-
121 раскатное устройство
1. полигр. inker unit2. эл. reeling-out unitРусско-английский большой базовый словарь > раскатное устройство
-
122 средство производства
Русско-английский большой базовый словарь > средство производства
-
123 средства производства
1. capital goods2. investment goods3. means of production4. producers goodsРусско-английский большой базовый словарь > средства производства
-
124 управление
1. с. management2. с. control3. с. steering, handlingСинонимический ряд:правление (сущ.) правление -
125 блок
unit, block;
- (агрегат) — unit
- (ролик, тросовый) — pulley
- (такелажный, погрузочный) — pulley block
- а, д, е (бытовых приборов) — unit а, d, е
- аварийных и предупреждающих сигналов (бап) — warning/caution signal unit
- автоматики (ба, инерц. сист.) — automatic control unit
- автоматического триммирования (бат), автотриммирования — autotrim control unit
-, антенно-электронный — antenna/electronic unit
- баланса (электрического баланса, системы сп-50) — balance control unit
-, балансировки (бб) — stable platform gyro bias drift
дпя компенсации систематической составляющей собственного дрейфа гироскопов гироплатформы по трем осям. — compensator
- ввода начальных данных (пв, инерциальной системы) — control display unit (cdu)
- воздушных параметров (бвп) — air data unit
-, "врубной" — plug-in unit
- bcmb (системы cbc, вычислитепь скорости, чиспа м и высоты) — air data computer
-, вычислительно-усилительный (вуб, инерциальной системы) — computer-amplifier unit
- гиромагнитной коррекции (бгмк) — gyro/mag monitor
-, гидравлический — hydraulic unit (pack)
- датчиков угловых скоростей — rate gyro unit /group/
- демпфирующих гироскопов — rate gyro unit
- дистанционной (дискретной) коррекции (бдк) — navigation computer correction selector
задатчик, устанавливаемый на приборной доске и служащий для компенсации систематической погрешности курсовой системы или цепи счисления пути в нав. вычислитепь (нву) (рис. 69). — selector is installed on сopilot's instrument panel, and is used to compensate systematic errors оf compass system or а/с position reckoning circuit in navigation computer.
- добавочного сопротивления (для ограничения токов в цепи якоря электродвигателя.) — additional resistance unit
- заданной информации по траектории полета — flight path data storage unit (fdsu)
- задатчика скорости (приборной) — ias selector unit
- задающий (в сист. управления) — master unit
- зажигания — ignition unit
-, законченный — definite-purpose unit
- защиты двигателя (бзд) — engine protection unit
- защиты и управления (бзу) — protection and control unit
-, инерциально-навигационный (с гироплатформой) — inertial navigation unit (inu)
- искрогашения (рад.) — spark quench unit
-, исполнительный — actuating unit
- камеры сгорания — combustion section
- кислородного питания, переносной — portable oxygen unit
- кислородного питания (бкп), переносной (аварийный баллон с редуктором и манометром) — (emergency) portable /walkaround/ oxygen cylinder
- кислородного питания (бкп), стационарный — oxygen supply cylinder (unit)
- кислородного оборудования (бко состоит из укладочного блока и кислородной маски) — oxygen unit
- коммутации — switching unit
- коммутации навигационного оборудования (бкн) — navigation equipment switching unit
- коммутации шин (автомат переключения шин) — bus tie relay (unit)
-, конструктивно-законченный — definite-purpose unit
- контроля — monitor
- контроля (переносного типа "тестер") — tester
- контроля исправности (системы) — (system) integrity monitor /monitoring unit/
- контроля кренов (бкк) (сравнивает углы крена и тангажа, индицируемые на обоих пкп и измеряемые резервной курсовертикалью, и при необходимости вырабатывает сигнал отказа.) — attitude monitor (атт mntr)
- коррекции и связи (бкс, инерциальной навигационной системы) — coupler
- кресел (пассажирских) — seat unit
- кресел, двухместный — double-place seat unit
- кресел, трехместный — triple-place seat unit
-, легкосъемный (со штырьевым разъемом) — plug-and-socket quick release unit
- масляных насосов (маслоагрегат) — oil pump block
-, модульный — module
- на твердых схемах (электронный) — solid state circuitry unit (all-solid state circuitry is used in many key chassis areas.)
- наведения (бн) — guidance unit
в системе сау для управления механизмом триммерного эффекта продольного канала. — directs an aircraft with referеncе 'to selection of a flight path.
-, натяжной (для регулирования натяжения тросовой проводки) — cable tensioning pulley
-, натяжной (оттяжной, тросовой проводки) — idle pulley block
- неуправляемых ракет (подвесной) — rocket pod
- ограничения режимов (автопилота, бор) — mode limiter
- опасной высоты (автопилота,бов) — preselected radio altitude unit
- оперативной памяти (устройство) — random-access memory (ram) ram output data is transferred on the memory bus.
- (иммитации) отказов (системы сау) — failure simulator
- отключения генератора (бог) — generator cut-out unit
-, оттяжной (тросовой проводки) — idle pulley block
- очередности (очереди работы озу) — queue control block (а block that is used to regulate the sequential use of a programmer.)
- памяти (внешней) — storage unit
- памяти воздушных сигналов — air data storage unit
- передачи данных — data transmitter
-, перекидной (роликовый) — guide pulley block
- переключения потребителей (бпп) — load monitor relay (unit) (lmr)
- переключения шин (автомат) — bus tie relay unit (btr)
- перекрестных связей (бпс) — cross-coupling unit
- питания — power unit
- питания потребителей (бпп) — power unit
- пластин (аккумулятора), отрицательный — negative plate group
- пластин (аккумулятора), положительный — positive plate group
-, погрузочный (тросовой проводки с лебедкой) — (cargo) loading /handling/ pulley block
- подрыва (сро) — destructor (unit)
- подшипника, внутренний — bearing inner race and cage assembly
-, полностью собранный на транзисторах — all-transistorized unit
- полупроводниковых приборов(бпп) — semiconductor module
- постоянной памяти (устройство) — read-only memory (rom) rom output data is transferred on the memory bus.
- постоянной памяти (внешнее устройство) — permanent storage
- преобразования (системы свс) — converter
- преобразования сигналов (системы мсрп) — signal conditioning unit
- приема данных — data receiver
- приема и обработки сигналов (навигац.системы "омега") — receiver-processor unit (rpu)
-,приемо-вычислительный (системы "омега") — receiver processor unit (rpu)
-,приемо-процессорный (системы "омега") — receiver processor unit (rpu) contains the circuitry to process the received omega and vlf signals.
-, процессорно-вычислительный (пb, системы "омега") — receiver-processor unit (rpu)
- разовых команд (брк) — event signal unit
- распределения углов (бру, крена, курса, тангажа инерциальной системы) — pitch, roll and heading angular information distributor (used to transfer pitch, roll and heading angular information to respective systems.)
- растормаживания (блок тормоза) — brake retraction mechanism
- реактивных орудий (подвесной) — rocket pod
- регулирования частоты генератора (брч) — generator frequency control unit
- регулировочно-коммутационный (автопилота) — coupler
- речевой информации (ри) — voice warning unit (vwu)
- речевых команд (брк) — voice warding unit (vwu)
- (2-х) роликовый — (twin) pulley block
-,рулевой (рб,автопилота) — servo (unit)
- ручного триммирования — manual trim control unit
- связи — coupling unit, coupler
-, связи аналого-цифровой (ацбс) — analog-digital coupler
служит для преобразования входных данных в цифровой код и цифрового кода в выходные данные. — converts input data into digital code, and then digital code into output signals.
- связи, антенный (системы "омега") — antenna coupler (acu)
- связи низкой частоты доплеровского измерителя скорости и сноса — doppler lf coupler
- связи с антенной — antenna coupler unit
- связи с курсовой системой — compass system coupling unit /coupler/
- связи с радиолокационным оборудованием — radar coupling unit /coupler/
- сигнализации нарушения питания (снп) — power fail relay (unit)
- сигнализации предельных кренов (бспк для включения табло крен лев (прав) велик) — limit bank warn(ing) unit (to operate high l(r) bank annunciators)
- сигналов отказа (бсо) — failure signal unit
- сидений (кресел, двух-трехместный) — (double-, triple-place) seat unit
- скоростных гироскопов — rate gyro unit/group/
- собранный на транзисторах — transistorized unit
- согласования (автопилота) — synchronizer
- согласования (сарпп) — signal conditioning unit
- согласования (сист. высотноскоростных параметров) — synchronizer
- согласования курса (бск, сист. бскв) — heading synchronizer
- согласующих устройств (бсу, системы мсрп) — signal conditioning unit
- сопряжения антенн (системы омега) — antenna coupler unit (acu)
- специализированного питания (бсп, инерциональной системы) — power unit
- сравнения — comparator
- сравнения гировертикалей (бсг) — vertical gyro comparator, vg comparator
- сравнения сигналов компасов — compass signal comparator
- страниц — page block
а normal blank page within a page block (e.g. the back of a fold-out page) shall be identified as follows. pages 823/824 (ata-1oo, 1-1-1, p.2)
- страниц раздела технология обслуживания, включает: обслуживание (стр. 301-400) демонтаж/монтаж (стр. 401-500) регулировка/испытание (стр. 501-600) осмотр/проверка (стр. 601-700) очистка/окраска (стр. 701-800) 1 текущий ремонт (стр. 801-900) — maintenance practices page number blocks are as follows: servicing (pages 301-400) removal/installation (401-500) adjustment/test (501-600) inspection/check (601-700) cleaning/painting (701-800) approved repairs (801-900)
- страниц, стандартный — standard page number block
standard page number blocks to be used for the maintenance manual are as follows:
(напр. описание и работа стр. 1-1oo — description and operation, pages 1 to 100
отыскание неисправности стр. 101-200 и т.д.) — trouble shooting, pages 101-200
maintenance practices, pages 201-300 servicing pages 301-400 (ata-1oo, 2-1-1 p.2)
- суммарного измерения (топливомера (бси) — fuel quantity totalizer
- суммарной сигнализации (топливомера) (бсс) — total fuel indication unit
- (-) схема — block diagram
блок-схемы используются в описательной части руководств для общего ознакомления с работой и соединениями сложной эпектрической или электронной системы (рис. 95). — the block diagram shall be used in the descriptive portion of the manuals to simplify complex circuits to understand the system function and operation.
- (-) схема (подрисуночная надпись, напр. "блоксхема доплеровекого измерителя) — block schematic туре 72 doppler - block schematic
- топливомера (электронный) — fuel quantity unit
- тормоза (колеса) — brake unit
- траекторного управления (бту системы сту) — flight director unit, fd unit
- трансформаторно-выпрямительный — transformer-rectifier unit (tr, tru, t/r;
-, укладочный (для кислородной маски и шланга) — (oxygen mask) container
-, унифицированный (уб для pc) — rocket pod (rkt pod)
- управления — control unit
- управления и индикации (нав. сист. "омега") — control display unit (cdu)
- управления и индикации расстояния до пункта назначения и отклонения от курса — along/across track display controller
- управления сигнализацией — warning system control unit
- усилителя сервопривода крена (бус крена) — aileron servo amplifier (unit)
- усилителя сервопривода тангажа (бус тангажа) — elevator servo amplifier (unit)
- усилителей сервоприводов (бус, автопилота) — servo amplifier unit, autopilot amplifier unit
provides power outputs to drive the control surface servos.
-, усилительный (автопилота) — autopilot amplifier
-, усилительный, крена (тангажа, рыскания) — roll (pitch, yaw) channel amplifier unit
- формирования (сигналов) и контроля — signal conditioning and monitor unit
бфк, формирует сигналы h, m, vпр) и вырабат. сигналы отказа датчиков
-, функционально-законченный — definite-purpose unit
- центровки самолета (сист. топливомера) (бцс) — fuel equalizer
- цилиндров — cylinder block
соединение нескольких цилиндров в общем конструктивном узле
- цилиндров (тормоза колеса) (рис. 32) — cylinder block
силовой узел тормоза, воздействующий при подаче давления на нажимной диск, сжимающий тормозные (вращающиеся и неподвижные) диски, — the two sets of four piston and cylinder assemblies are incorporated in the torque plate of the cylinder block to provide fully dupplicated and independent application of brake.
- чередования фаз (бчф) — phase-sequence (relay) unit
- электроники (бэ, инерц. сист.) — electronic unitРусско-английский сборник авиационно-технических терминов > блок
-
126 competence
Gen Mgt, HRan acquired personal skill that is demonstrated in an employee’s ability to provide a consistently adequate or high level of performance in a specific job function. Competence should be distinguished from competency, although in general usage the terms are used interchangeably. Early attempts to define the qualities of effective managers were based on lists of the personality traits and skills of the ideal manager. This is an input model approach, focusing on the skills that are needed to do the job. These skills are competencies and reflect potential ability to do something. With the advent of scientific management, people turned their attention more to the behavior of effective managers and to the outcomes of successful management. This approach is an output model, in which a manager’s effectiveness is defined in terms of actual achievement. This achievement manifests itself in competences, which demonstrate that somebody has learned to do something well. There tends to be a focus in the United Kingdom on competence, whereas in the United States, the concept of competency is more popular. Competences are used in the workplace in a variety of ways. Training is often competence based, and the U.K. National Vocational Qualification system is based on competence standards. Competences also are used in reward management, for example, in competencebased pay. The assessment of competence is a necessary process for underpinning these initiatives by determining what competences an employee shows. At an organizational level, the idea of core competence is gaining popularity. -
127 Edison, Thomas Alva
SUBJECT AREA: Architecture and building, Automotive engineering, Electricity, Electronics and information technology, Metallurgy, Photography, film and optics, Public utilities, Recording, Telecommunications[br]b. 11 February 1847 Milan, Ohio, USAd. 18 October 1931 Glenmont[br]American inventor and pioneer electrical developer.[br]He was the son of Samuel Edison, who was in the timber business. His schooling was delayed due to scarlet fever until 1855, when he was 8½ years old, but he was an avid reader. By the age of 14 he had a job as a newsboy on the railway from Port Huron to Detroit, a distance of sixty-three miles (101 km). He worked a fourteen-hour day with a stopover of five hours, which he spent in the Detroit Free Library. He also sold sweets on the train and, later, fruit and vegetables, and was soon making a profit of $20 a week. He then started two stores in Port Huron and used a spare freight car as a laboratory. He added a hand-printing press to produce 400 copies weekly of The Grand Trunk Herald, most of which he compiled and edited himself. He set himself to learn telegraphy from the station agent at Mount Clements, whose son he had saved from being run over by a freight car.At the age of 16 he became a telegraphist at Port Huron. In 1863 he became railway telegraphist at the busy Stratford Junction of the Grand Trunk Railroad, arranging a clock with a notched wheel to give the hourly signal which was to prove that he was awake and at his post! He left hurriedly after failing to hold a train which was nearly involved in a head-on collision. He usually worked the night shift, allowing himself time for experiments during the day. His first invention was an arrangement of two Morse registers so that a high-speed input could be decoded at a slower speed. Moving from place to place he held many positions as a telegraphist. In Boston he invented an automatic vote recorder for Congress and patented it, but the idea was rejected. This was the first of a total of 1180 patents that he was to take out during his lifetime. After six years he resigned from the Western Union Company to devote all his time to invention, his next idea being an improved ticker-tape machine for stockbrokers. He developed a duplex telegraphy system, but this was turned down by the Western Union Company. He then moved to New York.Edison found accommodation in the battery room of Law's Gold Reporting Company, sleeping in the cellar, and there his repair of a broken transmitter marked him as someone of special talents. His superior soon resigned, and he was promoted with a salary of $300 a month. Western Union paid him $40,000 for the sole rights on future improvements on the duplex telegraph, and he moved to Ward Street, Newark, New Jersey, where he employed a gathering of specialist engineers. Within a year, he married one of his employees, Mary Stilwell, when she was only 16: a daughter, Marion, was born in 1872, and two sons, Thomas and William, in 1876 and 1879, respectively.He continued to work on the automatic telegraph, a device to send out messages faster than they could be tapped out by hand: that is, over fifty words per minute or so. An earlier machine by Alexander Bain worked at up to 400 words per minute, but was not good over long distances. Edison agreed to work on improving this feature of Bain's machine for the Automatic Telegraph Company (ATC) for $40,000. He improved it to a working speed of 500 words per minute and ran a test between Washington and New York. Hoping to sell their equipment to the Post Office in Britain, ATC sent Edison to England in 1873 to negotiate. A 500-word message was to be sent from Liverpool to London every half-hour for six hours, followed by tests on 2,200 miles (3,540 km) of cable at Greenwich. Only confused results were obtained due to induction in the cable, which lay coiled in a water tank. Edison returned to New York, where he worked on his quadruplex telegraph system, tests of which proved a success between New York and Albany in December 1874. Unfortunately, simultaneous negotiation with Western Union and ATC resulted in a lawsuit.Alexander Graham Bell was granted a patent for a telephone in March 1876 while Edison was still working on the same idea. His improvements allowed the device to operate over a distance of hundreds of miles instead of only a few miles. Tests were carried out over the 106 miles (170 km) between New York and Philadelphia. Edison applied for a patent on the carbon-button transmitter in April 1877, Western Union agreeing to pay him $6,000 a year for the seventeen-year duration of the patent. In these years he was also working on the development of the electric lamp and on a duplicating machine which would make up to 3,000 copies from a stencil. In 1876–7 he moved from Newark to Menlo Park, twenty-four miles (39 km) from New York on the Pennsylvania Railway, near Elizabeth. He had bought a house there around which he built the premises that would become his "inventions factory". It was there that he began the use of his 200- page pocket notebooks, each of which lasted him about two weeks, so prolific were his ideas. When he died he left 3,400 of them filled with notes and sketches.Late in 1877 he applied for a patent for a phonograph which was granted on 19 February 1878, and by the end of the year he had formed a company to manufacture this totally new product. At the time, Edison saw the device primarily as a business aid rather than for entertainment, rather as a dictating machine. In August 1878 he was granted a British patent. In July 1878 he tried to measure the heat from the solar corona at a solar eclipse viewed from Rawlins, Wyoming, but his "tasimeter" was too sensitive.Probably his greatest achievement was "The Subdivision of the Electric Light" or the "glow bulb". He tried many materials for the filament before settling on carbon. He gave a demonstration of electric light by lighting up Menlo Park and inviting the public. Edison was, of course, faced with the problem of inventing and producing all the ancillaries which go to make up the electrical system of generation and distribution-meters, fuses, insulation, switches, cabling—even generators had to be designed and built; everything was new. He started a number of manufacturing companies to produce the various components needed.In 1881 he built the world's largest generator, which weighed 27 tons, to light 1,200 lamps at the Paris Exhibition. It was later moved to England to be used in the world's first central power station with steam engine drive at Holborn Viaduct, London. In September 1882 he started up his Pearl Street Generating Station in New York, which led to a worldwide increase in the application of electric power, particularly for lighting. At the same time as these developments, he built a 1,300yd (1,190m) electric railway at Menlo Park.On 9 August 1884 his wife died of typhoid. Using his telegraphic skills, he proposed to 19-year-old Mina Miller in Morse code while in the company of others on a train. He married her in February 1885 before buying a new house and estate at West Orange, New Jersey, building a new laboratory not far away in the Orange Valley.Edison used direct current which was limited to around 250 volts. Alternating current was largely developed by George Westinghouse and Nicola Tesla, using transformers to step up the current to a higher voltage for long-distance transmission. The use of AC gradually overtook the Edison DC system.In autumn 1888 he patented a form of cinephotography, the kinetoscope, obtaining film-stock from George Eastman. In 1893 he set up the first film studio, which was pivoted so as to catch the sun, with a hinged roof which could be raised. In 1894 kinetoscope parlours with "peep shows" were starting up in cities all over America. Competition came from the Latham Brothers with a screen-projection machine, which Edison answered with his "Vitascope", shown in New York in 1896. This showed pictures with accompanying sound, but there was some difficulty with synchronization. Edison also experimented with captions at this early date.In 1880 he filed a patent for a magnetic ore separator, the first of nearly sixty. He bought up deposits of low-grade iron ore which had been developed in the north of New Jersey. The process was a commercial success until the discovery of iron-rich ore in Minnesota rendered it uneconomic and uncompetitive. In 1898 cement rock was discovered in New Village, west of West Orange. Edison bought the land and started cement manufacture, using kilns twice the normal length and using half as much fuel to heat them as the normal type of kiln. In 1893 he met Henry Ford, who was building his second car, at an Edison convention. This started him on the development of a battery for an electric car on which he made over 9,000 experiments. In 1903 he sold his patent for wireless telegraphy "for a song" to Guglielmo Marconi.In 1910 Edison designed a prefabricated concrete house. In December 1914 fire destroyed three-quarters of the West Orange plant, but it was at once rebuilt, and with the threat of war Edison started to set up his own plants for making all the chemicals that he had previously been buying from Europe, such as carbolic acid, phenol, benzol, aniline dyes, etc. He was appointed President of the Navy Consulting Board, for whom, he said, he made some forty-five inventions, "but they were pigeonholed, every one of them". Thus did Edison find that the Navy did not take kindly to civilian interference.In 1927 he started the Edison Botanic Research Company, founded with similar investment from Ford and Firestone with the object of finding a substitute for overseas-produced rubber. In the first year he tested no fewer than 3,327 possible plants, in the second year, over 1,400, eventually developing a variety of Golden Rod which grew to 14 ft (4.3 m) in height. However, all this effort and money was wasted, due to the discovery of synthetic rubber.In October 1929 he was present at Henry Ford's opening of his Dearborn Museum to celebrate the fiftieth anniversary of the incandescent lamp, including a replica of the Menlo Park laboratory. He was awarded the Congressional Gold Medal and was elected to the American Academy of Sciences. He died in 1931 at his home, Glenmont; throughout the USA, lights were dimmed temporarily on the day of his funeral.[br]Principal Honours and DistinctionsMember of the American Academy of Sciences. Congressional Gold Medal.Further ReadingM.Josephson, 1951, Edison, Eyre \& Spottiswode.R.W.Clark, 1977, Edison, the Man who Made the Future, Macdonald \& Jane.IMcN -
128 Vermuyden, Sir Cornelius
SUBJECT AREA: Civil engineering[br]b. c. 1590 St Maartensdijk, Zeeland, the Netherlandsd. 4 February 1656 probably London, England[br]Dutch/British civil engineer responsible for many of the drainage and flood-protection schemes in low-lying areas of England in the seventeenth century.[br]At the beginning of the seventeenth century, several wealthy men in England joined forces as "adventurers" to put their money into land ventures. One such group was responsible for the draining of the Fens. The first need was to find engineers who were versed in the processes of land drainage, particularly when that land was at, or below, sea level. It was natural, therefore, to turn to the Netherlands to find these skilled men. Joachim Liens was one of the first of the Dutch engineers to go to England, and he started work on the Great Level; however, no real progress was made until 1621, when Cornelius Vermuyden was brought to England to assist in the work.Vermuyden had grown up in a district where he could see for himself the techniques of embanking and reclaiming land from the sea. He acquired a reputation of expertise in this field, and by 1621 his fame had spread to England. In that year the Thames had flooded and breached its banks near Havering and Dagenham in Essex. Vermuyden was commissioned to repair the breach and drain neighbouring marshland, with what he claimed as complete success. The Commissioners of Sewers for Essex disputed this claim and whthheld his fee, but King Charles I granted him a portion of the reclaimed land as compensation.In 1626 Vermuyden carried out his first scheme for drainage works as a consultant. This was the drainage of Hatfield Chase in South Yorkshire. Charles I was, in fact, Vermuyden's employer in the drainage of the Chase, and the work was undertaken as a means of raising additional rents for the Royal Exchequer. Vermuyden was himself an "adventurer" in the undertaking, putting capital into the venture and receiving the title to a considerable proportion of the drained lands. One of the important elements of his drainage designs was the principal of "washes", which were flat areas between the protective dykes and the rivers to carry flood waters, to prevent them spreading on to nearby land. Vermuyden faced bitter opposition from those whose livelihoods depended on the marshlands and who resorted to sabotage of the embankments and violence against his imported Dutch workmen to defend their rights. The work could not be completed until arbiters had ruled out on the respective rights of the parties involved. Disagreements and criticism of his engineering practices continued and he gave up his interest in Hatfield Chase. The Hatfield Chase undertaking was not a great success, although the land is now rich farmland around the river Don in Doncaster. However, the involved financial and land-ownership arrangements were the key to the granting of a knighthood to Cornelius Vermuyden in January 1628, and in 1630 he purchased 4,000 acres of low-lying land on Sedgemoor in Somerset.In 1629 Vermuyden embarked on his most important work, that of draining the Great Level in the fenlands of East Anglia. Francis Russell, 4th Earl of Bedford, was given charge of the work, with Vermuyden as Engineer; in this venture they were speculators and partners and were recompensed by a grant of land. The area which contains the Cambridgeshire tributaries of the Great Ouse were subject to severe and usually annual flooding. The works to contain the rivers in their flood period were important. Whilst the rivers were contained with the enclosed flood plain, the land beyond became highly sought-after because of the quality of the soil. The fourteen "adventurers" who eventually came into partnership with the Earl of Bedford and Vermuyden were the financiers of the scheme and also received land in accordance with their input into the scheme. In 1637 the work was claimed to be complete, but this was disputed, with Vermuyden defending himself against criticism in a pamphlet entitled Discourse Touching the Great Fennes (1638; 1642, London). In fact, much remained to be done, and after an interruption due to the Civil War the scheme was finished in 1652. Whilst the process of the Great Level works had closely involved the King, Oliver Cromwell was equally concerned over the success of the scheme. By 1655 Cornelius Vermuyden had ceased to have anything to do with the Great Level. At that stage he was asked to account for large sums granted to him to expedite the work but was unable to do so; most of his assets were seized to cover the deficiency, and from then on he subsided into obscurity and poverty.While Cornelius Vermuyden, as a Dutchman, was well versed in the drainage needs of his own country, he developed his skills as a hydraulic engineer in England and drained acres of derelict flooded land.[br]Principal Honours and DistinctionsKnighted 1628.Further ReadingL.E.Harris, 1953, Vermuyden and the Fens, London: Cleaver Hume Press. J.Korthals-Altes, 1977, Sir Cornelius Vermuyden: The Lifework of a Great Anglo-Dutchman in Land-Reclamation and Drainage, New York: Alto Press.KM / LRDBiographical history of technology > Vermuyden, Sir Cornelius
См. также в других словарях:
Input — is the term denoting either an entrance or changes which are inserted into a system and which activate/modify a process. It is an abstract concept, used in the modeling, system(s) design and system(s) exploitation. It is usually connected with… … Wikipedia
Process (engineering) — Process engineering refers to engineering which is collaborative and concerned with completing a project as a whole.emiconductor devicesIn the electronics industry, especially for those building ICs, some technologists can be referred to as… … Wikipedia
Process control — is a statistics and engineering discipline that deals with architectures, mechanisms, and algorithms for controlling the output of a specific process. See also control theory.For example, heating up the temperature in a room is a process that has … Wikipedia
Process theory — is a commonly used form of scientific research study in which events or occurrences are said to be the result of certain input states leading to a certain outcome (output) state, following a set process.Process theory holds that if an outcome is… … Wikipedia
input/output — UK US adjective (ABBREVIATION I/O) ► IT relating to the process of receiving and sending information to and from a computer or the pieces of equipment involved in the process: » Some input/output controllers also offer Ethernet connectivity… … Financial and business terms
Process architecture — is the structural design of general process systems and applies to fields such as computers (software, hardware, networks, etc.), business processes (enterprise architecture, policy and procedures, logistics, project management, etc.), and any… … Wikipedia
Process design (chemical engineering) — Process design is the design of processes for desired physical and/or chemical transformation of materials. Process design is central to chemical engineering and it can be considered to be the summit of chemical engineering, bringing together all … Wikipedia
Process isolation — is a set of different hardware and software technologies[1] designed to protect each operating system process from other processes. It does so by preventing process A from writing into process B. Process isolation can be implemented by with… … Wikipedia
input — ► NOUN 1) what is put or taken in or operated on by any process or system. 2) the action or process of putting or feeding something in. 3) a person s contribution. 4) energy supplied to a device or system; an electrical signal. 5) Electronics a… … English terms dictionary
Input enhancement — is a concept in second language acquisition, coined by Michael Sharwood Smith, that is commonly used to signal methods that an instructor uses to make selected features of a second language more salient for learners in such a way as to facilitate … Wikipedia
input — [in′poot΄] n. 1. the act of putting in 2. what is put in; specif., a) the amount of money, material, effort, etc. put into a project or process; investment b) electric current, voltage, or power put into a circuit, machine, etc. c) data or… … English World dictionary