-
141 Vermuyden, Sir Cornelius
SUBJECT AREA: Civil engineering[br]b. c. 1590 St Maartensdijk, Zeeland, the Netherlandsd. 4 February 1656 probably London, England[br]Dutch/British civil engineer responsible for many of the drainage and flood-protection schemes in low-lying areas of England in the seventeenth century.[br]At the beginning of the seventeenth century, several wealthy men in England joined forces as "adventurers" to put their money into land ventures. One such group was responsible for the draining of the Fens. The first need was to find engineers who were versed in the processes of land drainage, particularly when that land was at, or below, sea level. It was natural, therefore, to turn to the Netherlands to find these skilled men. Joachim Liens was one of the first of the Dutch engineers to go to England, and he started work on the Great Level; however, no real progress was made until 1621, when Cornelius Vermuyden was brought to England to assist in the work.Vermuyden had grown up in a district where he could see for himself the techniques of embanking and reclaiming land from the sea. He acquired a reputation of expertise in this field, and by 1621 his fame had spread to England. In that year the Thames had flooded and breached its banks near Havering and Dagenham in Essex. Vermuyden was commissioned to repair the breach and drain neighbouring marshland, with what he claimed as complete success. The Commissioners of Sewers for Essex disputed this claim and whthheld his fee, but King Charles I granted him a portion of the reclaimed land as compensation.In 1626 Vermuyden carried out his first scheme for drainage works as a consultant. This was the drainage of Hatfield Chase in South Yorkshire. Charles I was, in fact, Vermuyden's employer in the drainage of the Chase, and the work was undertaken as a means of raising additional rents for the Royal Exchequer. Vermuyden was himself an "adventurer" in the undertaking, putting capital into the venture and receiving the title to a considerable proportion of the drained lands. One of the important elements of his drainage designs was the principal of "washes", which were flat areas between the protective dykes and the rivers to carry flood waters, to prevent them spreading on to nearby land. Vermuyden faced bitter opposition from those whose livelihoods depended on the marshlands and who resorted to sabotage of the embankments and violence against his imported Dutch workmen to defend their rights. The work could not be completed until arbiters had ruled out on the respective rights of the parties involved. Disagreements and criticism of his engineering practices continued and he gave up his interest in Hatfield Chase. The Hatfield Chase undertaking was not a great success, although the land is now rich farmland around the river Don in Doncaster. However, the involved financial and land-ownership arrangements were the key to the granting of a knighthood to Cornelius Vermuyden in January 1628, and in 1630 he purchased 4,000 acres of low-lying land on Sedgemoor in Somerset.In 1629 Vermuyden embarked on his most important work, that of draining the Great Level in the fenlands of East Anglia. Francis Russell, 4th Earl of Bedford, was given charge of the work, with Vermuyden as Engineer; in this venture they were speculators and partners and were recompensed by a grant of land. The area which contains the Cambridgeshire tributaries of the Great Ouse were subject to severe and usually annual flooding. The works to contain the rivers in their flood period were important. Whilst the rivers were contained with the enclosed flood plain, the land beyond became highly sought-after because of the quality of the soil. The fourteen "adventurers" who eventually came into partnership with the Earl of Bedford and Vermuyden were the financiers of the scheme and also received land in accordance with their input into the scheme. In 1637 the work was claimed to be complete, but this was disputed, with Vermuyden defending himself against criticism in a pamphlet entitled Discourse Touching the Great Fennes (1638; 1642, London). In fact, much remained to be done, and after an interruption due to the Civil War the scheme was finished in 1652. Whilst the process of the Great Level works had closely involved the King, Oliver Cromwell was equally concerned over the success of the scheme. By 1655 Cornelius Vermuyden had ceased to have anything to do with the Great Level. At that stage he was asked to account for large sums granted to him to expedite the work but was unable to do so; most of his assets were seized to cover the deficiency, and from then on he subsided into obscurity and poverty.While Cornelius Vermuyden, as a Dutchman, was well versed in the drainage needs of his own country, he developed his skills as a hydraulic engineer in England and drained acres of derelict flooded land.[br]Principal Honours and DistinctionsKnighted 1628.Further ReadingL.E.Harris, 1953, Vermuyden and the Fens, London: Cleaver Hume Press. J.Korthals-Altes, 1977, Sir Cornelius Vermuyden: The Lifework of a Great Anglo-Dutchman in Land-Reclamation and Drainage, New York: Alto Press.KM / LRDBiographical history of technology > Vermuyden, Sir Cornelius
См. также в других словарях:
Input — is the term denoting either an entrance or changes which are inserted into a system and which activate/modify a process. It is an abstract concept, used in the modeling, system(s) design and system(s) exploitation. It is usually connected with… … Wikipedia
Process (engineering) — Process engineering refers to engineering which is collaborative and concerned with completing a project as a whole.emiconductor devicesIn the electronics industry, especially for those building ICs, some technologists can be referred to as… … Wikipedia
Process control — is a statistics and engineering discipline that deals with architectures, mechanisms, and algorithms for controlling the output of a specific process. See also control theory.For example, heating up the temperature in a room is a process that has … Wikipedia
Process theory — is a commonly used form of scientific research study in which events or occurrences are said to be the result of certain input states leading to a certain outcome (output) state, following a set process.Process theory holds that if an outcome is… … Wikipedia
input/output — UK US adjective (ABBREVIATION I/O) ► IT relating to the process of receiving and sending information to and from a computer or the pieces of equipment involved in the process: » Some input/output controllers also offer Ethernet connectivity… … Financial and business terms
Process architecture — is the structural design of general process systems and applies to fields such as computers (software, hardware, networks, etc.), business processes (enterprise architecture, policy and procedures, logistics, project management, etc.), and any… … Wikipedia
Process design (chemical engineering) — Process design is the design of processes for desired physical and/or chemical transformation of materials. Process design is central to chemical engineering and it can be considered to be the summit of chemical engineering, bringing together all … Wikipedia
Process isolation — is a set of different hardware and software technologies[1] designed to protect each operating system process from other processes. It does so by preventing process A from writing into process B. Process isolation can be implemented by with… … Wikipedia
input — ► NOUN 1) what is put or taken in or operated on by any process or system. 2) the action or process of putting or feeding something in. 3) a person s contribution. 4) energy supplied to a device or system; an electrical signal. 5) Electronics a… … English terms dictionary
Input enhancement — is a concept in second language acquisition, coined by Michael Sharwood Smith, that is commonly used to signal methods that an instructor uses to make selected features of a second language more salient for learners in such a way as to facilitate … Wikipedia
input — [in′poot΄] n. 1. the act of putting in 2. what is put in; specif., a) the amount of money, material, effort, etc. put into a project or process; investment b) electric current, voltage, or power put into a circuit, machine, etc. c) data or… … English World dictionary