Перевод: со всех языков на английский

с английского на все языки

pressure+vessel+material

  • 1 тесно связан с

    Тесно связан с - is closely linked to, is closely related to, is closely tied to, is closely connected to, is intimately related to, is intimately connected with, is closely associated with, has a strong relation to
     The erosion resistance will, therefore, be closely linked to the relative volumetric presence and continuity of each phase.
     The topographic index is obviously closely related to the plasticity index, but emphasizes peak density rather than peak height.
     The effects of corrosion/erosion and life prediction methodology are closely related.
     The flow oscillation magnitude is closely tied to the compressor and throttle characteristics.
     A national network of activities will be needed closely connected to local and regional industry.
     The noise is intimately related to the gear dynamics through inaccuracies in the tooth profile.
     Convective heat transfer is intimately connected with fluid mechanics.
     He has been closely associated with the material selection, fabrication, welding and heat treating of metals for the pressure vessel industry.
     Computational modeling of natural language has a strong relation to certain general aspects of the development of computer science.

    Русско-английский научно-технический словарь переводчика > тесно связан с

  • 2 Hero of Alexandria

    [br]
    fl. c.62 AD Alexandria
    [br]
    Alexandrian mathematician and mechanician.
    [br]
    Nothing is known of Hero, or Heron, apart from what can be gleaned from the books he wrote. Their scope and style suggest that he was a teacher at the museum or the university of Alexandria, writing textbooks for his students. The longest book, and the one with the greatest technological interest, is Pneumatics. Some of its material is derived from the works of the earlier writers Ctesibius of Alexandria and Philo of Byzantium, but many of the devices described were invented by Hero himself. The introduction recognizes that the air is a body and demonstrates the effects of air pressure, as when air must be allowed to escape from a closed vessel before water can enter. There follow clear descriptions of a variety of mechanical contrivances depending on the effects of either air pressure or heated gases. Most of the devices seem trivial, but such toys or gadgets were popular at the time and Hero is concerned to show how they work. Inventions with a more serious purpose are a fire pump and a water organ. One celebrated gadget is a sphere that is set spinning by jets of steam—an early illustration of the reaction principle on which modern jet propulsion depends.
    M echanics, known only in an Arabic version, is a textbook expounding the theory and practical skills required by the architect. It deals with a variety of questions of mechanics, such as the statics of a horizontal beam resting on vertical posts, the theory of the centre of gravity and equilibrium, largely derived from Archimedes, and the five ways of applying a relatively small force to exert a much larger one: the lever, winch, pulley, wedge and screw. Practical devices described include sledges for transporting heavy loads, cranes and a screw cutter.
    Hero's Dioptra describes instruments used in surveying, together with an odometer or device to indicate the distance travelled by a wheeled vehicle. Catoptrics, known only in Latin, deals with the principles of mirrors, plane and curved, enunciating that the angle of incidence is equal to that of reflection. Automata describes two forms of puppet theatre, operated by strings and drums driven by a falling lead weight attached to a rope wound round an axle. Hero's mathematical work lies in the tradition of practical mathematics stretching from the Babylonians through Islam to Renaissance Europe. It is seen most clearly in his Metrica, a treatise on mensuration.
    Of all his works, Pneumatics was the best known and most influential. It was one of the works of Greek science and technology assimilated by the Arabs, notably Banu Musa ibn Shakir, and was transmitted to medieval Western Europe.
    [br]
    Bibliography
    All Hero's works have been printed with a German translation in Heronis Alexandrini opera quae supersunt omnia, 1899–1914, 5 vols, Leipzig. The book on pneumatics has been published as The Pneumatics of Hero of Alexandria, 1851, trans. and ed. Bennet Wood-croft, London (facs. repr. 1971, introd. Marie Boas Hall, London and New York).
    Further Reading
    A.G.Drachmann, 1948, "Ktesibios, Philon and Heron: A Study in Ancient Pneumatics", Acta Hist. Sci. Nat. Med. 4, Copenhagen: Munksgaard.
    T.L.Heath, 1921, A History of Greek Mathematics, Oxford (still useful for his mathematical work).
    LRD

    Biographical history of technology > Hero of Alexandria

  • 3 Swan, Sir Joseph Wilson

    [br]
    b. 31 October 1828 Sunderland, England
    d. 27 May 1914 Warlingham, Surrey, England
    [br]
    English chemist, inventor in Britain of the incandescent electric lamp and of photographic processes.
    [br]
    At the age of 14 Swan was apprenticed to a Sunderland firm of druggists, later joining John Mawson who had opened a pharmacy in Newcastle. While in Sunderland Swan attended lectures at the Athenaeum, at one of which W.E. Staite exhibited electric-arc and incandescent lighting. The impression made on Swan prompted him to conduct experiments that led to his demonstration of a practical working lamp in 1879. As early as 1848 he was experimenting with carbon as a lamp filament, and by 1869 he had mounted a strip of carbon in a vessel exhausted of air as completely as was then possible; however, because of residual air, the filament quickly failed.
    Discouraged by the cost of current from primary batteries and the difficulty of achieving a good vacuum, Swan began to devote much of his attention to photography. With Mawson's support the pharmacy was expanded to include a photographic business. Swan's interest in making permanent photographic records led him to patent the carbon process in 1864 and he discovered how to make a sensitive dry plate in place of the inconvenient wet collodian process hitherto in use. He followed this success with the invention of bromide paper, the subject of a British patent in 1879.
    Swan resumed his interest in electric lighting. Sprengel's invention of the mercury pump in 1865 provided Swan with the means of obtaining the high vacuum he needed to produce a satisfactory lamp. Swan adopted a technique which was to become an essential feature in vacuum physics: continuing to heat the filament during the exhaustion process allowed the removal of absorbed gases. The inventions of Gramme, Siemens and Brush provided the source of electrical power at reasonable cost needed to make the incandescent lamp of practical service. Swan exhibited his lamp at a meeting in December 1878 of the Newcastle Chemical Society and again the following year before an audience of 700 at the Newcastle Literary and Philosophical Society. Swan's failure to patent his invention immediately was a tactical error as in November 1879 Edison was granted a British patent for his original lamp, which, however, did not go into production. Parchmentized thread was used in Swan's first commercial lamps, a material soon superseded by the regenerated cellulose filament that he developed. The cellulose filament was made by extruding a solution of nitro-cellulose in acetic acid through a die under pressure into a coagulating fluid, and was used until the ultimate obsolescence of the carbon-filament lamp. Regenerated cellulose became the first synthetic fibre, the further development and exploitation of which he left to others, the patent rights for the process being sold to Courtaulds.
    Swan also devised a modification of Planté's secondary battery in which the active material was compressed into a cellular lead plate. This has remained the central principle of all improvements in secondary cells, greatly increasing the storage capacity for a given weight.
    [br]
    Principal Honours and Distinctions
    Knighted 1904. FRS 1894. President, Institution of Electrical Engineers 1898. First President, Faraday Society 1904. Royal Society Hughes Medal 1904. Chevalier de la Légion d'Honneur 1881.
    Bibliography
    2 January 1880, British patent no. 18 (incandescent electric lamp).
    24 May 1881, British patent no. 2,272 (improved plates for the Planté cell).
    1898, "The rise and progress of the electrochemical industries", Journal of the Institution of Electrical Engineers 27:8–33 (Swan's Presidential Address to the Institution of Electrical Engineers).
    Further Reading
    M.E.Swan and K.R.Swan, 1968, Sir Joseph Wilson Swan F.R.S., Newcastle upon Tyne (a detailed account).
    R.C.Chirnside, 1979, "Sir Joseph Swan and the invention of the electric lamp", IEE
    Electronics and Power 25:96–100 (a short, authoritative biography).
    GW

    Biographical history of technology > Swan, Sir Joseph Wilson

  • 4 если бы не

    Were it not (or If it were not) for the radio there would be little point in sending satellites into space.

    * * *
    Если бы не -- but for; if not for; if it were not for; were it not for; had not (+ passive participle III), if were not
     However, it [the loss] would undoubtedly have been higher but for the longer gland.
     The flow of course would have been highly turbulent if not for the turbulence-reducing screens.
     The torsional frequencies predicted by the classical theory would be exactly the same if it were not for a small amount of coupling... (если бы не небольшое взаимодействие между различными формами колебаний)
     Were it not for the strain hardening of the material, the vessel would burst.

    Русско-английский научно-технический словарь переводчика > если бы не

См. также в других словарях:

  • Pressure vessel — Vertical pressure vessels installed in a structure A pressure vessel is a closed container designed to hold gases or liquids at a pressure substantially different from the ambient pressure. The pressure differential is dangerous and many fatal… …   Wikipedia

  • Pressure swing adsorption — (PSA) is a technology used to separate some gas species from a mixture of gases under pressure according to the species molecular characteristics and affinity for an adsorbent material. It operates at near ambient temperatures and so differs from …   Wikipedia

  • Pipe (material) — A pipe is a tube or hollow cylinder used to convey materials or as a structural component. The terms pipe and tube are almost interchangeable. A pipe is generally specified by the internal diameter (ID) whereas a tube is usually defined by the… …   Wikipedia

  • Lota (vessel) — Lota (Urdu: لوٹا, Hindi: लोटा) is an Urdu and Hindi word for a small, usually spherical water vessel of brass or copper used in parts of South Asiacite web title = Definition of Lota publisher = Merriam Webster s Online Dictionary url =… …   Wikipedia

  • Non-invasive intracranial pressure measurement methods — Increased intracranial pressure (ICP) is one of the major causes of secondary brain ischemia that accompanies a variety of pathological conditions, most notably, traumatic brain injury (TBI), stroke, and intracranial hemorrhages. However, aside… …   Wikipedia

  • Cork (material) — Untreated cork panel …   Wikipedia

  • Bathysphere (vessel) — A bathysphere is a spherical deep sea submersible which is unpowered and is lowered into the ocean on a cable.The first bathysphere was devised by Otis Barton in 1928.cite book |author=Beebe, W |title=Half Mile Down |publisher=Harcourt Brace and… …   Wikipedia

  • steel — steellike, adj. /steel/, n. 1. any of various modified forms of iron, artificially produced, having a carbon content less than that of pig iron and more than that of wrought iron, and having qualities of hardness, elasticity, and strength varying …   Universalium

  • Corium (nuclear reactor) — LFCM redirects here. For the airport, see List of airports by ICAO code: L. The Three Mile Island reactor 2 after the meltdown. Corium, also called fuel containing material (FCM) or lava like fuel containing material (LFCM), is a lava like molten …   Wikipedia

  • nuclear reactor — Physics. reactor (def. 4). Also called nuclear pile. [1940 45] * * * Device that can initiate and control a self sustaining series of nuclear fission reactions. Neutrons released in one fission reaction may strike other heavy nuclei, causing them …   Universalium

  • Glossary of fuel cell terms — The Glossary of fuel cell terms lists the definitions of many terms used within the fuel cell industry. The terms in this glossary may be used by fuel cell industry associations, in education material and fuel cell codes and standards to name but …   Wikipedia

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»