Перевод: со всех языков на английский

с английского на все языки

principal+directions

  • 21 Brennan, Louis

    [br]
    b. 28 January 1852 Castlebar, Ireland
    d. 17 January 1932 Montreux, Switzerland
    [br]
    Irish inventor of the Brennan dirigible torpedo, and of a gyroscopically balanced monorail system.
    [br]
    The Brennan family, including Louis, emigrated to Australia in 1861. He was an inventive genius from childhood, and while at Melbourne invented his torpedo. Within it were two drums, each with several miles of steel wire coiled upon it and mounted on one of two concentric propeller shafts. The propellers revolved in opposite directions. Wires were led out of the torpedo to winding drums on land, driven by high-speed steam engines: the faster the drums on shore were driven, the quicker the wires were withdrawn from the drums within the torpedo and the quicker the propellers turned. A steering device was operated by altering the speeds of the wires relative to one another. As finally developed, Brennan torpedoes were accurate over a range of 1 1/2 miles (2.4 km), in contrast to contemporary self-propelled torpedoes, which were unreliable at ranges over 400 yards (366 in).
    Brennan moved to England in 1880 and sold the rights to his torpedo to the British Government for a total of £110,000, probably the highest payment ever made by it to an individual inventor. Brennan torpedoes became part of the defences of many vital naval ports, but never saw active service: improvement of other means of defence meant they were withdrawn in 1906. By then Brennan was deeply involved in the development of his monorail. The need for a simple and cheap form of railway had been apparent to him when in Australia and he considered it could be met by a ground-level monorail upon which vehicles would be balanced by gyroscopes. After overcoming many manufacturing difficulties, he demonstrated first a one-eighth scale version and then a full-size, electrically driven vehicle, which ran on its single rail throughout the summer of 1910 in London, carrying up to fifty passengers at a time. Development had been supported financially by, successively, the War Office, the India Office and the Government of the Indian state of Jammu and Kashmir, which had no rail access; despite all this, however, no further financial support, government or commercial, was forthcoming.
    Brennan made many other inventions, worked on the early development of helicopters and in 1929 built a gyroscopically balanced, two-wheeled motor car which, however, never went into production.
    [br]
    Principal Honours and Distinctions
    Companion of the Bath 1892.
    Bibliography
    1878, British patent no. 3359 (torpedo) 1903, British patent no. 27212 (stability mechanisms).
    Further Reading
    R.E.Wilkes, 1973, Louis Brennan CB, 2 parts, Gillingham (Kent) Public Library. J.R.Day and B.C.Wilson, 1957, Unusual Railways, London: F.Muller.
    PJGR

    Biographical history of technology > Brennan, Louis

  • 22 Focke, E.H.Heinrich

    SUBJECT AREA: Aerospace
    [br]
    b. October 1890 Bremen, Germany
    d. February 1979 Bremen, Germany
    [br]
    German aircraft designer who was responsible for the first practical helicopter, in 1936.
    [br]
    Between 1911 and 1914 Heinrich Focke and Georg Wulf built a monoplane and some years later, in 1924, they founded the Focke-Wulf company. They designed and built a variety of civil and military aircraft including the F 19Ente, a tail-first design of 1927. This canard layout was thought to be safer than conventional designs but, unfortunately, it crashed, killing Wulf. Around 1930 Focke became interested in rotary-wing aircraft, and in 1931 he set up a company with Gerd Achgelis to conduct research in this field. The Focke-Wulf company took out a licence to build Cierva autogiros. Focke designed an improved autogiro, the Fw 186, which flew in 1938; it was entered for a military competition, but it was beaten by a fixed-wing aircraft, the Fieseler Storch. In May 1935 Focke resigned from Focke-Wulf to concentrate on helicopter development with the Focke-Achgelis company. His first design was the Fa 61 helicopter, which utilized the fuselage and engine of a conventional aeroplane but instead of wings had two out-riggers, each carrying a rotor. The engine drove these rotors in opposite directions to counteract the adverse torque effect (with a single rotor the fuselage tends to rotate in the opposite direction to the rotor). Following its first flight on 26 June 1936, the Fa 61 went on to break several world records. However, it attracted more public attention when it was flown inside the huge Deutschlandhalle in Berlin by the famous female test pilot Hanna Reitsch in February 1938. Focke continued to develop his helicopter projects for the Focke-Achgelis company and produced the Fa 223 Drache in 1940. This used twin contra-rotating rotors, like the Fa 61, but could carry six people. Its production was hampered by allied bombing of the factory. During the Second World War Focke- Achgelis also produced a rotor kite which could be towed behind a U-boat to provide a flying "crow's nest", as well as designs for an advanced convertiplane (part aeroplane, part helicopter). After the war, Focke worked in France, the Netherlands and Brazil, then in 1954 he became Professor of Aeroplane and Helicopter Design at the University of Stuttgart.
    [br]
    Principal Honours and Distinctions
    Wissenschaftliche, Gesellschaft für Luftfahrt Lilienthal Medal, Prandtl-Ring.
    Bibliography
    1965, "German thinking on rotary-wing development", Journal of the Royal Aeronautical Society, (May).
    Further Reading
    W.Gunston and J.Batchelor, 1977, Helicopters 1900–1960, London.
    J.R.Smith, 1973, Focke-Wulf: An Aircraft Album, London (primarily a picture book). R.N.Liptrot, 1948, Rotating Wing Activities in Germany during the Period 1939–45, London.
    K.von Gersdorff and K.Knobling, 1982, Hubschrauber und Tragschrauber, Munich (a more recent publication, in German).
    JDS

    Biographical history of technology > Focke, E.H.Heinrich

  • 23 Herbert, Edward Geisler

    [br]
    b. 23 March 1869 Dedham, near Colchester, Essex, England
    d. 9 February 1938 West Didsbury, Manchester, England
    [br]
    English engineer, inventor of the Rapidor saw and the Pendulum Hardness Tester, and pioneer of cutting tool research.
    [br]
    Edward Geisler Herbert was educated at Nottingham High School in 1876–87, and at University College, London, in 1887–90, graduating with a BSc in Physics in 1889 and remaining for a further year to take an engineering course. He began his career as a premium apprentice at the Nottingham works of Messrs James Hill \& Co, manufacturers of lace machinery. In 1892 he became a partner with Charles Richardson in the firm of Richardson \& Herbert, electrical engineers in Manchester, and when this partnership was dissolved in 1895 he carried on the business in his own name and began to produce machine tools. He remained as Managing Director of this firm, reconstituted in 1902 as a limited liability company styled Edward G.Herbert Ltd, until his retirement in 1928. He was joined by Charles Fletcher (1868–1930), who as joint Managing Director contributed greatly to the commercial success of the firm, which specialized in the manufacture of small machine tools and testing machinery.
    Around 1900 Herbert had discovered that hacksaw machines cut very much quicker when only a few teeth are in operation, and in 1902 he patented a machine which utilized this concept by automatically changing the angle of incidence of the blade as cutting proceeded. These saws were commercially successful, but by 1912, when his original patents were approaching expiry, Herbert and Fletcher began to develop improved methods of applying the rapid-saw concept. From this work the well-known Rapidor and Manchester saws emerged soon after the First World War. A file-testing machine invented by Herbert before the war made an autographic record of the life and performance of the file and brought him into close contact with the file and tool steel manufacturers of Sheffield. A tool-steel testing machine, working like a lathe, was introduced when high-speed steel had just come into general use, and Herbert became a prominent member of the Cutting Tools Research Committee of the Institution of Mechanical Engineers in 1919, carrying out many investigations for that body and compiling four of its Reports published between 1927 and 1933. He was the first to conceive the idea of the "tool-work" thermocouple which allowed cutting tool temperatures to be accurately measured. For this advance he was awarded the Thomas Hawksley Gold Medal of the Institution in 1926.
    His best-known invention was the Pendulum Hardness Tester, introduced in 1923. This used a spherical indentor, which was rolled over, rather than being pushed into, the surface being examined, by a small, heavy, inverted pendulum. The period of oscillation of this pendulum provided a sensitive measurement of the specimen's hardness. Following this work Herbert introduced his "Cloudburst" surface hardening process, in which hardened steel engineering components were bombarded by steel balls moving at random in all directions at very high velocities like gaseous molecules. This treatment superhardened the surface of the components, improved their resistance to abrasion, and revealed any surface defects. After bombardment the hardness of the superficially hardened layers increased slowly and spontaneously by a room-temperature ageing process. After his retirement in 1928 Herbert devoted himself to a detailed study of the influence of intense magnetic fields on the hardening of steels.
    Herbert was a member of several learned societies, including the Manchester Association of Engineers, the Institute of Metals, the American Society of Mechanical Engineers and the Institution of Mechanical Engineers. He retained a seat on the Board of his company from his retirement until the end of his life.
    [br]
    Principal Honours and Distinctions
    Manchester Association of Engineers Butterworth Gold Medal 1923. Institution of Mechanical Engineers Thomas Hawksley Gold Medal 1926.
    Bibliography
    E.G.Herbert obtained several British and American patents and was the author of many papers, which are listed in T.M.Herbert (ed.), 1939, "The inventions of Edward Geisler Herbert: an autobiographical note", Proceedings of the Institution of Mechanical Engineers 141: 59–67.
    ASD / RTS

    Biographical history of technology > Herbert, Edward Geisler

  • 24 Jeanneret, Charles-Edouard (Le Corbusier)

    [br]
    b. 6 October 1887 La Chaux-de-Fonds, Switzerland
    d. 27 August 1965 Cap Martin, France
    [br]
    Swiss/French architect.
    [br]
    The name of Le Corbusier is synonymous with the International style of modern architecture and city planning, one utilizing functionalist designs carried out in twentieth-century materials with modern methods of construction. Charles-Edouard Jeanneret, born in the watch-making town of La Chaux-de-Fonds in the Jura mountain region, was the son of a watch engraver and dial painter. In the years before 1918 he travelled widely, studying building in many countries. He learned about the use of reinforced concrete in the studio of Auguste Perret and about industrial construction under Peter Behrens. In 1917 he went to live in Paris and spent the rest of his life in France; in 1920 he adopted the name of Le Corbusier, one derived from that of his ancestors (Le Corbesier), and ten years later became a French citizen.
    Le Corbusier's long working life spanned a career divided into three distinct parts. Between 1905 and 1916 he designed a number of simple and increasingly modern houses; the years 1921 to 1940 were ones of research and debate; and the twenty years from 1945 saw the blossoming of his genius. After 1917 Le Corbusier gained a reputation in Paris as an architect of advanced originality. He was particularly interested in low-cost housing and in improving accommodation for the poor. In 1923 he published Vers une architecture, in which he planned estates of mass-produced houses where all extraneous and unnecessary features were stripped away and the houses had flat roofs and plain walls: his concept of "a machine for living in". These white boxes were lifted up on stilts, his pilotis, and double-height living space was provided internally, enclosed by large areas of factory glazing. In 1922 Le Corbusier exhibited a city plan, La Ville contemporaine, in which tall blocks made from steel and concrete were set amongst large areas of parkland, replacing the older concept of city slums with the light and air of modern living. In 1925 he published Urbanisme, further developing his socialist ideals. These constituted a major reform of the industrial-city pattern, but the ideas were not taken up at that time. The Depression years of the 1930s severely curtailed architectural activity in France. Le Corbusier designed houses for the wealthy there, but most of his work prior to 1945 was overseas: his Centrosoyus Administration Building in Moscow (1929–36) and the Ministry of Education Building in Rio de Janeiro (1943) are examples. Immediately after the end of the Second World War Le Corbusier won international fame for his Unité d'habitation theme, the first example of which was built in the boulevard Michelet in Marseille in 1947–52. His answer to the problem of accommodating large numbers of people in a small space at low cost was to construct an immense all-purpose block of pre-cast concrete slabs carried on a row of massive central supports. The Marseille Unité contains 350 apartments in eight double storeys, with a storey for shops half-way up and communal facilities on the roof. In 1950 he published Le Modular, which described a system of measurement based upon the human male figure. From this was derived a relationship of human and mathematical proportions; this concept, together with the extensive use of various forms of concrete, was fundamental to Le Corbusier's later work. In the world-famous and highly personal Pilgrimage Church of Notre Dame du Haut at Ronchamp (1950–5), Le Corbusier's work was in Expressionist form, a plastic design in massive rough-cast concrete, its interior brilliantly designed and lit. His other equally famous, though less popular, ecclesiastical commission showed a contrasting theme, of "brutalist" concrete construction with uncompromisingly stark, rectangular forms. This is the Dominican Convent of Sainte Marie de la Tourette at Eveux-sur-l'Arbresle near Lyon, begun in 1956. The interior, in particular, is carefully worked out, and the lighting, from both natural and artificial sources, is indirect, angled in many directions to illuminate vistas and planes. All surfaces are carefully sloped, the angles meticulously calculated to give optimum visual effect. The crypt, below the raised choir, is painted in bright colours and lit from ceiling oculi.
    One of Le Corbusier's late works, the Convent is a tour de force.
    [br]
    Principal Honours and Distinctions
    Honorary Doctorate Zurich University 1933. Honorary Member RIBA 1937. Chevalier de la Légion d'honneur 1937. American Institute of Architects Gold Medal 1961. Honorary Degree University of Geneva 1964.
    Bibliography
    His chief publications, all of which have been numerously reprinted and translated, are: 1923, Vers une architecture.
    1935, La Ville radieuse.
    1946, Propos d'urbanisme.
    1950, Le Modular.
    Further Reading
    P.Blake, 1963, Le Corbusier: Architecture and Form, Penguin. R.Furneaux-Jordan, 1972, Le Corbusier, Dent.
    W.Boesiger, 1970, Le Corbusier, 8 vols, Thames and Hudson.
    ——1987, Le Corbusier: Architect of the Century, Arts Council of Great Britain.
    DY

    Biographical history of technology > Jeanneret, Charles-Edouard (Le Corbusier)

См. также в других словарях:

  • Principal directions — are directions in the pitch plane, and correspond to the principal cross sections of a tooth.The axial direction is a direction parallel to an axis.The transverse direction is a direction within a transverse plane.The normal direction is a… …   Wikipedia

  • Principal components analysis — Principal component analysis (PCA) is a vector space transform often used to reduce multidimensional data sets to lower dimensions for analysis. Depending on the field of application, it is also named the discrete Karhunen Loève transform (KLT),… …   Wikipedia

  • Principal curvature — Saddle surface with normal planes in directions of principal curvatures In differential geometry, the two principal curvatures at a given point of a surface are the eigenvalues of the shape operator at the point. They measure how the surface… …   Wikipedia

  • Principal component analysis — PCA of a multivariate Gaussian distribution centered at (1,3) with a standard deviation of 3 in roughly the (0.878, 0.478) direction and of 1 in the orthogonal direction. The vectors shown are the eigenvectors of the covariance matrix scaled by… …   Wikipedia

  • principal — principal, ale, aux [ prɛ̃sipal, o ] adj. et n. • 1119; « princier » 1080; lat. principalis « principal, du prince », de princeps I ♦ Adj. 1 ♦ Qui est le plus important, le premier parmi plusieurs. ⇒ 1. capital, essentiel, fondamental, primordial …   Encyclopédie Universelle

  • Directions Zonales Des CRS — Article principal : Compagnies républicaines de sécurité. Les Compagnies républicaines de sécurité sont composées d un échelon central (la Direction centrale des compagnies républicaines de sécurité, ou DCCRS), et de 61 compagnies réparties… …   Wikipédia en Français

  • Directions zonales des crs — Article principal : Compagnies républicaines de sécurité. Les Compagnies républicaines de sécurité sont composées d un échelon central (la Direction centrale des compagnies républicaines de sécurité, ou DCCRS), et de 61 compagnies réparties… …   Wikipédia en Français

  • Directions zonales des CRS — Article principal : Compagnies républicaines de sécurité. Les Compagnies républicaines de sécurité sont composées d un échelon central (la direction centrale des compagnies républicaines de sécurité, ou DCCRS), et de 61 compagnies réparties… …   Wikipédia en Français

  • principal axis — Axis Ax is, n.; pl. {Axes}. [L. axis axis, axle. See {Axle}.] A straight line, real or imaginary, passing through a body, on which it revolves, or may be supposed to revolve; a line passing through a body or system around which the parts are… …   The Collaborative International Dictionary of English

  • Fédération québécoise des directions d'établissement d'enseignement — Logo de Fédération québécoise des directions d établissement d enseignement Dates clés 1962 (la FQDE est incorporée en vertu de la Loi sur les syndicats professionnels) Personnages clés Chantal Longpré présid …   Wikipédia en Français

  • Connection (principal bundle) — This article is about connections on principal bundles. See connection (mathematics) for other types of connections in mathematics. In mathematics, a connection is a device that defines a notion of parallel transport on the bundle; that is, a way …   Wikipedia

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»