Перевод: со всех языков на английский

с английского на все языки

plans+area

  • 61 широко

    1. abroad
    2. far-reaching
    3. generally
    4. vast
    5. as large
    6. loosely
    7. long
    8. broader
    9. broadly
    10. ever-growing

    всё более широкое применение, всё возрастающее использованиеever-growing use

    11. extensively
    12. sweepingly
    13. widely
    14. wider
    15. wraparound
    16. broad; wide; vast; large; great; mass; large-scale; open
    17. sweeping
    18. wide
    Синонимический ряд:
    1. обширный (прил.) обширный; пространный
    2. размашистый (прил.) машистый; размашистый
    3. свободный (прил.) просторный; свободный
    Антонимический ряд:

    Русско-английский большой базовый словарь > широко

  • 62 centre

    (American) center [ˈsentə]
    1. noun
    1) the middle point, or middle of anything; the point or area farthest from the edge:

    the city centre.

    نُقْطَةُ المَرْكِز
    2) a place having, or designed for, a particular activity, interest etc:

    a sports-centre.

    مَرْكِز

    the centre of attention.

    مَرْكِز، النُّقطَةُ المَرْكَزِيَّه
    2. verb
    1) to place, or to be, at the centre.
    يَكونُ أو يَضَعُ في المَرْكِز
    2) ( with on) to concentrate round:

    Her plans always centre on her child.

    يَتَرَكَّزُ في

    Arabic-English dictionary > centre

  • 63 Angola

    (and Enclave of Cabinda)
       From 1575 to 1975, Angola was a colony of Portugal. Located in west-central Africa, this colony has been one of the largest, most strategically located, and richest in mineral and agricultural resources in the continent. At first, Portugal's colonial impact was largely coastal, but after 1700 it became more active in the interior. By international treaties signed between 1885 and 1906, Angola's frontiers with what are now Zaire and Zambia were established. The colony's area was 1,246,700 square kilometers (481,000 square miles), Portugal's largest colonial territory after the independence of Brazil. In Portugal's third empire, Angola was the colony with the greatest potential.
       The Atlantic slave trade had a massive impact on the history, society, economy, and demography of Angola. For centuries, Angola's population played a subordinate role in the economy of Portugal's Brazil-centered empire. Angola's population losses to the slave trade were among the highest in Africa, and its economy became, to a large extent, hostage to the Brazilian plantation-based economic system. Even after Brazil's independence in 1822, Brazilian economic interests and capitalists were influential in Angola; it was only after Brazil banned the slave trade in 1850 that the heavy slave traffic to former Portuguese America began to wind down. Although slavery in Angola was abolished, in theory, in the 1870s, it continued in various forms, and it was not until the early 1960s that its offspring, forced labor, was finally ended.
       Portugal's economic exploitation of Angola went through different stages. During the era of the Atlantic slave trade (ca. 1575-1850), when many of Angola's slaves were shipped to Brazil, Angola's economy was subordinated to Brazil's and to Portugal's. Ambitious Lisbon-inspired projects followed when Portugal attempted to replace the illegal slave trade, long the principal income source for the government of Angola, with legitimate trade, mining, and agriculture. The main exports were dyes, copper, rubber, coffee, cotton, and sisal. In the 1940s and 1950s, petroleum emerged as an export with real potential. Due to the demand of the World War II belligerents for Angola's raw materials, the economy experienced an impetus, and soon other articles such as diamonds, iron ore, and manganese found new customers. Angola's economy, on an unprecedented scale, showed significant development, which was encouraged by Lisbon. Portugal's colonization schemes, sending white settlers to farm in Angola, began in earnest after 1945, although such plans had been nearly a century in the making. Angola's white population grew from about 40,000 in 1940 to nearly 330,000 settlers in 1974, when the military coup occurred in Portugal.
       In the early months of 1961, a war of African insurgency broke out in northern Angola. Portugal dispatched armed forces to suppress resistance, and the African insurgents were confined to areas on the borders of northern and eastern Angola at least until the 1966-67 period. The 13-year colonial war had a telling impact on both Angola and Portugal. When the Armed Forces Movement overthrew the Estado Novo on 25 April 1974, the war in Angola had reached a stalemate and the major African nationalist parties (MPLA, FNLA, and UNITA) had made only modest inroads in the northern fringes and in central and eastern Angola, while there was no armed activity in the main cities and towns.
       After a truce was called between Portugal and the three African parties, negotiations began to organize the decolonizat ion process. Despite difficult maneuvering among the parties, Portugal, the MPLA, FNLA, and UNITA signed the Alvor Agreement of January 1975, whereby Portugal would oversee a transition government, create an all-Angola army, and supervise national elections to be held in November 1975. With the outbreak of a bloody civil war among the three African parties and their armies, the Alvor Agreement could not be put into effect. Fighting raged between March and November 1975. Unable to prevent the civil war or to insist that free elections be held, Portugal's officials and armed forces withdrew on 11 November 1975. Rather than handing over power to one party, they transmitted sovereignty to the people of Angola. Angola's civil war continued into the 21st century.

    Historical dictionary of Portugal > Angola

  • 64 Blanquart-Evrard, Louis-Désiré

    [br]
    b. 2 August 1802 Lille, France
    d. 28 April 1872 Lille, France
    [br]
    French photographer, photographic innovator and entrepreneur.
    [br]
    After beginning his working life in a tobacco company, Blanquart-Evrard became Laboratory Assistant to a chemist. He also became interested in painting on ivory and porcelain, foreshadowing a life-long interest in science and art. Following his marriage to the daughter of a textile merchant, Blanquart-Evrard became a partner in the family business in Lyon. During the 1840s he became interested in Talbot's calotype process and found that by applying gallic acid alone, as a developing agent after exposure, the exposure time could be shorter and the resulting image clearer. Blanquart-Evrard recognized that his process was well suited to producing positive prints in large numbers. During 1851 and 1852, in association with an artist friend, he became involved in producing quantities of prints for book illustrations. In 1849 he had announced a glass negative process similar to that devised two years earlier by Niepcc de St Victor. The carrying agent for silver salts was albumen, and more far-reaching was his albumen-coated printing-out paper announced in 1850. Albumen printing paper was widely adopted and the vast majority of photographs made in the nineteenth century were printed in this form. In 1870 Blanquart-Evrard began an association with the pioneer colour photographer Ducos du Hauron with a view to opening a three-colour printing establishment. Unfortunately plans were delayed by the Franco-Prussian War, and Blanquart-Evrard died in 1872 before the project could be brought to fruition.
    [br]
    Bibliography
    1851, Traité de photographie sur papier, Paris (provides details of his improvements to Talbot's process).
    Further Reading
    J.M.Eder, 1945, History of Photography, trans. E. Epstein, New York.
    JW

    Biographical history of technology > Blanquart-Evrard, Louis-Désiré

  • 65 Bouch, Sir Thomas

    SUBJECT AREA: Civil engineering
    [br]
    b. 22 February 1822 Thursby, Cumberland, England
    d. 1880 Moffat
    [br]
    English designer of the ill-fated Tay railway bridge.
    [br]
    The third son of a merchant sea captain, he was at first educated in the village school. At the age of 17 he was working under a Mr Larmer, a civil engineer, constructing the Lancaster and Carlisle railway. He later moved to be a resident engineer on the Stockton \& Darlington Railway, and from 1849 was Engineer and Manager of the Edinburgh \& Northern Railway. In this last position he became aware of the great inconvenience caused to traffic by the broad estuaries of the Tay and the Forth on the eastern side of Scotland. The railway later became the Edinburgh, Perth \& Dundee, and was then absorbed into the North British in 1854 when Bouch produced his first plans for a bridge across the Tay at an estimated cost of £200,000. A bill was passed for the building of the bridge in 1870. Prior to this, Bouch had built many bridges up to the Redheugh Viaduct, at Newcastle upon Tyne, which had two spans of 240 ft (73 m) and two of 260 ft (79 m). He had also set up in business on his own. He is said to have designed nearly 300 miles (480 km) of railway in the north, as well as a "floating railway" of steam ferries to carry trains across the Forth and the Tay. The Tay bridge, however, was his favourite project; he had hawked it for some twenty years before getting the go-ahead, and the foundation stone of the bridge was laid on 22 July 1871. The total length of the bridge was nearly two miles (3.2 km), while the shore-to-shore distance over the river was just over one mile (1.6 km). It consisted of eighty-five spans, thirteen of which, i.e. "the high girders", were some 245 ft (75 m) long and 100 ft (30 m) above water level to allow for shipping access to Perth, and was a structure of lattice girders on brick and masonry piers topped with ironwork. The first crossing of the bridge was made on 26 September 1877, and the official opening was on 31 May 1878. On Sunday 28 December 1879, at about 7.20 pm, in a wind of probably 90 mph (145 km/h), the thirteen "high girders" were blown into the river below, drowning the seventy-five passengers and crew aboard the 5.20 train from Burntisland. A Court of Enquiry was held and revealed design faults in that the effect of wind pressure had not been adequately taken into account, faults in manufacture in the plugging of flaws in the castings, and inadequate inspection and maintenance; all of these faults were attributed to Bouch, who had been knighted for the building of the bridge. He died at his house in Moffat four months after the enquiry.
    [br]
    Principal Honours and Distinctions
    Knighted. Cross of St George.
    Further Reading
    John Prebble, 1956, The High Girders.
    IMcN

    Biographical history of technology > Bouch, Sir Thomas

  • 66 Carnot, Nicolas Léonard Sadi

    [br]
    b. 1 June 1796 Paris, France
    d. 24 August 1831 Paris, France
    [br]
    French laid the foundations for modern thermodynamics through his book Réflexions sur la puissance motrice du feu when he stated that the efficiency of an engine depended on the working substance and the temperature drop between the incoming and outgoing steam.
    [br]
    Sadi was the eldest son of Lazare Carnot, who was prominent as one of Napoleon's military and civil advisers. Sadi was born in the Palais du Petit Luxembourg and grew up during the Napoleonic wars. He was tutored by his father until in 1812, at the minimum age of 16, he entered the Ecole Polytechnique to study stress analysis, mechanics, descriptive geometry and chemistry. He organized the students to fight against the allies at Vincennes in 1814. He left the Polytechnique that October and went to the Ecole du Génie at Metz as a student second lieutenant. While there, he wrote several scientific papers, but on the Restoration in 1815 he was regarded with suspicion because of the support his father had given Napoleon. In 1816, on completion of his studies, Sadi became a second lieutenant in the Metz engineering regiment and spent his time in garrison duty, drawing up plans of fortifications. He seized the chance to escape from this dull routine in 1819 through an appointment to the army general staff corps in Paris, where he took leave of absence on half pay and began further courses of study at the Sorbonne, Collège de France, Ecole des Mines and the Conservatoire des Arts et Métiers. He was inter-ested in industrial development, political economy, tax reform and the fine arts.
    It was not until 1821 that he began to concentrate on the steam-engine, and he soon proposed his early form of the Carnot cycle. He sought to find a general solution to cover all types of steam-engine, and reduced their operation to three basic stages: an isothermal expansion as the steam entered the cylinder; an adiabatic expansion; and an isothermal compression in the condenser. In 1824 he published his Réflexions sur la puissance motrice du feu, which was well received at the time but quickly forgotten. In it he accepted the caloric theory of heat but pointed out the impossibility of perpetual motion. His main contribution to a correct understanding of a heat engine, however, lay in his suggestion that power can be produced only where there exists a temperature difference due "not to an actual consumption of caloric but to its transportation from a warm body to a cold body". He used the analogy of a water-wheel with the water falling around its circumference. He proposed the true Carnot cycle with the addition of a final adiabatic compression in which motive power was con sumed to heat the gas to its original incoming temperature and so closed the cycle. He realized the importance of beginning with the temperature of the fire and not the steam in the boiler. These ideas were not taken up in the study of thermodynartiics until after Sadi's death when B.P.E.Clapeyron discovered his book in 1834.
    In 1824 Sadi was recalled to military service as a staff captain, but he resigned in 1828 to devote his time to physics and economics. He continued his work on steam-engines and began to develop a kinetic theory of heat. In 1831 he was investigating the physical properties of gases and vapours, especially the relationship between temperature and pressure. In June 1832 he contracted scarlet fever, which was followed by "brain fever". He made a partial recovery, but that August he fell victim to a cholera epidemic to which he quickly succumbed.
    [br]
    Bibliography
    1824, Réflexions sur la puissance motrice du feu; pub. 1960, trans. R.H.Thurston, New York: Dover Publications; pub. 1978, trans. Robert Fox, Paris (full biographical accounts are provided in the introductions of the translated editions).
    Further Reading
    Dictionary of Scientific Biography, 1971, Vol. III, New York: C.Scribner's Sons. T.I.Williams (ed.), 1969, A Biographical Dictionary of Scientists, London: A. \& C.
    Black.
    Chambers Concise Dictionary of Scientists, 1989, Cambridge.
    D.S.L.Cardwell, 1971, from Watt to Clausius. The Rise of Thermodynamics in the Early Industrial Age, London: Heinemann (discusses Carnot's theories of heat).
    RLH

    Biographical history of technology > Carnot, Nicolas Léonard Sadi

  • 67 Dyer, Joseph Chessborough

    SUBJECT AREA: Textiles
    [br]
    b. 15 November 1780 Stonnington Point, Connecticut, USA
    d. 2 May 1871 Manchester, England
    [br]
    American inventor of a popular type of roving frame for cotton manufacture.
    [br]
    As a youth, Dyer constructed an unsinkable life-boat but did not immediately pursue his mechanical bent, for at 16 he entered the counting-house of a French refugee named Nancrède and succeeded to part of the business. He first went to England in 1801 and finally settled in 1811 when he married Ellen Jones (d. 1842) of Gower Street, London. Dyer was already linked with American inventors and brought to England Perkins's plan for steel engraving in 1809, shearing and nail-making machines in 1811, and also received plans and specifications for Fulton's steamboats. He seems to have acted as a sort of British patent agent for American inventors, and in 1811 took out a patent for carding engines and a card clothing machine. In 1813 there was a patent for spinning long-fibred substances such as hemp, flax or grasses, and in 1825 there was a further patent for card making machinery. Joshua Field, on his tour through Britain in 1821, saw a wire drawing machine and a leather splitting machine at Dyer's works as well as the card-making machines. At first Dyer lived in Camden Town, London, but he had a card clothing business in Birmingham. He moved to Manchester c.1816, where he developed an extensive engineering works under the name "Joseph C.Dyer, patent card manufacturers, 8 Stanley Street, Dale Street". In 1832 he founded another works at Gamaches, Somme, France, but this enterprise was closed in 1848 with heavy losses through the mismanagement of an agent. In 1825 Dyer improved on Danforth's roving frame and started to manufacture it. While it was still a comparatively crude machine when com-pared with later versions, it had the merit of turning out a large quantity of work and was very popular, realizing a large sum of money. He patented the machine that year and must have continued his interest in these machines as further patents followed in 1830 and 1835. In 1821 Dyer had been involved in the foundation of the Manchester Guardian (now The Guardian) and he was linked with the construction of the Liverpool \& Manchester Railway. He was not so successful with the ill-fated Bank of Manchester, of which he was a director and in which he lost £98,000. Dyer played an active role in the community and presented many papers to the Manchester Literary and Philosophical Society. He helped to establish the Royal Institution in London and the Mechanics Institution in Manchester. In 1830 he was a member of the delegation to Paris to take contributions from the town of Manchester for the relief of those wounded in the July revolution and to congratulate Louis-Philippe on his accession. He called for the reform of Parliament and helped to form the Anti-Corn Law League. He hated slavery and wrote several articles on the subject, both prior to and during the American Civil War.
    [br]
    Bibliography
    1811, British patent no. 3,498 (carding engines and card clothing machine). 1813, British patent no. 3,743 (spinning long-fibred substances).
    1825, British patent no. 5,309 (card making machinery).
    1825, British patent no. 5,217 (roving frame). 1830, British patent no. 5,909 (roving frame).
    1835, British patent no. 6,863 (roving frame).
    Further Reading
    Dictionary of National Biography.
    J.W.Hall, 1932–3, "Joshua Field's diary of a tour in 1821 through the Midlands", Transactions of the Newcomen Society 6.
    Evan Leigh, 1875, The Science of Modern Cotton Spinning, Vol. II, Manchester (provides an account of Dyer's roving frame).
    D.J.Jeremy, 1981, Transatlantic Industrial Revolution: The Diffusion of Textile
    Technologies Between Britain and America, 1790–1830s, Oxford (describes Dyer's links with America).
    See also: Arnold, Aza
    RLH

    Biographical history of technology > Dyer, Joseph Chessborough

  • 68 Gamond, Aimé Thomé de

    SUBJECT AREA: Civil engineering
    [br]
    b. 1807
    d. 1876
    [br]
    French civil engineer and early advocate of the Channel Tunnel.
    [br]
    He became interested in the possibility of a tunnel or a bridge link between England and France in 1833 when he did his own geological survey of a route between Calais and Dover, and in 1834 he proposed an immersed tube tunnel. However, at the Great Exhibition of 1855 he promoted a scheme incorporating an artificial stone isthmus with movable bridges, which was estimated to cost £33,600,000, but this idea was eventuallv abandoned. He reverted to the idea of a tunnel and did further survey in 1855, with 180 lb (80 kg) of flint for ballast, ten inflated pig bladders to bring him to the surface and pieces of buttered lint plastered over his ears to protect them against the water pressure. He touched bottom between 99 and 108 ft (30 and 33 m). In 1856 Napoleon III granted him an audience and promised a scientific commission to evaluate his scheme, which it eventually approved. In 1858 he went to London and got the backing of Robert Stephenson, Isambard K. Brunel and Joseph Locke. He also obtained an interview with Prince Albert. In 1858, after an assassination attempt on Napoleon III, relations between France and England cooled off and Thomé de Gamond's plans were halted. He revived them in 1867, but others were by now also putting forward schemes. He had worked on the scheme for thirty-five years and expended a small fortune. In 1875 The Times reported that he was "living in humble circumstances, his daughter supporting him by giving lessons on the piano". He died the following year.
    [br]
    Further Reading
    T.Whiteside, 1962, The Tunnel under the Channel.
    IMcN

    Biographical history of technology > Gamond, Aimé Thomé de

  • 69 Garnier, Tony

    [br]
    b. 13 August 1869 Lyon, France
    d. 19 January 1948 Bedoule, France
    [br]
    French architect and urban planner, a pioneer of the concept of segregation of pedestrian and wheeled traffic and of the use of concrete in building construction.
    [br]
    Garnier spent almost all his life in Lyon, apart from the years that he passed in Rome as a result of winning the Prix de Rome in 1889. While there, he evolved his concept of the cité industrielle, plans of which he exhibited and published early in the twentieth century. This was an idealized town, powered electrically, with its industrial areas separated from leisure ones. Garnier envisaged flat-roofed buildings supported on pilotis, with glass cladding, a steel structure, and extensive use of concrete. He proposed that each family should occupy its own house in a garden-city concept. In 1905 Garnier became city architect to Lyon, where he was able to carry out some of his ideas of the cité industrielle. He used concrete widely in such schemes as the municipal stadium, the Abattoirs de la Mouche and various housing schemes.
    [br]
    Principal Honours and Distinctions
    Conseil Supérieur de l'Orde des Architectes. Honorary Degree Princeton University, USA.
    Bibliography
    1932, Une Cité industrielle, Paris: Vincent.
    Further Reading
    C.Pawlowski, 1967, Tony Garnier et les débuts de l'urbanisme functionnel en France, Paris: Centre de la Recherche d'Urbanisme.
    M.Rovigalti, 1985, Tony Garnier: Architettura per la città industriale, Rome: Officini Edizioni.
    DY

    Biographical history of technology > Garnier, Tony

  • 70 Herschel, John Frederick William

    [br]
    b. 7 March 1792 Slough, England
    d. 11 May 1871 Collingwood, England
    [br]
    English scientist who introduced "hypo" (thiosulphate) as a photographic fixative and discovered the blueprint process.
    [br]
    The only son of Sir William Herschel, the famous astronomer, John graduated from Cambridge in 1813 and went on to become a distinguished astronomer, mathematician and chemist. He left England in November 1833 to set up an observatory near Cape Town, South Africa, where he embarked on a study of the heavens in the southern hemisphere. He returned to England in the spring of 1838, and between 1850 and 1855 Herschel served as Master of the Royal Mint. He made several notable contributions to photography, perhaps the most important being his discovery in 1819 that hyposulphites (thiosulphates) would dissolve silver salts. He brought this property to the attention of W.H.F. Talbot, who in 1839 was using a common salt solution as a fixing agent for his early photographs. After trials, Talbot adopted "hypo", which was a far more effective fixative. It was soon adopted by other photographers and eventually became the standard photographic fixative, as it still is in the 1990s. After hearing of the first photographic process in January 1839, Herschel devised his own process within a week. In September 1839 he made the first photograph on glass. He is credited with introducing the words "positive", "negative" and "snapshot" to photography, and in 1842 he invented the cyanotype or "blueprint" process. This process was later to be widely adopted by engineers and architects for the reproduction of plans and technical drawings, a practice abandoned only in the late twentieth century.
    [br]
    Principal Honours and Distinctions
    Knight of the Royal Hanoverian Guelphic Order 1831. Baronet 1838. FRS 1813. Copley Medal 1821.
    Further Reading
    Dictionary of National Biography, 1968, Vol. IX, pp. 714–19.
    H.J.P.Arnold, 1977, William Henry Fox Talbot, London; Larry J.Schaaf, 1992, Out of the Shadows: Herschel, Talbot and the Invention of Photography, Newhaven and London (for details of his contributions to photography and his relationship with Talbot).
    JW

    Biographical history of technology > Herschel, John Frederick William

  • 71 Holland, John Philip

    SUBJECT AREA: Ports and shipping
    [br]
    b. 29 February 1840 Liscanor, Co. Clare, Ireland
    d. 12 August 1915 Newark, New Jersey, USA
    [br]
    Irish/American inventor of the successful modern submarine
    [br]
    Holland was educated first in his native town and later in Limerick, a seaport bustling with coastal trade ships. His first job was that of schoolteacher, and as such he worked in various parts of Ireland until he was about 32 years old. A combination of his burning patriotic zeal for Ireland and his interest in undersea technology (then in its infancy) made him consider designs for underwater warships for use against the British Royal Navy in the fight for Irish independence. He studied all known works on the subject and commenced drawing plans, but he was unable to make real headway owing to a lack of finance.
    In 1873 he travelled to the United States, ultimately settling in New Jersey and continuing in the profession of teaching. His work on submarine design continued, but in 1875 he suffered a grave setback when the United States Navy turned down his designs. Help came from an unexpected source, the Irish Republican Brotherhood, or Fenian Society, which had been founded in Dublin and New York in 1858. Financial help enabled Holland to build a 4 m (13 ft) one-person craft, which was tested in 1878, and then a larger boat of 19 tonnes' displacement that was tested with a crew of three to depths of 20 m (65 ft) in New York's harbour in 1883. Known as the Fenian Ram, it embodied most of the principles of modern submarines, including weight compensation. The Fenians commandeered this boat, but they were unable to operate it satisfactorily and it was relegated to history.
    Holland continued work, at times independently and sometimes with others, and continuously advocated submarines to the United States Navy. In 1895 he was successful in winning a contract for US$150,000 to build the US Submarine Plunger at Baltimore. With too much outside interference, this proved an unsatisfactory venture. However, with only US$5,000 of his capital left, Holland started again and in 1898 he launched the Holland at Elizabeth, New Jersey. This 16 m (52 ft) vessel was successful, and in 1900 it was purchased by the United States Government.
    Six more boats were ordered by the Americans, and then some by the Russians and the Japanese. The British Royal Navy ordered five, which were built by Vickers Son and Maxim (now VSEL) at Barrow-in-Furness in the years up to 1903, commencing their long run of submarine building. They were licensed by another well-known name, the Electric Boat Company, which had formerly been the J.P.Holland Torpedo Boat Company.
    Holland now had some wealth and was well known. He continued to work, trying his hand at aeronautical research, and in 1904 he invented a respirator for use in submarine rescue work. It is pleasing to record that one of his ships can be seen to this day at the Royal Navy Submarine Museum, Gosport: HM Submarine Holland No. 1, which was lost under tow in 1913 but salvaged and restored in the 1980s.
    [br]
    Principal Honours and Distinctions
    Order of the Rising Sun, Japan, 1910.
    Bibliography
    1900, "The submarine boat and its future", North American Review (December). Holland wrote several other articles of a similar nature.
    Further Reading
    R.K.Morris, 1966 John P.Holland 1841–1914, Inventor of the Modern Submarine, Annapolis, MD: US Naval Institute.
    F.W.Lipscomb, 1975, The British Submarine, London: Conway Maritime Press. A.N.Harrison, 1979, The Development of HM Submarines from Holland No. 1 (1901) to
    Porpoise (1930), Bath: MoD Ships Department (internal publication).
    FMW

    Biographical history of technology > Holland, John Philip

  • 72 Humfrey, William

    SUBJECT AREA: Metallurgy
    [br]
    b. c.1515
    d. 14 July 1579
    [br]
    English goldsmith and Assay Master of the Royal Mint who attempted to introduce brass production to England.
    [br]
    William Humfrey, goldsmith of the parish of St Vedast, was appointed Assay Master of the Royal Mint in 1561. At the Tower of London he assumed responsibility for the weight of silver and for production standards at a time of intense activity in recoining the debased coinage of the realm. Separation of copper from the debased silver involved liquation techniques which enabled purification of the recovered silver and copper. German co-operation in introducing these methods to England developed their interest in English copper mining, resulting in the formation of the Mines Royal Company. Shareholders in this government-led monopoly included Humfrey, whose assay of Keswick copper ore, mined with German expertise, was bitterly disputed. As a result of this dispute, Humfrey promoted the formation of a smaller monopoly, the Company of Mineral Battery Works, with plans to mine lead and especially the zinc carbonate ore, calamine, using it to introduce brassmaking and wire manufacture into England. Humfrey acquired technical assistance from further skilled German immigrants, relying particularly on Christopher Schutz of Annaberg in Saxony, who claimed experience in such matters. However, the brassmaking project set up at Tintern was abandoned by 1569 after failure to make a brass suitable for manufacturing purposes. The works changed its production to iron wire. Humfrey had meanwhile been under suspicion of embezzlement at the Tower in connection with his work there. He died intestate while involved in litigation regarding infringement of rights and privileges claimed from his introduction of new techniques in later lead-mining activities under the auspices of the Company of Mineral and Battery Works.
    [br]
    Further Reading
    M.B.Donald, 1961, Elizabethan Monopolies, London: Oliver \& Boyd (the most detailed account).
    ——1955, Elizabethan Copper, reprinted 1989, Michael Moon.
    JD

    Biographical history of technology > Humfrey, William

  • 73 Jervis, John Bloomfield

    [br]
    b. 14 December 1795 Huntingdon, New York, USA
    d. 12 January 1885 Rome, New York, USA
    [br]
    American pioneer of civil engineering and locomotive design.
    [br]
    Jervis assisted in the survey and construction of the Erie Canal, and by 1827 was Chief Engineer of the Delaware \& Hudson Canal and, linked with it, the Carbondale Railroad. He instructed Horatio Allen to go to England to purchase locomotives in 1828, and the locomotive Stourbridge Lion, built by J.U. Rastrick, was placed on the railway in 1829. It was the first full-size locomotive to run in America, but the track proved too weak for it to be used regularly. In 1830 Jervis became Chief Engineer to the Mohawk \& Hudson Rail Road, which was the first railway in New York State and was opened the following year. In 1832 the 4–2–0 locomotive Experiment was built to his plans by West Point Foundry: it was the first locomotive to have a leading bogie or truck. Jervis was subsequently associated with many other extensive canals and railways and pioneered economic analysis of engineering problems to enable, for example, the best choice to be made between two possible routes for a railroad.
    [br]
    Bibliography
    1861, Railway Property, New York.
    Further Reading
    J.H.White Jr, 1979, A History of the American Locomotive-Its Development: 1830–1880, New York: Dover Publications Inc.
    J.K.Finch, 1931, "John Bloomfield Jervis, civil engineer", Transactions of the Newcomen Society, 11.
    PJGR

    Biographical history of technology > Jervis, John Bloomfield

  • 74 King, James Foster

    SUBJECT AREA: Ports and shipping
    [br]
    b. 9 May 1862 Erskine, Scotland
    d. 11 August 1947 Glasgow, Scotland
    [br]
    Scottish naval architect and classification society manager who made a significant contribution to the safety of shipping.
    [br]
    King was educated at the High School of Glasgow, and then served an apprenticeship with the Port Glasgow shipyard of Russell \& Co. This was followed by experience in drawing offices in Port Glasgow, Hull and finally in Belfast, where he was responsible for the separate White Star Line drawing office of Harland \& Wolff Ltd, which was then producing the plans for the Atlantic passenger liners Majestic and Teutonic. Following certain unpopular government shipping enactments in 1890, a protest from shipbuilders and shipowners in Ireland, Liverpool and the West of Scotland led to the founding of a new classification society to compete against Lloyd's Register of Shipping. It became known as the British Corporation Register and had headquarters in Glasgow. King was recruited to the staff and by 1903 had become Chief Surveyor, a position he held until his retirement thirty-seven years later. By then the Register was a world leader, with hundreds of thousands of tons of shipping on its books; it acted as consultant to many governments and international agencies. Throughout his working life, King did everything in his power to quantify the risks and problems of ship operation: his contribution to the Load Lines Convention of 1929 was typical, and few major enactments in shipping were designed without his approval. During the inter-war period the performance of the British Corporation outshone that of all rivals, for which King deserved full credit. His especial understanding was for steel structures, and in this respect he ensured that the British Corporation enabled owners to build ships of strengths equal to any others despite using up to 10 per cent less steel within the structure. In 1949 Lloyd's Register of Shipping and the British Corporation merged to form the largest and most influential ship classification society in the world.
    [br]
    Principal Honours and Distinctions
    CBE 1920. Honorary Member, Institution of Engineers and Shipbuilders in Scotland 1941; North East Coast Institution of Engineers and Shipbuilders (Newcastle) 1943; British Corporation 1940. Honorary Vice-President, Institution of Naval Architects.
    Further Reading
    G.Blake, 1960, Lloyd's Register of Shipping 1760–1960, London: Lloyd's Register. F.M.Walker, 1984, Song of the Clyde. A History of Clyde Shipbuiding, Cambridge: PSL. 1947, The British Corporation Register of Shipping and Aircraft 1890–1947, An
    Illustrated Record, 1947, Glasgow.
    1946, The British Corporation Register. The War Years in Retrospect, 1956, Glasgow.
    FMW

    Biographical history of technology > King, James Foster

  • 75 Koenig, Friedrich

    SUBJECT AREA: Paper and printing
    [br]
    b. 17 April 1774 Eisleben, Thuringia, Germany
    d. 17 January 1833 Oberzell, near Würzburg, Germany
    [br]
    German inventor of the machine printing press.
    [br]
    Koenig became a printer and bookseller. Around 1800 he was among those who conceived the idea of mechanizing the hand printing press, which apart from minor details had survived virtually unchanged through the first three and a half centuries of printing. In 1803, in Sühl, Saxony, he designed a press in which the flat forme, carrying the type, was mechanically inked and passed to and from the platen. Whether this ma-chine was ever constructed is not known, but Koenig found little support for his ideas because of lack of technical and financial resources. So, in 1806, he went to England and was introduced to Thomas Bensley, a book printer off Fleet Street in London. Bensley agreed to support Koenig and brought in two other printers to help finance Koenig's experiments. Another German, Andreas Bauer, an engineer, assisted Koenig and became largely responsible for the practical execution of Koenig's plans.
    In 1810 they patented a press which was steam-driven but still used a platen. It was set to work in Bensley's office the following year but did not prove to be satisfactory. Koenig redesigned it, and in October 1811 he obtained a patent for a steam-driven press on an entirely new principle. In place of the platen, the paper was fixed around a hollow rotating cylinder, which impressed the paper on to the inked forme. In Bensley's office it was used for book printing, but its increased speed over the hand press appealed to newspaper proprietors and John Walter II of The Times asked Koenig to make a double-cylinder machine, so that the return stroke of the forme would be productive. A further patent was taken out in 1813 and the new machine was made ready to print the 29 November 1814 issue—in secrecy, behind closed doors, to forestall opposition from the pressmen working the hand presses. An important feature of the machine was that the inking rollers were not of the traditional leather or skin but a composite material made from glue, molasses and some soda. The inking could not have been achieved satisfactorily with the old materials. The editorial of that historic issue proclaimed, 'Our Journal of this day presents to the public the practical result of the greatest improvement connected with printing, since the discovery of the art itself Koenig's machine press could make 1,200 impressions an hour compared to 200 with the hand press; further improvements raised this figure to 1,500–2,000. Koenig's last English patent was in 1814 for an improved cylinder machine and a perfecting machine, which printed both sides of the paper. The steam-driven perfecting press was printing books in Bensley's office in February 1816. Koenig and Bauer wanted by that time to manufacture machine presses for other customers, but Bensley, now the principal shareholder, insisted that they should make machines for his benefit only. Finding this restriction intolerable, Koenig and Bauer returned to Germany: they became partners in a factory at Oberzell, near Würzburg, in 1817 and the firm of Koenig and Bauer flourishes there to this day.
    [br]
    Further Reading
    J.Moran, 1973, Printing Presses, London: Faber \& Faber.
    LRD

    Biographical history of technology > Koenig, Friedrich

  • 76 Lilienthal, Otto

    SUBJECT AREA: Aerospace
    [br]
    b. 23 May 1848 Anklam, Prussia (now Germany)
    d. 10 August 1896 Berlin, Germany
    [br]
    German glider pioneer, the first to make a controlled flight using wings.
    [br]
    Otto Lilienthal and his brother Gustav developed an interest in flying as boys, when they studied birds in flight, built models and even tried to fit wings to their arms. Gustav went on to become a successful architect while Otto, after a brilliant scholastic career, became a mechanical engineer. Otto was able to devote his spare time to the problems of flight, and Gustav helped when his work allowed. They considered manpowered and mechanically powered projects, but neither looked hopeful so they turned to gliding. Otto published his research work in a book, Bird Flight as a Basis for Aviation. By 1889 Otto Lilienthal was ready to test his first full-size gliders. No. 1 and No. 2 were not successful, but No. 3, built in 1891, showed promise. He gradually improved his designs and his launching sites as he gained experience. To take off he ran downhill carrying his hang-glider until it became airborne, then he controlled it by swinging his body weight in the appropriate direction. He even built an artificial mound near Berlin so that he could take off into the wind whichever way it was blowing.
    In all, Lilienthal built some eighteen gliders with various wing shapes, including biplanes. By 1895 he was planning movable control surfaces (operated by head movement) and a powered version using a carbonic acid gas motor. Unfortunately, Lilienthal crashed and died of his injuries before these ideas could be tested. In all, he made over two thousand flights covering distances up to 300 m (300 yds. Many of these flights were recorded on photographs and so generated an interest in flying. Lilienthal's achievements also encouraged other pioneers, such as Percy Pilcher in Britain, and Octave Chanute and the Wright brothers in the United States.
    [br]
    Bibliography
    1899, Der Vogelflug als Grundlage der Fliegekunst, Berlin, reprinted c. 1977; repub. in English, 1911, as Bird Flight as a Basis for Aviation.
    Further Reading
    Charles H.Gibbs-Smith, 1985, Aviation, London (provides a detailed account of Lilienthal's gliders).
    P.H.Lilienthal, 1978, "Die Lilienthal Gebrüder", Aerospace (Royal Aeronautical Society) (January) (for more personal information).
    "The Lilienthal and Pilcher gliders compared", Flight (1 January 1910 and 8 January 1910) (for details about and plans of a typical Lilienthal glider).
    JDS

    Biographical history of technology > Lilienthal, Otto

  • 77 MacNeill, Sir John Benjamin

    [br]
    b. 1793 (?) Mount Pleasant, near Dundalk, Louth, Ireland
    d. 2 March 1880
    [br]
    Irish railway engineer and educator.
    [br]
    Sir John MacNeill became a pupil of Thomas Telford and served under him as Superintendent of the Southern Division of the Holyhead Road from London to Shrewsbury. In this capacity he invented a "Road Indicator" or dynamometer. Like other Telford followers, he viewed the advent of railways with some antipathy, but after the death of Telford in 1834 he quickly became involved in railway construction and in 1837 he was retained by the Irish Railway Commissioners to build railways in the north of Ireland (Vignoles received the commission for the south). Much of his subsequent career was devoted to schemes for Irish railways, both those envisaged by the Commissioners and other private lines with more immediately commercial objectives. He was knighted in 1844 on the completion of the Dublin \& Drogheda Railway along the east coast of Ireland. In 1845 MacNeill lodged plans for over 800 miles (1,300 km) of Irish railways. Not all of these were built, many falling victim to Irish poverty in the years after the Famine, but he maintained a large staff and became financially embarrassed. His other schemes included the Grangemouth Docks in Scotland, the Liverpool \& Bury Railway, and the Belfast Waterworks, the latter completed in 1843 and subsequently extended by Bateman.
    MacNeill was an engineer of originality, being the person who introduced iron-lattice bridges into Britain, employing the theoretical and experimental work of Fairbairn and Eaton Hodgkinson (the Boyne Bridge at Drogheda had two such spans of 250ft (76m) each). He also devised the Irish railway gauge of 5 ft 2 in. (1.57 m). Consulted by the Board of Trinity College, Dublin, regarding a School of Engineering in 1842, he was made an Honorary LLD of the University and appointed the first Professor of Civil Engineering, but he relinquished the chair to his assistant, Samuel Downing, in 1846. MacNeill was a large and genial man, but not, we are told, "of methodical and business habit": he relied heavily on his subordinates. Blindness obliged him to retire from practice several years before his death. He was an early member of the Institution of Civil Engineers, joining in 1827, and was elected a Fellow of the Royal Society in 1838.
    [br]
    Principal Honours and Distinctions
    FRS 1838.
    Further Reading
    Dictionary of National Biography. Proceedings of the Institution of Civil Engineers
    73:361–71.
    AB

    Biographical history of technology > MacNeill, Sir John Benjamin

  • 78 Mitscherlich, Alexander

    SUBJECT AREA: Paper and printing
    [br]
    b. 28 May 1836 Berlin, Germany
    d. 31 May 1918 Oberstdorf, Germany
    [br]
    German inventor of sulphite wood pulp for papermaking.
    [br]
    Mitscherlich had an impeccable scientific background; his father was the celebrated chemist Eilhardt Mitscherlich, discoverer of the law of isomorphism, and his godfather was Alexander von Humboldt. At first his progress at school failed to live up to this auspicious beginning and his father would only sanction higher studies if he first qualified as a teacher so as to assure a means of livelihood. Alexander rose to the occasion and went on to gain his doctorate at the age of 25 in the field of mineralogical chemistry. He worked for a few years as Assistant to the distinguished chemists Wöhler in Göttingen and Wurtz in Paris. On his father's death in 1863, he succeeded him as teacher of chemistry in the University of Berlin. In 1868 he accepted a post in the newly established Forest Academy in Hannoversch-Munden, teaching chemistry, physics and geology. The post offered little financial advantage, but it left him more time for research. It was there that he invented the process for producing sulphite wood pulp.
    The paper industry was seeking new raw materials. Since the 1840s pulp had been produced mechanically from wood, but it was unsuitable for making fine papers. From the mid-1860s several chemists began tackling the problem of separating the cellulose fibres from the other constituents of wood by chemical means. The American Benjamin C.Tilghman was granted patents in several countries for the treatment of wood with acid or bisulphite. Carl Daniel Ekman in Sweden and Karl Kellner in Austria also made sulphite pulp, but the credit for devising the process that came into general use belongs to Mitscherlich. His brother Oskar came to him at the Academy with plans for producing pulp by the action of soda, but the results were inferior, so Mitscherlich substituted calcium bisulphite and in the laboratory obtained good results. To extend this to a large-scale process, he was forced to set up his own mill, where he devised the characteristic towers for making the calcium bisulphite, in which water trickling down through packed lime met a rising current of sulphur dioxide. He was granted a patent in Luxembourg in 1874 and a German one four years later. The sulphite process did not make him rich, for there was considerable opposition to it; government objected to the smell of sulphur dioxide, forestry authorities were anxious about the inroads that might be made into the forests and his patents were contested. In 1883, with the support of an inheritance from his mother, Mitscherlich resigned his post at the Academy to devote more time to promoting his invention. In 1897 he at last succeeded in settling the patent disputes and achieving recognition as the inventor of sulphite pulp. Without this raw material, the paper industry could never have satisfied the insatiable appetite of the newspaper presses.
    [br]
    Further Reading
    H.Voorn "Alexander Mitscherlich, inventor of sulphite wood pulp", Paper Maker 23(1): 41–4.
    LRD

    Biographical history of technology > Mitscherlich, Alexander

  • 79 Montferrand, Auguste Ricard de

    [br]
    b. 1786
    d. 1858
    [br]
    French architect who was responsible for the rebuilding of the Cathedral of St Isaac in St Petersburg (1817–57).
    [br]
    As a young man Montferrand is believed to have spent some time working on Pierre Vignon's Church of the Madeleine in Paris. He went to Russia in the early nineteenth century, arriving in 1816 in St Petersburg, where he worked as a draughtsman. The following year a competition was held to rebuild the great Cathedral of St Isaac in the city, and Montferrand submitted a variety of eclectic designs which gained him the task of designing the cathedral. A succession of plans were prepared and altered over the years and it was 1842 before the design was finally agreed. Though French, Montferrand produced a very Russian building, immensely large and monumental and with an interior superbly rich in the variety of its materials: the monolithic columns of red Finnish granite, their capitals and bases gilded; the marbles of many colours; lapis lazuli; malachite; mosaics; paintings; and sculpture. St Isaac is a classical building on Greek cross plan with a large central dome carried on a Corinthian, colonnaded drum with smaller cupolas set around it. Below are façades with four weighty Corinthian porticoes, pedimented and sculptured. Noteworthy, and characteristic of the time, was Montferrand's masonry dome, which was supported by a framework of cast-iron girders; this was the first use of such a large-scale structure of this type in Russia.
    [br]
    Further Reading
    George Heard Hamilton, 1954, The Art and Architecture of Russia, Penguin, Pelican History of Art.
    DY

    Biographical history of technology > Montferrand, Auguste Ricard de

  • 80 Morland, Sir Samuel

    [br]
    b. 1625 Sulhampton, near Reading, Berkshire, England
    d. 26 December 1695 Hammersmith, near London, England
    [br]
    English mathematician and inventor.
    [br]
    Morland was one of several sons of the Revd Thomas Morland and was probably initially educated by his father. He went to Winchester School from 1639 to 1644 and then to Magdalene College, Cambridge, where he graduated BA in 1648 and MA in 1652. He was appointed a tutor there in 1650. In 1653 he went to Sweden in the ambassadorial staff of Bulstrode Whitelocke and remained there until 1654. In that year he was appointed Clerk to Mr Secretary Thurloe, and in 1655 he was accredited by Oliver Cromwell to the Duke of Savoy to appeal for the Waldenses. In 1657 he married Susanne de Milleville of Boissy, France, with whom he had three children. In 1660 he went over to the Royalists, meeting King Charles at Breda, Holland. On 20 May, the King knighted him, creating him baron, for revealing a conspiracy against the king's life. He was also granted a pension of£500 per year. In 1661, at the age of 36, he decided to devote himself to mathematics and invention. He devised a mechanical calculator, probably based on the pattern of Blaise Pascal, for adding and subtracting: this was followed in 1666 by one for multiplying and other functions. A Perpetual Calendar or Almanack followed; he toyed with the idea of a "gunpowder engine" for raising water; he developed a range of speaking trum-pets, said to have a range of 1/2 to 1 mile (0.8–1.6 km) or more; also iron stoves for use on board ships, and improvements to barometers.
    By 1675 he had started selling a range of pumps for private houses, for mines or deep wells, for ships, for emptying ponds or draining low ground as well as to quench fire or wet the sails of ships. The pumps cost from £5 to £63, and the great novelty was that he used, instead of packing around the cylinder sealing against the bore of the cylinder, a neck-gland or seal around the outside diameter of the piston or piston-rod. This revolutionary step avoided the necessity of accurately boring the cylinder, replacing it with the need to machine accurately the outside diameter of the piston or rod, a much easier operation. Twenty-seven variations of size and materials were included in his schedule of'Pumps or Water Engines of Isaac Thompson of Great Russel Street', the maker of Morland's design. In 1681 the King made him "Magister mechanicorum", or Master of Machines. In that year he sailed for France to advise Louis XIV on the waterworks being built at Marly to supply the Palace of Versailles. About this time he had shown King Charles plans for a pumping engine "worked by fire alone". He petitioned for a patent for this, but did not pursue the matter.
    In 1692 he went blind. In all, he married five times. While working for Cromwell he became an expert in ciphers, in opening sealed letters and in their rapid copying.
    [br]
    Principal Honours and Distinctions
    Knighted 1660.
    Bibliography
    Further Reading
    H.W.Dickinson, 1970, Sir Samuel Morland: Diplomat and Inventor, Cambridge: Newcomen Society/Heffers.
    IMcN

    Biographical history of technology > Morland, Sir Samuel

См. также в других словарях:

  • Area 51 — Zone 51 37° 14′ 35″ N 115° 48′ 47″ W / 37.24317506879805, 115.81306457519531 …   Wikipédia en Français

  • Area code 816 — is an area code in the state of Missouri that covers the Kansas City Metropolitan Area and the city of St. Joseph to the north. The area code used to cover most of northwestern Missouri to the state s borders with Iowa, Kansas and Nebraska, but… …   Wikipedia

  • Area code 208 — Area code 406poly 90 52 87 163 90 178 32 178 0 188 0 52 Area code 509poly 182 50 163 2 2 2 1 53 Area code 250poly 270 378 261 217 350 218 349 377 Area code 307poly 176 343 175 378 271 378 266 344 Area code 435poly 1 344 0 379 175 378 175 344 Area …   Wikipedia

  • Area code 445 — is a proposed telephone area code for Pennsylvania. Plans to implement area code 445 as an overlay with area codes 215 and 267, which include Philadelphia were delayed, then rescinded by the Pennsylvania Public Utility Commission. [PDFlink| [http …   Wikipedia

  • PLANS — People for Legal and Non Sectarian Schools (PLANS) is an organization based in California in the United States which campaigns against the public funding of Waldorf methods charter schools alleging they violate the United States Constitution s… …   Wikipedia

  • Area code 314 — The area code 314 serves the independent city of St. Louis, Missouri, and most suburbs located in St. Louis County, Missouri.It is bordered by area code 618, across the Mississippi River in Illinois, and by area code 636 in Missouri, which acts… …   Wikipedia

  • Area code 202 — District of Columbia, served by area code 202poly 0 50 49 54 103 84 111 88 101 107 118 130 143 139 179 140 211 188 238 203 260 240 259 248 248 250 255 262 253 357 1 357 Area codes 571 and 703poly 1 1 0 45 52 48 117 84 109 109 121 127 180 136 199… …   Wikipedia

  • Area Control Center — [ thumb|300px|This temporary flight restriction map from the Federal Aviation Administration shows the boundaries of the regions controlled by the Area Control Centers within and adjoining the continental United States, as well as the FAA… …   Wikipedia

  • Area redevelopment plan — An Area redevelopment plan is an urban planning designation created by municipalities in Alberta, Canada for the purposes of facilitating development in specific geographic areas. ARPs differ from Area structure plans in that they apply to areas… …   Wikipedia

  • Area Action Plan — An Area Action Plan is an optional Development Plan Document specified in United Kingdom planning law forming part of a Local Development Framework. It is aimed at establishing a set of proposals and policies for the development of a specific… …   Wikipedia

  • Area of Outstanding Natural Beauty — A map of all AONBs An Area of Outstanding Natural Beauty (AONB) is an area of countryside considered to have significant landscape value in England, Wales or Northern Ireland, that has been specially designated by the Countryside Agency (now… …   Wikipedia

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»