical life of these elements.

    Finally, also the possible electrical problems due to voltage drops on the supply line of the motor or of the connected equipment must be taken into consideration.
    [ABB]

    Прямой пуск

    Прямой пуск, который по-английски часто сокращенно обозначают как DOL, является, пожалуй наиболее распространенным способом пуска. Он заключается в непосредственном (т. е. прямом) подключении двигателя к питающей сети. Это означает, что пуск двигателя осуществляется при полном напряжении.

    Схема прямого пуска является наиболее простым, экономичным и чаще всего применяемым решением для электродвигателей с короткозамкнутым ротором.

    Схема прямого подключения к сети представлена на рисунке 5. Пуск осуществляется при полном напряжении и постоянной частоте сети. Электродвигатель развивает высокий пусковой момент при коротком времени разгона.

    Типичные области применения – маломощные электродвигатели, в том числе с пуском при полной нагрузке.

    Однако, наряду с преимуществами имеются и определенные недостатки, например, бросок пускового тока, достигающий в первоначальный момент 10…12-кратного значения от номинального тока электродвигателя. Затем ток двигателя уменьшается примерно до 6…8-кратного значения номинального тока и будет держаться на этом уровне до тех пор, пока скорость двигателя не достигнет максимального значения.

    Такое изменение тока оказывает значительное электродинамическое воздействие на кабель, подключенный к двигателю. Кроме того пусковой ток воздействует на обмотки двигателя. Высокий начальный пусковой момент может привести к значительному ускорению и следовательно к значительной нагрузке элементов привода (ремней, крепления узлов), что вызывает сокращение их срока службы.

    И, наконец, следует принять во внимание возможное возникновение проблем, связанных с падением напряжения в линии питания двигателя и подключенного к этой линии оборудования.
    [Перевод Интент]




     

    Тематики

    Синонимы

    EN

    DE

    FR

    Русско-английский словарь нормативно-технической терминологии > прямой пуск вращающегося электродвигателя

  • 105 человеко-машинный интерфейс

    1. operator-machine communication
    2. MMI
    3. man-machine interface
    4. man-machine communication
    5. human-machine interface
    6. human-computer interface
    7. human interface device
    8. human interface
    9. HMI
    10. computer human interface
    11. CHI

     

    человеко-машинный интерфейс (ЧМИ)
    Технические средства, предназначенные для обеспечения непосредственного взаимодействия между оператором и оборудованием и дающие возможность оператору управлять оборудованием и контролировать его функционирование.
    Примечание
    Такие средства могут включать приводимые в действие вручную органы управления, контрольные устройства, дисплеи.
    [ ГОСТ Р МЭК 60447-2000]

    человекомашинный интерфейс (ЧМИ)
    Технические средства контроля и управления, являющиеся частью оборудования, предназначенные для обеспечения непосредственного взаимодействия между оператором и оборудованием и дающие возможность оператору управлять оборудованием и контролировать его функционирование (ГОСТ Р МЭК 60447).
    Примечание
    Такие средства могут включать приводимые в действие вручную органы управления, контрольные устройства и дисплеи.
    [ ГОСТ Р МЭК 60073-2000]

    человеко-машинный интерфейс
    Средства обеспечения двусторонней связи "оператор - технологическое оборудование" (АСУ ТП). Название класса средств, в который входят подклассы:
    SCADA (Supervisory Control and Data Acquisition) - Операторское управление и сбор данных от технологического оборудования.
    DCS (Distributed Control Systems) - Распределенная система управления технологическим оборудованием.
    [ http://www.morepc.ru/dict/]

    Параллельные тексты EN-RU

    MotorSys™ iPMCC solutions can integrate a dedicated human-machine interface (HMI) or communicate via a personal computer directly on the motor starters.
    [Schneider Electric]

    Интеллектуальный центр распределения электроэнергии и управления электродвигателями MotorSys™ может иметь в своем составе специальный человеко-машинный интерфейс (ЧМИ). В качестве альтернативы используется обмен данным между персональным компьютером и пускателями.
    [Перевод Интент]


    HMI на базе операторских станций

    Самое, пожалуй, главное в системе управления - это организация взаимодействия между человеком и программно-аппаратным комплексом. Обеспечение такого взаимодействия и есть задача человеко-машинного интерфейса (HMI, human machine interface).

    На мой взгляд, в аббревиатуре “АСУ ТП” ключевым является слово “автоматизированная”, что подразумевает непосредственное участие человека в процессе реализации системой определенных задач. Очевидно, что чем лучше организован HMI, тем эффективнее человек сможет решать поставленные задачи.

    Как же организован HMI в современных АСУ ТП?
    Существует, как минимум, два подхода реализации функционала HMI:

    1. На базе специализированных рабочих станций оператора, устанавливаемых в центральной диспетчерской;
    2. На базе панелей локального управления, устанавливаемых непосредственно в цеху по близости с контролируемым технологическим объектам.

    Иногда эти два варианта комбинируют, чтобы достичь наибольшей гибкости управления. В данной статье речь пойдет о первом варианте организации операторского уровня.

    Аппаратно рабочая станция оператора (OS, operator station) представляет собой ни что иное как персональный компьютер. Как правило, станция снабжается несколькими широкоэкранными мониторами, функциональной клавиатурой и необходимыми сетевыми адаптерами для подключения к сетям верхнего уровня (например, на базе Industrial Ethernet). Станция оператора несколько отличается от привычных для нас офисных компьютеров, прежде всего, своим исполнением и эксплуатационными характеристиками (а также ценой 4000 - 10 000 долларов).
    На рисунке 1 изображена рабочая станция оператора системы SIMATIC PCS7 производства Siemens, обладающая следующими техническими характеристиками:

    Процессор: Intel Pentium 4, 3.4 ГГц;
    Память: DDR2 SDRAM до 4 ГБ;
    Материнская плата: ChipSet Intel 945G;
    Жесткий диск: SATA-RAID 1/2 x 120 ГБ;
    Слоты: 4 x PCI, 2 x PCI E x 1, 1 x PCI E x 16;
    Степень защиты: IP 31;
    Температура при эксплуатации: 5 – 45 C;
    Влажность: 5 – 95 % (без образования конденсата);
    Операционная система: Windows XP Professional/2003 Server.

    4876
    Рис. 1. Пример промышленной рабочей станции оператора.

    Системный блок может быть как настольного исполнения ( desktop), так и для монтажа в 19” стойку ( rack-mounted). Чаще применяется второй вариант: системный блок монтируется в запираемую стойку для лучшей защищенности и предотвращения несанкционированного доступа.

    Какое программное обеспечение используется?
    На станции оператора устанавливается программный пакет визуализации технологического процесса (часто называемый SCADA). Большинство пакетов визуализации работают под управлением операционных систем семейства Windows (Windows NT 4.0, Windows 2000/XP, Windows 2003 Server), что, на мой взгляд, является большим минусом.
    Программное обеспечение визуализации призвано выполнять следующие задачи:

    1. Отображение технологической информации в удобной для человека графической форме (как правило, в виде интерактивных мнемосхем) – Process Visualization;
    2. Отображение аварийных сигнализаций технологического процесса – Alarm Visualization;
    3. Архивирование технологических данных (сбор истории процесса) – Historical Archiving;
    4. Предоставление оператору возможности манипулировать (управлять) объектами управления – Operator Control.
    5. Контроль доступа и протоколирование действий оператора – Access Control and Operator’s Actions Archiving.
    6. Автоматизированное составление отчетов за произвольный интервал времени (посменные отчеты, еженедельные, ежемесячные и т.д.) – Automated Reporting.

    Как правило, SCADA состоит из двух частей:

    1. Среды разработки, где инженер рисует и программирует технологические мнемосхемы;
    2. Среды исполнения, необходимой для выполнения сконфигурированных мнемосхем в режиме runtime. Фактически это режим повседневной эксплуатации.

    Существует две схемы подключения операторских станций к системе управления, а точнее уровню управления. В рамках первой схемы каждая операторская станция подключается к контроллерам уровня управления напрямую или с помощью промежуточного коммутатора (см. рисунок 2). Подключенная таким образом операторская станция работает независимо от других станций сети, и поэтому часто называется одиночной (пусть Вас не смущает такое название, на самом деле таких станций в сети может быть несколько).

    4877
    Рис. 2. Схема подключения одиночных операторских станций к уровню управления.

    Есть и другой вариант. Часто операторские станции подключают к серверу или резервированной паре серверов, а серверы в свою очередь подключаются к промышленным контроллерам. Таким образом, сервер, являясь неким буфером, постоянно считывает данные с контроллера и предоставляет их по запросу рабочим станциям. Станции, подключенные по такой схеме, часто называют клиентами (см. рисунок 3).

    4878
    Рис. 3. Клиент-серверная архитектура операторского уровня.

    Как происходит информационный обмен?
    Для сопряжения операторской станции с промышленным контроллером на первой устанавливается специальное ПО, называемое драйвером ввода/вывода. Драйвер ввода/вывода поддерживает совместимый с контроллером коммуникационный протокол и позволяет прикладным программам считывать с контроллера параметры или наоборот записывать в него. Пакет визуализации обращается к драйверу ввода/вывода каждый раз, когда требуется обновление отображаемой информации или запись измененных оператором данных. Для взаимодействия пакета визуализации и драйвера ввода/вывода используется несколько протоколов, наиболее популярные из которых OPC (OLE for Process Control) и NetDDE (Network Dynamic Data Exchange). Обобщенно можно сказать, что OPC и NetDDE – это протоколы информационного обмена между различными приложениями, которые могут выполняться как на одном, так и на разных компьютерах. На рисунках 4 и 5 изображено, как взаимодействуют программные компоненты при различных схемах построения операторского уровня.  
    4879
    Рис. 4. Схема взаимодействия программных модулей при использовании одиночных станций.
     
    4880
    Рис. 5. Схема взаимодействия программных модулей при использовании клиент-серверной архитектуры.
    Как выглядит SCADA?
    Разберем простой пример. На рисунке 6 приведена абстрактная схема технологического процесса, хотя полноценным процессом это назвать трудно.
    4881
    Рис. 6. Пример операторской мнемосхемы.
    На рисунке 6 изображен очень упрощенный вариант операторской мнемосхемы для управления тех. процессом. Как видно, резервуар (емкость) наполняется водой. Задача системы - нагреть эту воду до определенной температуры. Для нагрева воды используется газовая горелка. Интенсивность горения регулируется клапаном подачи газа. Также должен быть насос для закачки воды в резервуар и клапан для спуска воды.

    На мнемосхеме отображаются основные технологические параметры, такие как: температура воды; уровень воды в резервуаре; работа насосов; состояние клапанов и т.д. Эти данные обновляются на экране с заданной частотой. Если какой-либо параметр достигает аварийного значения, соответствующее поле начинает мигать, привлекая внимание оператора.

    Сигналы ввода/вывода и исполнительные механизмы отображаются на мнемосхемах в виде интерактивных графических символов (иконок). Каждому типу сигналов и исполнительных механизмов присваивается свой символ: для дискретного сигнала это может быть переключатель, кнопка или лампочка; для аналогового – ползунок, диаграмма или текстовое поле; для двигателей и насосов – более сложные фейсплейты ( faceplates). Каждый символ, как правило, представляет собой отдельный ActiveX компонент. Вообще технология ActiveX широко используется в SCADA-пакетах, так как позволяет разработчику подгружать дополнительные символы, не входящие в стандартную библиотеку, а также разрабатывать свои собственные графические элементы, используя высокоуровневые языки программирования.

    Допустим, оператор хочет включить насос. Для этого он щелкает по его иконке и вызывает панель управления ( faceplate). На этой панели он может выполнить определенные манипуляции: включить или выключить насос, подтвердить аварийную сигнализацию, перевести его в режим “техобслуживания” и т.д. (см. рисунок 7).  
    4882
    Рис. 7. Пример фейсплейта для управления насосом.
      Оператор также может посмотреть график изменения интересующего его технологического параметра, например, за прошедшую неделю. Для этого ему надо вызвать тренд ( trend) и выбрать соответствующий параметр для отображения. Пример тренда реального времени показан на рисунке 8.
     
    4883
    Рис. 8. Пример отображения двух параметров на тренде реального времени.
    Для более детального обзора сообщений и аварийных сигнализаций оператор может воспользоваться специальной панелью ( alarm panel), пример которой изображен на рисунке 9. Это отсортированный список сигнализаций (alarms), представленный в удобной для восприятия форме. Оператор может подтвердить ту или иную аварийную сигнализацию, применить фильтр или просто ее скрыть.
    4884
    Рис. 9. Панель сообщений и аварийных сигнализаций.
    Говоря о SCADA, инженеры часто оперируют таким важным понятием как “тэг” ( tag). Тэг является по существу некой переменной программы визуализации и может быть использован как для локального хранения данных внутри программы, так и в качестве ссылки на внешний параметр процесса. Тэги могут быть разных типов, начиная от обычных числовых данных и кончая структурой с множеством полей. Например, один визуализируемый параметр ввода/вывода – это тэг, или функциональный блок PID-регулятора, выполняемый внутри контроллера, - это тоже тэг. Ниже представлена сильно упрощенная структура тэга, соответствующего простому PID-регулятору:

    Tag Name = “MyPID”;
    Tag Type = PID;

    Fields (список параметров):

    MyPID.OP
    MyPID.SP
    MyPID.PV
    MyPID.PR
    MyPID.TI
    MyPID.DI
    MyPID.Mode
    MyPID.RemoteSP
    MyPID.Alarms и т.д.

    В комплексной прикладной программе может быть несколько тысяч тэгов. Производители SCADA-пакетов это знают и поэтому применяют политику лицензирования на основе количества используемых тэгов. Каждая купленная лицензия жестко ограничивает суммарное количество тэгов, которые можно использовать в программе. Очевидно, чем больше тегов поддерживает лицензия, тем дороже она стоит; так, например, лицензия на 60 000 тэгов может обойтись в 5000 тыс. долларов или даже дороже. В дополнение к этому многие производители SCADA формируют весьма существенную разницу в цене между “голой” средой исполнения и полноценной средой разработки; естественно, последняя с таким же количеством тэгов будет стоить заметно дороже.

    Сегодня на рынке представлено большое количество различных SCADA-пакетов, наиболее популярные из которых представлены ниже:

    1.    Wonderware Intouch;
    2.    Simatic WinCC;
    3.    Iconics Genesis32;
    4.    Citect;
    5.    Adastra Trace Mode

    Лидирующие позиции занимают Wonderware Intouch (производства Invensys) и Simatic WinCC (разработки Siemens) с суммарным количеством инсталляций более 80 тыс. в мире. Пакет визуализации технологического процесса может поставляться как в составе комплексной системы управления, так и в виде отдельного программного продукта. В последнем случае SCADA комплектуется набором драйверов ввода/вывода для коммуникации с контроллерами различных производителей.   [ http://kazanets.narod.ru/HMI_PART1.htm]

    Тематики

    Синонимы

    EN

    Русско-английский словарь нормативно-технической терминологии > человеко-машинный интерфейс

  • 106 основной

    1) basal

    2) base
    3) basic
    4) basis
    5) dominant
    6) <chem.> elemental
    7) fundamental
    8) ground
    9) main
    10) major
    11) <engin.> master
    12) matrix
    13) pivotal
    14) primal
    15) primary
    16) principal
    17) underlying
    вид колебаний основной
    капитал основной
    код основной
    кронштейн основной
    материал основной
    носитель основной
    обмен основной
    основной активатор
    основной аэродром
    основной блок
    основной бойлер
    основной вектор
    основной вид
    основной горизонт
    основной допуск
    основной закон
    основной кирпич
    основной конденсат
    основной круг
    основной масштаб
    основной меридиан
    основной металл
    основной модуль
    основной негатив
    основной огнеупор
    основной окисел
    основной парашют
    основной пароперегреватель
    основной период
    основной поддон
    основной поток
    основной тон
    основной файл
    основной флюс
    основной цвет
    основной цех
    основной шлак

    завод основной химииheavy-chemicals plant


    конвертер с основной футеровкойbasic converter


    основной балансный контурbasis network


    основной мартеновский процессbasis open-hearth process


    основной штрих буквыthick stroke


    основной энергетический уровеньground level


    прядение основной пряжиwarp spinning


    частота основной гармоники<phys.> fundamental frequency

    Русско-английский технический словарь > основной

  • 107 автоматизация деловых процедур

    1) Information technology: work flow, work process automation
    2) Network technologies: workflow

    Универсальный русско-английский словарь > автоматизация деловых процедур

  • 108 анализировать

    1) General subject: analyse, anatomize, break down, decompose (причины, мотивы и т. п.), decompound, dissect, sift, assess, consider
    2) Medicine: analyze
    3) Military: appreciate, weight
    5) Mathematics: assay, parsing
    6) Metallurgy: examine
    7) Psychology: dichotomize
    8) Information technology: interpret, parse, parse (синтаксис), parser
    9) Business: canvass
    10) Network technologies: evaluate
    11) Automation: quote
    13) Makarov: dissect (критически), resolve

    Универсальный русско-английский словарь > анализировать

  • 109 аппарат

    1) General subject: administration (учреждения), device, establishment (учреждения), gear, instrument, machinery (государственный и т. п.), magic lantern, mechanism, staff (учреждения), vehicle, framework (e.g. понятийный)
    3) Military: (оборудование) apparatus, (оборудование) device, (оборудование) equipment, executive office (учреждения), (оборудование) instrument, (помещение и служащие, обеспечивающие работу должностного лица) office
    4) Engineering: main body
    7) Railway term: piece of apparatus
    9) Accounting: machine (организационный), system
    10) Diplomatic term: (организационный) machine
    11) Cinema: camera
    12) Forestry: cell
    13) Polygraphy: back matter (книги - приложения, таблицы и т.п.), end matter (книги)
    14) Politics: (президента США) executive office (of the US President)
    17) Physics: kettle
    18) Oil: aid, open-heater
    19) Astronautics: craft
    20) Advertising: mechanism
    21) Patents: (справочный) back matter (книги), (справочный) end matter (книги)
    22) Oilfield: equipment
    23) Network technologies: tool
    26) Makarov: aid (напр. слуховой), app (apparatus), camera (фото), outfit
    27) oil&gas: vessel
    28) Combustion gas turbines: assembly

    Универсальный русско-английский словарь > аппарат

  • 110 база данных о процессах

    1) Information technology: process database
    2) Network technologies: PDB

    Универсальный русско-английский словарь > база данных о процессах

  • 111 база данных процесса

    1) Information technology: process database
    2) Network technologies: PDB

    Универсальный русско-английский словарь > база данных процесса

  • 112 взаимодействие

    1) General subject: co-operation, cooperation, feedback, interaction, intercommunion, interplay, professional engagement and interaction (between...) (for public-private partnerships (such as concessions)), reciprocality, synergy, team-up, team-work, teamplay, reciprocity, teamwork, convergence, liaising, Synergies, engagement (with), interoperating
    3) Naval: change, intersection
    5) Military: cohesion, cohesiveness, concerted action, conjunction, coordination, engagement, interoperability, team, (тесное) teamplay, unity of effort (cooperation and coordination among all forces towards a common objective)
    7) Chemistry: interreacting
    10) Automobile industry: interworking (частей машины)
    11) Diplomatic term: concert, interrelationship
    12) Metallurgy: liaison, (химическая) reaction
    13) Telecommunications: internal action
    14) Textile: overlap
    15) Physics: impact
    16) Information technology: interoperation
    17) Oil: interreaction
    19) Mechanic engineering: connecting box
    22) Advertising: intimate contact
    23) Drilling: interference, reaction
    24) Sakhalin energy glossary: interaction ( between the Molikpaq and waves) (между Моликпак и волнами)
    25) Oil&Gas technology reciprocal influence (залежей)
    26) Network technologies: handshaking, negotiation
    27) EBRD: interfacing
    28) Programming: orchestration
    30) Quality control: interwork
    31) Sakhalin R: interaction (между Моликпак и волнами; between the Molikpaq and waves)
    34) Aviation medicine: cross-stimulation, interactive effect
    36) Microsoft: experience
    37) General subject: cross-product (парное)

    Универсальный русско-английский словарь > взаимодействие

  • 113 диаграмма потоков данных

    1) Aviation: data flow chart
    2) Engineering: data-flow diagram
    3) Information technology: data flowchart, process chart
    4) Network technologies: DFD
    5) Programming: dataflow diagram
    6) Security: data flow diagram

    Универсальный русско-английский словарь > диаграмма потоков данных

  • 114 добавляемый процесс

    1) Information technology: value-added process
    2) Network technologies: VAP

    Универсальный русско-английский словарь > добавляемый процесс

  • 115 кодирование

    1) General subject: coding, enciphering, encrypting
    2) Military: ( en) coding, encryption
    3) Engineering: encoding
    4) Economy: encription
    5) Accounting: coding (напр. адресов)
    6) Polygraphy: code printing
    8) Electronics: encipherment
    9) Information technology: coding (на машинном языке), encryption
    10) Immunology: iodination
    11) Cartography: code
    12) Network technologies: cipher, scrambling
    14) Aviation medicine: encoding (информации)
    15) Security: encodement

    Универсальный русско-английский словарь > кодирование

  • 116 метод

    1) General subject: approach, manner (manner of life (thought) - образ жизни (мыслей)), method, mode, procedure, rule of thumb (в отличие от научного), scheme, system (what system do you go on? - какому методу вы следуете?), tack, teaching, the how, tool, way, wrinkle, american welt type "Parco" attaching method (обувь, подошву которой прикрепляют нитками к ранту, соединенному нитками с заготовкой верха по всему периметру без основной стельки или к пяточной части с оснойной стелькой)
    2) Biology: technique (см. тж method)
    3) Medicine: assay, device, practice, technic
    4) Colloquial: how
    5) Military: modality, technique
    7) Agriculture: practice (ы), water conveyance and delivery efficiency
    8) Construction: mean
    11) Accounting: convention, technics
    12) Mining: modus, regime
    13) Forestry: type
    14) Textile: style
    15) Information technology: hook, vehicle
    16) Oil: process
    18) Geophysics: rule
    19) Taxes: basis
    20) Patents: approach (решения), art, techniques
    21) Drilling: hang
    22) Network technologies: hookup, policy
    23) Programming: routine (в ООП), (в Java)(класса) instance method (то же, что и nonstatic member function в С++)
    24) Automation: course
    25) Chemical weapons: metal method
    26) Makarov: Mo (mode), approach (подход), avenue, avenue of approach, concept, mechanism, meth (method), methodology, plan (подход), principle (подход), scheme (подход), strategy
    27) Combustion gas turbines: analysis (расчёта)
    28) Camera recording: (или способ) route

    Универсальный русско-английский словарь > метод

  • 117 метод

    1) General subject: approach, manner (manner of life (thought) - образ жизни (мыслей)), method, mode, procedure, rule of thumb (в отличие от научного), scheme, system (what system do you go on? - какому методу вы следуете?), tack, teaching, the how, tool, way, wrinkle, american welt type "Parco" attaching method (обувь, подошву которой прикрепляют нитками к ранту, соединенному нитками с заготовкой верха по всему периметру без основной стельки или к пяточной части с оснойной стелькой)
    2) Biology: technique (см. тж method)
    3) Medicine: assay, device, practice, technic
    4) Colloquial: how
    5) Military: modality, technique
    7) Agriculture: practice (ы), water conveyance and delivery efficiency
    8) Construction: mean
    11) Accounting: convention, technics
    12) Mining: modus, regime
    13) Forestry: type
    14) Textile: style
    15) Information technology: hook, vehicle
    16) Oil: process
    18) Geophysics: rule
    19) Taxes: basis
    20) Patents: approach (решения), art, techniques
    21) Drilling: hang
    22) Network technologies: hookup, policy
    23) Programming: routine (в ООП), (в Java)(класса) instance method (то же, что и nonstatic member function в С++)
    24) Automation: course
    25) Chemical weapons: metal method
    26) Makarov: Mo (mode), approach (подход), avenue, avenue of approach, concept, mechanism, meth (method), methodology, plan (подход), principle (подход), scheme (подход), strategy
    27) Combustion gas turbines: analysis (расчёта)
    28) Camera recording: (или способ) route

    Универсальный русско-английский словарь > метод

  • 118 многозадачный режим

    1) Computers: multitask operation
    3) Information technology: multitask mode
    4) Network technologies: multiple processing

    Универсальный русско-английский словарь > многозадачный режим

  • 119 обмен

    1) General subject: chop, exchange, exchanging, give and take (мнениями), input output, interchange, (взаимный) interchange (письмами, подарками, мнениями, товарами и т. д.), interchanging, metathesis, reciprocality (услугами, любезностями), reciprocation (услугами, любезностями), reciprocity (услугами, любезностями), trade, tradeoff, truck, dicker
    3) Colloquial: swap, swop
    4) Obsolete: truckage
    5) Military: sharing
    6) Engineering: changing, input-output (данными), replacement, traffic (в сетях связи)
    7) Agriculture: turnover
    8) Chemistry: double decomposition
    9) Mathematics: barter
    10) Law: (экземплярами договора, соглашения, контракта) delivery
    11) Economy: bartering, change (напр. валюты), change (на другую валюту), conversion (валюты), trading-off
    12) Accounting: change, swap (бартерный)
    13) Diplomatic term: change (валюты)
    16) Geophysics: communication, conversion
    17) Advertising: exchange process
    18) Network technologies: EXCH
    20) Quality control: (взаимный) interchange
    21) Robots: exchange (данными), interchange (взаимный)
    22) Oceanography: austausch (нем)
    23) Makarov: interchange (взаимный), intercourse (мыслями, письмами и т.п.)
    24) Archaic: trucking
    26) oil&gas: interaction

    Универсальный русско-английский словарь > обмен

  • 120 подчинённый процесс

    1) Mathematics: subordinated process
    2) Network technologies: subprocess

    Универсальный русско-английский словарь > подчинённый процесс

См. также в других словарях:

  • Object Process Network — [http://opn.mit.edu/ Object Process Network] (OPN) [B. H. Y. Koo. A Meta language for Systems Architecting . PhD thesis, Massachusetts Institute of Technology, Cambridge, MA, 2005. [http://opn.mit.edu/images/Submitted Thesis BKOO.pdf PDF File] ]… …   Wikipedia

  • Business Process Network — Business process networks (BPN), also referred to as business service networks or business process hubs, enable the efficient execution of multi enterprise operational processes, including supply chain planning and execution.To execute such… …   Wikipedia

  • Network planning and design — is an iterative process, encompassing topological design, network synthesis, and network realization, and is aimed at ensuring that a new network or service meets the needs of the subscriber and operator.[1] The process can be tailored according… …   Wikipedia

  • Process architecture — is the structural design of general process systems and applies to fields such as computers (software, hardware, networks, etc.), business processes (enterprise architecture, policy and procedures, logistics, project management, etc.), and any… …   Wikipedia

  • Network-Centric Service-Oriented Enterprise (NCSOE) — is a new generation enterprise capable of conducting collaboration and management of internal and external information. Using Network Centric Enterprise Services (NCES) , the enterprise can now enforce information and decision superiority in a… …   Wikipedia

  • Network traffic simulation — is a process used in telecommunications engineering to measure the efficiency of a communications network. Contents 1 Overview 2 Simulation methods 3 Advantages of simulation 4 …   Wikipedia

  • Network booting — is the process of booting a computer from a network rather than a local drive. This method of booting can be used by routers, diskless workstations and centrally managed computers (thin clients) such as public computers at libraries and schools.… …   Wikipedia

  • Network Agility — is an architectural discipline for computer networking. It can be defined as: The ability of network software and hardware to automatically control and configure itself and other network assets across any number of devices on a network. With… …   Wikipedia

  • Network synthesis filters — Network synthesis is a method of designing signal processing filters. It has produced several important classes of filter including the Butterworth filter, the Chebyshev filter and the Elliptic filter. It was originally intended to be applied to… …   Wikipedia

  • Network switching subsystem — (NSS) (or GSM core network) is the component of a GSM system that carries out call switching and mobility management functions for mobile phones roaming on the network of base stations. It is owned and deployed by mobile phone operators and… …   Wikipedia

  • Network Rail Route Utilisation Strategies — Network Rail has an obligation, transferred from the abolished Strategic Rail Authority, to produce Route Utilisation Strategies [http://www.networkrail.co.uk/browseDirectory.aspx?root= pageid=2895 dir=RUS%20DocumentsRoute%20Utilisation%20Strategi… …   Wikipedia

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»