Перевод: со всех языков на английский

с английского на все языки

process+measuring

  • 41 метод


    method
    - выполнения работыoperating procedure
    - выставки (горизонтирования, гирокомпенсирования и т.п.) — method of alignment (leveling, gyrocompassing, etc.)
    - дефектоскопии — inspection /testing/ method
    - измеренияmeasuring method
    - испытанияtest method
    - капиллярной дефектоскопииliquid penetrant inspection method
    - контроля (дефектации)inspektion method
    - магнитной (магнитопорошковой) дефектоскопииmagnetic (particle) inspection method
    - многократного резервирования (систем управления) — multiplexing /multichannel/ rеdundancy
    - неразрушающего контроляnon-destructive inspection (method)
    - обработкиtreatment process
    - поиска (звезды астротелескопом) — search pattern compute and command a search pattern until a star is acquired.
    - пользования графикомmethod of use of graph

    the methods should be shown clearly by means of a well chosen example.
    - проверки (дефектации)inspection method
    - распознавания по образцамpattern recognition
    - (экономических) расчетов по стандарту ата 6о — ata 60 method economic study is carried out according to the ata 60 method.
    -, токовихревой (дефектоскопии) — eddy current inspection, eddy current testing method
    - установки (получения) режима двигателя — method for setting thrust /power/
    - фиксации (контровки) лопа токblade retaining method
    изготовлять методом вытяжки — manufacture by extrusion the spar is manufactured by extrusion.

    Русско-английский сборник авиационно-технических терминов > метод

  • 42 проверка


    check (снк), test, inspection
    - (раздел рэ) — adjustment/test
    -, автономная (инерц. сист.) — self-testing
    -, безвыборочная — random check
    - биения (радиального) — check for /of/ eccentricity
    - биения (скоса боковой поверхности, напр., колеса турбины) — check of swash. checking the swash of turbine wheel.
    - введенных координат гпм — waypoint coordinate insertion /entry/ verification
    - включения (работы) системыsystem operational test
    -, внерегламентная — unschedule maintenance check
    проверки или осмотры самолета, его систем и агрегатов, проводимые в результате нарушения нормальных условий эксплуатации, независимо от утвержденных сроков проверок, производятся после грубых посадок, в случае удара молний в самолет, посадки с избыточным весом, столкновения с птицей и др. — those maintenance checks and inspection on the aircraft, its systems and units which are dictated by special or unusual conditions which are not related to the time limits. includes inspections and checks such as hard landing, turbulent air, lightning strike, overweight landing, bird strike
    - встроенным контролемbuilt-in test

    test the system by using its built-in test facility /ieature/.
    -, выборочная — spot check, sampling inspection
    -, выборочная (на работоспособность) — spot test
    - гермокабины на герметичностьpressurized cabin leakage test
    - готовности (ла) к полетуpre-flight check
    "- заправки топливом" — fuel oty test (switch) (выключатель)
    -, комплексная (систем) — combined systems checkout
    -, контрольная — inspection check
    - концентричности (колеса турбины, вала) — check of concentricity (of turbine wheel, shaft)
    - координат места лаaircraft position coordinate verification
    - лампlamp test
    - ламп табло (повторным включением) — annunciator lights recall. any reset annunciator lights can be recalled using the warning, caution and advisory lights test switch.
    - межпопетная (перед обратным маршрутом)turnround check
    - методом "прокачек" (функциональная проверка электр. цепей) — functional test
    - на выявление трещин (одним из объективных методов дефектоскопии)inspection for cracks (by emplaying an objective method of inspection)
    - на герметичностьleak test
    -, наземная — ground check
    -, наземная (с опробованием) — ground test
    - на нспопнитепьном стартеlne-up check
    - на магнитном дефектоскопе (на выявление трещин)magnetic inspection (for cracks)
    - на месте (без демонтажа изделия или агрегата с объекта) — in-situ check /test, inspection/. the on-condition check is normally an in-situ test.
    - на оправкеcheck on mandrel
    - на правильность формы и взаимного расположения поверхностей (детали)test for truth
    сюда относятся проверки на (не)плоскостность, (не)перпендикулярность, (не)параллельность, овальность и на правильность совмещения отверстий. — the methods for testing for form and alignment are used to check the flatness, squareness, angular relationship or parallelism of the part surfaces, the alignment of holes or the true circularity of round parts.
    - на пробой изоляцииinsulation breakdown test
    - на работоспособность (для подтверждения нормальной работы изделия) — operational test. the procedure required to ascertain only that a system or unit is operable.
    - на работоспособность (для подтверждения эксплуатационных характеристик) — operation test. то demonstrate the engine operational characteristics.
    - (реакции двигателя) на сброс газаdeceleration test
    - на слухlistening test
    перебои в работе двигателя могут определяться проверкой на слух, — listening test is employed to determine the engine rough operation.
    - на соответствие техническим условиямfunctional test
    проверка, проводимая с целью подтверждения, что система или агрегат работает в соответствии с минимально допустимыми ту. — the procedure required to ascertain that а system or unit is functioning in all aspects in accordance with minimum acceptable design specifications.
    - на стоянке — ramp check /test, inspection/

    simple test module provides rapid ramp check.
    - на утечку (герметичность)leak-test
    - на утечку мыльной пенойleak-test with soap suds арplied

    coat the pipe with soap suds to detect leakage.
    - наличия электрической цепи от...до... — check of electrical circuit between...and...for continuity
    - нивелировки (заклинения) неподвижных поверхностей самолетаcheck of rigging of fixed surfaces
    - огнетушителей (без разряда)fire extinguisher test (firex
    нажать кнопку проверка огнетушителей и в этом случае должны загораться лампы 1-я очередь и 2-я очередь срабатывания. — press the firex test button and all main and altn lights illuminate on fire extinguisher test panel.
    -, перекрестная (напр., всех аналогичных приборов) — crosscheck (хснеск) crosscheck the three altimeters.
    -, периодическая — periodic check
    - пиропатронов (противопожарной системы) — squib test. repeat procedure with squib test switch in aft position.
    - плоскостности детали на контрольной плитеcheck for flatness of a part surface against the face of a surface plate
    для проведения данной проверки на поверхность кантрольной плиты наносится краска (берлинская лазурь), затем чистая проверяемая поверхность прижимается к контрольной плите. плоскостность проверяемой поверхности, оценивается no наличию отпечатков краски (на выступающих участках). — то make the test, smear the face of the surface plate with marking (consisting of prussian blue or redlead with oil), then wipe clean the sruface to be checked and rub it lightly on the surface plate. the truth of the surface can be estimated by the appearance of the transferred marking.
    -, повторная — recheck
    - под током /напряжением/ (оборудования, системы) — test /check/ of equipment energized, alive (equipment) test
    - по налетуcheck by flight hour(s)
    -по налету, регламентная — periodic /scheduled/ maintenance cheek by flight hour(s)
    -, послемонтажная — post-installation check
    -, послеполетная — post-flight check
    - по состоянию (по мере надобности)оn-condition check (ос)
    профилактическое техническое обслуживание (контроль качества ремонта), выполняемое в виде периодических осмотров, проверок (или испытаний изделия (агрегата), на обнаружение механических дефектов (в доступных пределах) для определения допустимости дальнейшей эксппуатации изделия (до следующей проверки по состоянию). — а failure preventive primary maintenance (overhaul control) process which requires that the item be periodically inspected, checked or tested against some appropriate physical standards (wear or deterioration limits) to determine whether the item can continue its service (for another ос check interval).
    - по техническому состояниюоn-condition check
    - по форме "а" ("в", "с"), регламентная (периодиче — scheduled (periodic) "а" ("в", "с") check
    - правильности ввода данных — data entry /insertion/ verification
    -, предварительная — preliminary check
    -, предвзлетная (по контрольной карте) — pre-takeoff check, before-takeoff check
    -, предполетная — pre-flight check
    -, предпосадочная (по контрольной карте) — pre-landing check, beforelanding check
    -, предстартовая — prestart procedure
    - приемистости (двигателя)acceleration test
    - прилегания поверхностей на краску (берлинскую лазурь) — check of the surfaces for close contacting indicated by continuity of (prussian blue) marking transferred
    -, принудительная (вводимая вручную) — manually initiated /induced/ test /check/
    - противообледенительной системы (надпись)anti-ice test
    - противопожарной системы (надпись)firex test
    - работоспособностиoperational test
    - работыoperational test
    - радиального биения (рабочего колеса турбины (на оправке) — check of eccentricity /concentricity/ of turbine wheel (on mandrel)
    -, регламентная — scheduled maintenance check
    проверки самолета, его систем и агрегатов в указанные сроки. — those manufacturer recommended check and inspections of the aircraft, its systems and units dictated by the time limits.
    - самолетов парка, выборочная — sampling inspection of fleet
    "- сигнальных ламп" (надпись) — lamp test
    - системыsystem test (sys tst)
    - системы сигнализации пожаpafire warning) test
    "- системы сигн. пож. в otc. дв. (надпись) — eng compt fire warn test
    -, совместная (проводимая поставщиком и покупателем) — conjoint check, check or test conjointly conducted (by supplier and buyer)
    - соконусности несущего винта (вертолета)rotor blade tracking test
    - сопротивления изоляцииinsulation-resistance test

    test for measuring ohmic resistance of insulation.
    - с помощью встроенного контроляbuilt-in test
    - с (к-л.) пульта (или наборного поля) — test /check/ via /from/ сапtrol panel (or keyboard)
    -, стартовая — on line test
    -, стендовая — bench test
    -, стендовая (испытание) — bench check/test/
    - технического состояния — operational status check, check for condition
    -, транзитная — transit check
    план транзитного полета включает транзитную проверку. — the transit time schedule includes transit check.
    -, тщательная — thorough check
    -, функциональная — functional test
    - электрической прочности (изоляции)(insulation) voltage-withstand test
    проверка способности изоляции выдерживать (повышеннoe против нормы) напряжение. — application of voltage (higher than rated) for determining the adequancy of insulation materials against breakdown.
    - элементов конструкции (ла), выборочная — structural sampling test
    - эффективности системы охлаждения (двигателя и редуктора вертолета) при взлете (висении, наборе высоты, снижении) — takeoff (hovering, climb, descent) cooling test
    'включение проверки' (надпись)test on
    причина п. — reason for check /test/
    производить п. по 3, пп. a,6 — test the unit according to requirements of para. 3 (a, b)

    Русско-английский сборник авиационно-технических терминов > проверка

  • 43 accountability concept

    Fin
    management accounting presents information measuring the achievement of the objectives of an organization and appraising the conduct of its internal affairs in that process. In order that further action can be taken, based on this information, it is necessary at all times to identify the responsibilities and key results of individuals within the organization.

    The ultimate business dictionary > accountability concept

  • 44 social audit

    Gen Mgt
    a process for evaluating, reporting on, and improving an organization’s performance and behavior, and for measuring its effects on society. The social audit can be used to produce a measure of the social responsibility of an organization. It takes into account any internal code of conduct as well as the views of all stakeholders and draws on best practice factors of total quality management and human resource development. Like internal auditing, social auditing requires an organization to identify what it is seeking to achieve, who the stakeholders are, and how it wants to measure performance.

    The ultimate business dictionary > social audit

  • 45 stocktaking

    Ops
    the process of measuring the quantities of stock held by an organization. Stock, or inventory, can be held both in stores and within the processes of the operation. Better materials management and inventory systems have made annual stocktaking less important.

    The ultimate business dictionary > stocktaking

  • 46 total cost of ownership

    Gen Mgt
    a structured approach to calculating the costs associated with buying and using a product or service. Total cost of ownership takes the purchase cost of an item into account but also considers related costs such as ordering, delivery, subsequent usage and maintenance, supplier costs, and after-delivery costs. Originally designed as a process for measuring IT expense after implementation, total cost of ownership considers only financial expenses and excludes any cost-benefit analysis.
    Abbr. TCO

    The ultimate business dictionary > total cost of ownership

  • 47 Halske, Johann Georg

    [br]
    b. 30 July 1814 Hamburg, Germany
    d. 18 March 1890 Berlin, Germany
    [br]
    German engineer who introduced precision methods into the manufacture of electrical equipment; co-founder of Siemens \& Halske.
    [br]
    Halske moved to Berlin when he was a young man, and in 1844 was working for the university, at first independently and then jointly with F. Bötticher, developing and building electric medical appliances. In 1845 he met Werner von Siemens and together they became founder members of the Berlin Physics Society. It was in Halske's workshop that Siemens, assisted by the skill of the former, was able to work out his inventions in telegraphy. In 1847 the two men entered into partnership to manufacture telegraph equipment, laying the foundations of the successful firm of Siemens \& Halske. At the outset, before Werner von Siemens gave up his army career, Halske acted as the sole manager of the firm and was also involved in testing the products. Inventions they developed included electric measuring instruments and railway signalling equipment, and they installed many telegraph lines, notably those for the Russian Government. When gutta-percha became available on the market, the two men soon developed an extrusion process for applying this new material to copper conductors. To the disappointment of Halske, who was opposed to mass production, the firm introduced series production and piece wages in 1857. The expansion of the business, particularly into submarine cable laying, caused some anxiety to Halske, who left the firm on amicable terms in 1867. He then worked for a few years developing the Arts and Crafts Museum in Berlin and became a town councillor.
    [br]
    Further Reading
    S. von Weihr and H.Götzeler, 1983, The Siemens Company. Its Historical Role in the Progress of Electrical Engineering 1847–1983, Berlin (provides a full account).
    Neue Deutsche Biographie, 1966, Vol. 7, Berlin, pp. 572–3.
    S.von Weiher, 1972–3, "The Siemens brothers, pioneers of the electrical age in Europe", Transactions of the Newcomen Society 45:1–11.
    GW

    Biographical history of technology > Halske, Johann Georg

  • 48 Johnson, Eldridge Reeves

    SUBJECT AREA: Recording
    [br]
    b. 18 February 1867 Wilmington, Delaware, USA
    d. 14 November 1945 Moorestown, New Jersey, USA
    [br]
    American industrialist, founder and owner of the Victor Talking Machine Company; developer of many basic constructions in mechanical sound recording and the reproduction and manufacture of gramophone records.
    [br]
    He graduated from the Dover Academy (Delaware) in 1882 and was apprenticed in a machine-repair firm in Philadelphia and studied in evening classes at the Spring Garden Institute. In 1888 he took employment in a small Philadelphia machine shop owned by Andrew Scull, specializing in repair and bookbinding machinery. After travels in the western part of the US, in 1891 he became a partner in Scull \& Johnson, Manufacturing Machinists, and established a further company, the New Jersey Wire Stitching Machine Company. He bought out Andrew Scull's interest in October 1894 (the last instalment being paid in 1897) and became an independent general machinist. In 1896 he had perfected a spring motor for the Berliner flat-disc gramophone, and he started experimenting with a more direct method of recording in a spiral groove: that of cutting in wax. Co-operation with Berliner eventually led to the incorporation of the Victor Talking Machine Company in 1901. The innumerable court cases stemming from the fact that so many patents for various elements in sound recording and reproduction were in very many hands were brought to an end in 1903 when Johnson was material in establishing cross-licencing agreements between Victor, Columbia Graphophone and Edison to create what is known as a patent pool. Early on, Johnson had a thorough experience in all matters concerning the development and manufacture of both gramophones and records. He made and patented many major contributions in all these fields, and his approach was very business-like in that the contribution to cost of each part or process was always a decisive factor in his designs. This attitude was material in his consulting work for the sister company, the Gramophone Company, in London before it set up its own factories in 1910. He had quickly learned the advantages of advertising and of providing customers with durable equipment and records. This motivation was so strong that Johnson set up a research programme for determining the cause of wear in records. It turned out to depend on groove profile, and from 1911 one particular profile was adhered to and processes for transforming the grooves of valuable earlier records were developed. Without precise measuring instruments, he used the durability as the determining factor. Johnson withdrew more and more to the role of manager, and the Victor Talking Machine Company gained such a position in the market that the US anti-trust legislation was used against it. However, a generation change in the Board of Directors and certain erroneous decisions as to product line started a decline, and in February 1926 Johnson withdrew on extended sick leave: these changes led to the eventual sale of Victor. However, Victor survived due to the advent of radio and the electrification of replay equipment and became a part of Radio Corporation of America. In retirement Johnson took up various activities in the arts and sciences and financially supported several projects; his private yacht was used in 1933 in work with the Smithsonian Institution on a deep-sea hydrographie and fauna-collecting expedition near Puerto Rico.
    [br]
    Bibliography
    Johnson's patents were many, and some were fundamental to the development of the gramophone, such as: US patent no. 650,843 (in particular a recording lathe); US patent nos. 655,556, 655,556 and 679,896 (soundboxes); US patent no. 681,918 (making the original conductive for electroplating); US patent no. 739,318 (shellac record with paper label).
    Further Reading
    Mrs E.R.Johnson, 1913, "Eldridge Reeves Johnson (1867–1945): Industrial pioneer", manuscript (an account of his early experience).
    E.Hutto, Jr, "Emile Berliner, Eldridge Johnson, and the Victor Talking Machine Company", Journal of AES 25(10/11):666–73 (a good but brief account based on company information).
    E.R.Fenimore Johnson, 1974, His Master's Voice was Eldridge R.Johnson, Milford, Del.
    (a very personal biography by his only son).
    GB-N

    Biographical history of technology > Johnson, Eldridge Reeves

  • 49 Lovelock, James Ephraim

    [br]
    b. 26 July 1919 Brixton, London, England
    [br]
    English biologist and philosopher, inventor of the microwave oven and electron capture detector.
    [br]
    Lovelock was brought up in Brixton in modest circumstances. At the age of 4 he was given a toy electrical set, which first turned his attention towards the study of science. From the Strand School, Brixton, he went on to the universities of Manchester and London, and after graduating in science, in 1941 he joined the National Institute for Medical Research, Mill Hill, as a staff scientist, remaining there for twenty years. During the early 1950s, he and his colleagues were engaged in research into freezing live animals and bringing them back to life by heating: Lovelock was struck by the intense pain this process caused the animals, and he sought a more humane method. He tried diathermy or internal heating through the effect of a continuous wave magnetron borrowed from the Navy. He found that the animals were brought back to life painlessly, and impressed with his success he tried baking a potato for his lunch in the apparatus and found that it cooked amazingly quickly compared with the one hour normally needed in an ordinary oven. Lovelock had invented the microwave oven, but its commercial possibilities were not at first realized.
    In the late 1950s he invented the electron capture detector, which proved to be more sensitive than any other analytical equipment in detecting and measuring toxic substances. The apparatus therefore had obvious uses in testing the quality of the environment and so offered a tremendous boost to the "green" movement. In 1961 he was invited to joint the US National Aeronautics and Space Administration (NASA) to employ the apparatus in an attempt to detect life in space.
    In the early 1970s Lovelock relinquished his biological work in order to devote his attention to philosophical matters, specifically to develop his theory of the Universe, now widely celebrated as the "Gaia theory". In this controversial theory, Lovelock regards our planet and all its living beings, including humans, as a single living organism.
    [br]
    Principal Honours and Distinctions
    CBE 1990. FRS 1974. Many academic awards and honorary degrees. Visiting Professor, University of Reading 1967–90.
    Bibliography
    1979, Gaia.
    1983, The Great Extinction.
    1988, The Ages of Gaia.
    1991, Gaia: The Practical Science of Planetary Medicine.
    LRD

    Biographical history of technology > Lovelock, James Ephraim

  • 50 Wedgwood, Josiah

    [br]
    baptized 12 July 1730 Burslem, Staffordshire, England
    d. 3 January 1795 Etruria Hall, Staffordshire, England
    [br]
    English potter and man of science.
    [br]
    Wedgwood came from prolific farming stock who, in the seventeenth century, had turned to pot-making. At the age of 9 his education was brought to an end by his father's death and he was set to work in one of the family potteries. Two years later an attack of smallpox left him with a weakness in his right knee which prevented him from working the potter's wheel. This forced his attention to other aspects of the process, such as design and modelling. He was apprenticed to his brother Thomas in 1744, and in 1752 was in partnership with Thomas Whieldon, a leading Staffordshire potter, until probably the first half of 1759, when he became a master potter and set up in business on his own account at Ivy House Works in Burslem.
    Wedgwood was then able to exercise to the full his determination to improve the quality of his ware. This he achieved by careful attention to all aspects of the work: artistic judgement of form and decoration; chemical study of the materials; and intelligent management of manufacturing processes. For example, to achieve greater control over firing conditions, he invented a pyrometer, a temperature-measuring device by which the shrinkage of prepared clay cylinders in the furnace gave an indication of the temperature. Wedgwood was the first potter to employ steam power, installing a Boulton \& Watt engine for crushing and other operations in 1782. Beyond the confines of his works, Wedgwood concerned himself in local issues such as improvements to the road and canal systems to facilitate transport of raw materials and products.
    During the first ten years, Wedgwood steadily improved the quality of his cream ware, known as "Queen's ware" after a set of ware was presented to Queen Charlotte in 1762. The business prospered and his reputation grew. In 1766 he was able to purchase an estate on which he built new works, a mansion and a village to which he gave the name Etruria. Four years after the Etruria works were opened in 1769, Wedgwood began experimenting with a barium compound combined in a fine-textured base allied to a true porcelain. The result was Wedgwood's most original and distinctive ware similar to jasper, made in a wide variety of forms.
    Wedgwood had many followers and imitators but the merit of initiating and carrying through a large-scale technical and artistic development of English pottery belongs to Wedgwood.
    [br]
    Principal Honours and Distinctions
    FRS 1783.
    Bibliography
    Wedgwood contributed five papers to the Philosophical Transactions of the Royal Society, two in 1783 and 1790 on chemical subjects and three in 1782, 1784 and 1786 on his pyrometer.
    Further Reading
    Meteyard, 1865, Life of Josiah Wedgwood, London (biography).
    A.Burton, 1976, Josiah Wedgwood: Biography, London: André Deutsch (a very readable account).
    LRD

    Biographical history of technology > Wedgwood, Josiah

  • 51 Wollaston, William Hyde

    SUBJECT AREA: Metallurgy
    [br]
    b. 6 August 1766 East Dereham, Norfolk, England
    d. 22 December 1828 London, England
    [br]
    English chemist and metallurgist who discovered palladium and rhodium, pioneer in the fabrication of platinum.
    [br]
    Wollaston qualified in medicine at Cambridge University but gave up his practice in 1800 to devote himself to chemistry and metallurgy, funded from the profits from making malleable platinum. In partnership with Smithson Tennant, a friend from his Cambridge days, he worked on the extraction of platinum by dissolving it in aqua regia. In 1802 he found that in addition to platinum the solution contained a new metal, which he named palladium. Two years later he identified another new metal, rhodium.
    Wollaston developed a method of forming platinum by means of powder metallurgy and was the first to produce malleable and ductile platinum on a commercial scale. He produced platinum vessels for sulphuric acid manufacture and scientific apparatus such as crucibles. He devised an elegant method for forming fine platinum wire. He also applied his inventive talents to improving scientific apparatus, including the sextant and microscope and a reflecting goniometer for measuring crystal angles. In 1807 he was appointed Joint Secretary of the Royal Society with Sir Humphry Davy, which entailed a heavy workload and required them to referee all the papers submitted to the Society for publication.
    Wollaston's output of platinum began to decline after 1822. Due to ill health he ceased business operations in 1828 and at last made public the details of his secret platinum fabrication process. It was fully described in the Bakerian Lecture he delivered to the Royal Society on 28 November 1828, shortly before his death.
    [br]
    Principal Honours and Distinctions
    FRS 1793.
    Bibliography
    His scientific papers were published in various journals, nearly all listed in the Royal Society Catalogue of Scientific Papers.
    Further Reading
    There is no good general biography, the best general account being the entry in
    Dictionary of Scientific Biography.
    D.McDonald, 1960, A History of Platinum from the Earliest Times to the Eighteen- Eighties, London (provides a good discussion of his work on platinum).
    M.E.Weeks, 1939, "The discovery of the elements", Journal of Chemical Education: 184–5.
    ASD

    Biographical history of technology > Wollaston, William Hyde

  • 52 Messprozess

    m
    process of measuring

    Deutsch-Englisches Wörterbuch > Messprozess

  • 53 Messverfahren

    n
    1. measurement process
    2. measuring system

    Deutsch-Englisches Wörterbuch > Messverfahren

  • 54 приемы мониторинга

    1. monitoring technique

     

    приемы мониторинга

    [ http://www.eionet.europa.eu/gemet/alphabetic?langcode=en]

    EN

    monitoring technique
    Techniques employed in the process of checking, observing and measuring events, processes or physical, chemical, biological and environmental phenomena. (Source: ZINZANa / DUNSTEa)
    [http://www.eionet.europa.eu/gemet/alphabetic?langcode=en]

    Тематики

    EN

    DE

    FR

    Русско-английский словарь нормативно-технической терминологии > приемы мониторинга

См. также в других словарях:

  • Measuring — Meas ur*ing, a. Used in, or adapted for, ascertaining measurements, or dividing by measure. [1913 Webster] {Measuring faucet}, a faucet which permits only a given quantity of liquid to pass each time it is opened, or one by means of which the… …   The Collaborative International Dictionary of English

  • Measuring faucet — Measuring Meas ur*ing, a. Used in, or adapted for, ascertaining measurements, or dividing by measure. [1913 Webster] {Measuring faucet}, a faucet which permits only a given quantity of liquid to pass each time it is opened, or one by means of… …   The Collaborative International Dictionary of English

  • Measuring worm — Measuring Meas ur*ing, a. Used in, or adapted for, ascertaining measurements, or dividing by measure. [1913 Webster] {Measuring faucet}, a faucet which permits only a given quantity of liquid to pass each time it is opened, or one by means of… …   The Collaborative International Dictionary of English

  • Process mining — techniques allow for the analysis of business processes based on event logs. They are often used when no formal description of the process can be obtained by other means, or when the quality of an existing documentation is questionable. For… …   Wikipedia

  • Measuring instrument — Captain Nemo and Professor Aronnax contemplating measuring instruments in Twenty Thousand Leagues Under the Sea …   Wikipedia

  • Measuring network throughput — Throughput of a network can be measured using various tools available on different platforms. This page explains the theory behind what these tools set out to measure and the issues regarding these measurements. Contents 1 Reasons for measuring… …   Wikipedia

  • Process capability — A PROCESS is a unique combination of tools, materials, methods, and people engaged in producing a measurable output; for example a manufacturing line for machine parts. All processes have inherent statistical variability which can be evaluated by …   Wikipedia

  • Measuring principle — A sender emits a wave which is scattered by an object. The backscattered part of the wave reaches a receiver: The measurement principle of sonar and radar devices …   Wikipedia

  • measuring — noun the act or process of assigning numbers to phenomena according to a rule (Freq. 2) the measurements were carefully done his mental measurings proved remarkably accurate • Syn: ↑measurement, ↑measure, ↑mensuration • Derivationally relate …   Useful english dictionary

  • Nova Measuring Instruments — Ltd. Type Public Traded as NASDAQ: NVMI TASE: NVMI …   Wikipedia

  • Business process orientation — The concept of business process orientation (BPO) is based upon the work of Deming (Walton, 1996), Porter (1985), Davenport and Short (1990), Hammer (1993, 1996 and 1999), Grover et al (1995), and Coombs and Hull (1996). This body of work… …   Wikipedia

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»