Перевод: с английского на все языки

со всех языков на английский

photography,+film+and+optics

  • 41 Gabor, Dennis (Dénes)

    [br]
    b. 5 June 1900 Budapest, Hungary
    d. 9 February 1979 London, England
    [br]
    Hungarian (naturalized British) physicist, inventor of holography.
    [br]
    Gabor became interested in physics at an early age. Called up for military service in 1918, he was soon released when the First World War came to an end. He then began a mechanical engineering course at the Budapest Technical University, but a further order to register for military service prompted him to flee in 1920 to Germany, where he completed his studies at Berlin Technical University. He was awarded a Diploma in Engineering in 1924 and a Doctorate in Electrical Engineering in 1927. He then went on to work in the physics laboratory of Siemens \& Halske. He returned to Hungary in 1933 and developed a new kind of fluorescent lamp called the plasma lamp. Failing to find a market for this device, Gabor made the decision to abandon his homeland and emigrate to England. There he joined British Thompson-Houston (BTH) in 1934 and married a colleague from the company in 1936. Gabor was also unsuccessful in his attempts to develop the plasma lamp in England, and by 1937 he had begun to work in the field of electron optics. His work was interrupted by the outbreak of war in 1939, although as he was not yet a British subject he was barred from making any significant contribution to the British war effort. It was only when the war was near its end that he was able to return to electron optics and begin the work that led to the invention of holography. The theory was developed during 1947 and 1948; Gabor went on to demonstrate that the theories worked, although it was not until the invention of the laser in 1960 that the full potential of his invention could be appreciated. He coined the term "hologram" from the Greek holos, meaning complete, and gram, meaning written. The three-dimensional images have since found many applications in various fields, including map making, medical imaging, computing, information technology, art and advertising. Gabor left BTH to become an associate professor at the Imperial College of Science and Technology in 1949, a position he held until his retirement in 1967. In 1971 he was awarded the Nobel Prize for Physics for his work on holography.
    [br]
    Principal Honours and Distinctions
    Royal Society Rumford Medal 1968. Franklin Institute Michelson Medal 1968. CBE 1970. Nobel Prize for Physics 1971.
    Bibliography
    1948. "A new microscopic principle", Nature 161:777 (Gabor's earliest publication on holography).
    1949. "Microscopy by reconstructed wavefronts", Proceedings of the Royal Society A197: 454–87.
    1951, "Microscopy by reconstructed wavefronts II", Proc. Phys. Soc. B, 64:449–69. 1966, "Holography or the “Whole Picture”", New Scientist 29:74–8 (an interesting account written after laser beams were used to produce optical holograms).
    Further Reading
    T.E.Allibone, 1980, contribution to Biographical Memoirs of Fellows of the Royal Society 26: 107–47 (a full account of Gabor's life and work).
    JW

    Biographical history of technology > Gabor, Dennis (Dénes)

  • 42 Baekeland, Leo Hendrik

    [br]
    b. 14 November 1863 Saint-Martens-Latern, Belgium
    d. 23 February 1944 Beacon, New York, USA
    [br]
    Belgian/American inventor of the Velox photographic process and the synthetic plastic Bakélite.
    [br]
    The son of an illiterate shoemaker, Baekeland was first apprenticed in that trade, but was encouraged by his mother to study, with spectacular results. He won a scholarship to Gand University and graduated in chemistry. Before he was 21 he had achieved his doctorate, and soon afterwards he obtained professorships at Bruges and then at Gand. Baekeland seemed set for a distinguished academic career, but he turned towards the industrial applications of chemistry, especially in photography.
    Baekeland travelled to New York to further this interest, but his first inventions met with little success so he decided to concentrate on one that seemed to have distinct commercial possibilities. This was a photographic paper that could be developed in artificial light; he called this "gas light" paper Velox, using the less sensitive silver chloride as a light-sensitive agent. It proved to have good properties and was easy to use, at a time of photography's rising popularity. By 1896 the process began to be profitable, and three years later Baekeland disposed of his plant to Eastman Kodak for a handsome sum, said to be $3–4 million. That enabled him to retire from business and set up a laboratory at Yonkers to pursue his own research, including on synthetic resins. Several chemists had earlier obtained resinous products from the reaction between phenol and formaldehyde but had ignored them. By 1907 Baekeland had achieved sufficient control over the reaction to obtain a good thermosetting resin which he called "Bakélite". It showed good electrical insulation and resistance to chemicals, and was unchanged by heat. It could be moulded while plastic and would then set hard on heating, with its only drawback being its brittleness. Bakelite was an immediate success in the electrical industry and Baekeland set up the General Bakelite Company in 1910 to manufacture and market the product. The firm grew steadily, becoming the Bakélite Corporation in 1924, with Baekeland still as active President.
    [br]
    Principal Honours and Distinctions
    President, Electrochemical Society 1909. President, American Chemical Society 1924. Elected to the National Academy of Sciences 1936.
    Further Reading
    J.Gillis, 1965, Leo Baekeland, Brussels.
    A.R.Matthis, 1948, Leo H.Baekeland, Professeur, Docteur ès Sciences, chimiste, inventeur et grand industriel, Brussels.
    J.K.Mumford, 1924, The Story of Bakélite.
    C.F.Kettering, 1947, memoir on Baekeland, Biographical Memoirs of the National Academy of Sciences 24 (includes a list of his honours and publications).
    LRD

    Biographical history of technology > Baekeland, Leo Hendrik

  • 43 Joly, John

    [br]
    b. 1857 Holywood, King's County (now County Down, Northwern Ireland), Ireland
    d. 8 December 1933 Dublin, Eire
    [br]
    Irish pioneer of additive screen-plate colour photography.
    [br]
    Professor of Physics at Trinity College, Dublin, Joly developed a concept first suggested by Ducos du Hauron, creating in 1893 a process in which fine transparent red, green and blue lines, less than 0.1 mm wide, were ruled on a glass plate. The coloured inks were aniline dyes mixed with gum. This screen plate was held in close contact with a photographic negative plate which was exposed through the screen in a camera. The processed negative was printed onto a positive plate, and a viewing screen, similar to that used for taking, was bound up with it in careful register, to reproduce the original colours. The process was patented in 1894, and marketed in 1895. It was the first commercially successful additive screen-plate process to appear. While the results could be quite acceptable, the inadequate colour sensitivity of the negative plates then available limited the usefulness of this process. Professor Joly's other achievements included geological research and the treatment of cancer by radium.
    [br]
    Further Reading
    J.S.Friedman, 1944, History of Colour Photography, Boston.
    B.Coe, 1978, Colour Photography: The First Hundred Years, London. G.Koshofer, 1981, Farbfotografie, Vol. I, Munich.
    BC

    Biographical history of technology > Joly, John

  • 44 Land, Edwin Herbert

    [br]
    b. 7 May 1909 Bridgeport, Connecticut, USA
    d. 1 March 1991 Cambridge, Massachusetts, USA
    [br]
    American scientist and inventor of the Polaroid instant-picture process.
    [br]
    Edwin Land's career began when, as a Harvard undergraduate in the late 1920s, he became interested in the possibility of developing a polarizing filter in the form of a thin sheet, to replace the crystal and stacked-glass devices then in use, which were expensive, cumbersome and limited in size. He succeeded in creating a material in which minute anisotropic iodine crystals were oriented in line, producing an efficient polarizer that was patented in 1929. After presenting the result of his researches in a Physics Department colloquium at Harvard, he left to form a partnership with George Wheelwright to manufacture the new material, which was seen to have applications as diverse as anti-glare car headlights, sunglasses, and viewing filters for stereoscopic photographs and films. In 1937 he founded the Polaroid Corporation and developed the Vectograph process, in which self-polarized photographic images could be printed, giving a stereoscopic image when viewed through polarizing viewers. Land's most significant invention, the instant picture, was stimulated by his three-year-old daughter. As he took a snapshot of her, she asked why she could not see the picture at once. He began to research the possibility, and on 21 February 1947 he demonstrated a system of one-step photography at a meeting of the Optical Society of America. Using the principle of diffusion transfer of the image, it produced a photograph in one minute. The Polaroid Land camera was launched on 26 November 1948. The original sepia-coloured images were soon replaced by black and white and, in 1963, by Polacolor instant colour film. The original peel-apart "wet" process was superseded in 1972 with the introduction of the SX-70 camera with dry picture units which developed in the light. The instant colour movie system Polavision, introduced in 1978, was less successful and was one of his few commercial failures.
    Land died in March 1991, after a career in which he had been honoured by countless scien-tific and academic bodies and had received the Medal of Freedom, the highest civilian honour in America.
    [br]
    Principal Honours and Distinctions
    Medal of Freedom.
    BC

    Biographical history of technology > Land, Edwin Herbert

  • 45 Pouncy, John

    [br]
    b. 1820 England
    d. 1894 Dorchester (?), Dorset, England
    [br]
    English photographer and pioneer of the gum bichromate permanent printing process.
    [br]
    A professional photographer working from a studio in Dorchester, Pouncy had a long interest in "permanent" photographs. In 1857 he published two volumes of photolithographed views of Dorset. He was later to devise a number of variations of the photolithographic process.
    Pouncy is best remembered for his pigment process, patented in 1858, using vegetable carbon, gum arabic and potassium bichromate. His prints exhibited at the London Photographic Society the same year were greatly admired. However, Pouncy's gum bichromate process was, in fact, covered by earlier patents filed by Poitevin, but this did not deter Pouncy from submitting his prints to the Duke of Lyne's competition for permanent photographs in 1859. For the excellence of his work, Pouncy was awarded the lesser part of the major prize won by Poitevin. Although Pouncy's work was not original, he pioneered the carbon process in England and can be considered the practical founder of the different technique of gum bichromate printing.
    [br]
    Bibliography
    10 April 1858, British patent no. 780 (gum bichromate permanent printing process).
    Further Reading
    John Werge, 1890, The Evolution of Photography, London (an interesting contemporary account of Pouncy's work).
    J.M.Eder, 1945, History of Photography, trans. E. Epstean, New York.
    H.Gernshiem and A.Gernsheim, 1969, The History of Photography, rev. edn, London. G.Wakeman, 1973, Victorian Book Illustration, Great Britain (a good popular account of Pouncy's work).
    JW

    Biographical history of technology > Pouncy, John

  • 46 Claudet, Antoine François Jean

    [br]
    b. 12 August 1797 France
    d. 27 December 1867 London, England
    [br]
    French pioneer photographer and photographic inventor in England.
    [br]
    He began his working life in banking but soon went into glassmaking and in 1829 he moved to London to open a glass warehouse. On hearing of the first practicable photographic processes in 1834, Claudet visited Paris, where he received instruction in the daguerreotype process from the inventor Daguerre, and purchased a licence to operate in England. On returning to London he began to sell daguerreotype views of Paris and Rome, but was soon taking and selling his own views of London. At this time exposures could take as long as thirty minutes and portraiture from life was impracticable. Claudet was fascinated by the possibilities of the daguerreotype and embarked on experiments to improve the process. In 1841 he published details of an accelerated process and took out a patent proposing the use of flat painted backgrounds and a red light in dark-rooms. In June of that year Claudet opened the second daguerreotype portrait studio in London, just three months after his rival, Richard Beard. He took stereoscopic photographs for Wheatstone as early as 1842, although it was not until the 1850s that stereoscopy became a major interest. He suggested and patented several improvements to viewers derived from Brewster's pattern.
    Claudet was also one of the first photographers to practise professionally Talbot's calotype process. He became a personal friend of Talbot, one of the few from whom the inventor was prepared to accept advice. Claudet died suddenly in London following an accident that occurred when he was alighting from an omnibus. A memoir produced shortly after his death lists over forty scientific papers relating to his researches into photography.
    [br]
    Principal Honours and Distinctions
    FRS 1853.
    Further Reading
    "The late M.Claudet", 1868, Photographic News 12:3 (obituary).
    "A.Claudet, FRS, a memoir", 1968, (reprinted from The Scientific Review), London: British Association (a fulsome but valuable Victorian view of Claudet).
    H.Gernsheim and A.Gernsheim, 1969, The History of Photography, rev. edn, London (a comprehensive account of Claudet's daguerreotype work).
    H.J.P.Arnold, 1977, William Henry Fox Talbot, London (provides details of Claudet's relationship with Talbot).
    JW

    Biographical history of technology > Claudet, Antoine François Jean

  • 47 Cros, Hortensius Emile Charles

    [br]
    b. 1 October 1842 Fabrezan (Aude), France
    d. 9 August 1888 Paris, France
    [br]
    French inventor of chromolithography and the principles of reproducible sound recording.
    [br]
    He received no formal education, but was brought up by his father, a distinguished teacher and philosopher. He dabbled in diverse subjects (modern and ancient languages, mathematics, drawing) in 1856–60 when he became an instructor at the institute of the Deaf-Mute at Paris. He became a prolific inventor and poet and took part in artistic life in Paris. In the 1867 Exposition Universelle in Paris, Cros contributed a facsimile telegraph; he deposited with the Académie des Sciences a sealed text on photography which was not opened until 1876. In the meantime he published a small text on a general solution of the problem of colour photography which appeared almost simultaneously with a similar publication by Louis Ducos du Hauron and which gave rise to bitter discussions over priority. He deposited a sealed paper on 18 April 1877 concerning his concept of apparatus for recording and reproduction of sound which he called the paléophone. When it was opened on 3 December 1877 it was not known that T.A. Edison was already active in this field: Cros is considered the conceptual founder of reproducible sound, whereas Edison was the first "to reduce to practice", which is one of the US criteria for patentability.
    [br]
    Bibliography
    French patent no. 124, 213 (filed 1 May and 2 August 1878).
    Further Reading
    Louis Forestier, 1969, Charles Cros: L'Homme et l'oeuvre, Paris: Seghers.
    GB-N

    Biographical history of technology > Cros, Hortensius Emile Charles

  • 48 De Forest, Lee

    [br]
    b. 26 August 1873 Council Bluffs, Iowa, USA
    d. 30 June 1961 Hollywood, California, USA
    [br]
    American electrical engineer and inventor principally known for his invention of the Audion, or triode, vacuum tube; also a pioneer of sound in the cinema.
    [br]
    De Forest was born into the family of a Congregational minister that moved to Alabama in 1879 when the father became President of a college for African-Americans; this was a position that led to the family's social ostracism by the white community. By the time he was 13 years old, De Forest was already a keen mechanical inventor, and in 1893, rejecting his father's plan for him to become a clergyman, he entered the Sheffield Scientific School of Yale University. Following his first degree, he went on to study the propagation of electromagnetic waves, gaining a PhD in physics in 1899 for his thesis on the "Reflection of Hertzian Waves from the Ends of Parallel Wires", probably the first US thesis in the field of radio.
    He then joined the Western Electric Company in Chicago where he helped develop the infant technology of wireless, working his way up from a modest post in the production area to a position in the experimental laboratory. There, working alone after normal working hours, he developed a detector of electromagnetic waves based on an electrolytic device similar to that already invented by Fleming in England. Recognizing his talents, a number of financial backers enabled him to set up his own business in 1902 under the name of De Forest Wireless Telegraphy Company; he was soon demonstrating wireless telegraphy to interested parties and entering into competition with the American Marconi Company.
    Despite the failure of this company because of fraud by his partners, he continued his experiments; in 1907, by adding a third electrode, a wire mesh, between the anode and cathode of the thermionic diode invented by Fleming in 1904, he was able to produce the amplifying device now known as the triode valve and achieve a sensitivity of radio-signal reception much greater than possible with the passive carborundum and electrolytic detectors hitherto available. Patented under the name Audion, this new vacuum device was soon successfully used for experimental broadcasts of music and speech in New York and Paris. The invention of the Audion has been described as the beginning of the electronic era. Although much development work was required before its full potential was realized, the Audion opened the way to progress in all areas of sound transmission, recording and reproduction. The patent was challenged by Fleming and it was not until 1943 that De Forest's claim was finally recognized.
    Overcoming the near failure of his new company, the De Forest Radio Telephone Company, as well as unsuccessful charges of fraudulent promotion of the Audion, he continued to exploit the potential of his invention. By 1912 he had used transformer-coupling of several Audion stages to achieve high gain at radio frequencies, making long-distance communication a practical proposition, and had applied positive feedback from the Audion output anode to its input grid to realize a stable transmitter oscillator and modulator. These successes led to prolonged patent litigation with Edwin Armstrong and others, and he eventually sold the manufacturing rights, in retrospect often for a pittance.
    During the early 1920s De Forest began a fruitful association with T.W.Case, who for around ten years had been working to perfect a moving-picture sound system. De Forest claimed to have had an interest in sound films as early as 1900, and Case now began to supply him with photoelectric cells and primitive sound cameras. He eventually devised a variable-density sound-on-film system utilizing a glow-discharge modulator, the Photion. By 1926 De Forest's Phonofilm had been successfully demonstrated in over fifty theatres and this system became the basis of Movietone. Though his ideas were on the right lines, the technology was insufficiently developed and it was left to others to produce a system acceptable to the film industry. However, De Forest had played a key role in transforming the nature of the film industry; within a space of five years the production of silent films had all but ceased.
    In the following decade De Forest applied the Audion to the development of medical diathermy. Finally, after spending most of his working life as an independent inventor and entrepreneur, he worked for a time during the Second World War at the Bell Telephone Laboratories on military applications of electronics.
    [br]
    Principal Honours and Distinctions
    Institute of Electronic and Radio Engineers Medal of Honour 1922. President, Institute of Electronic and Radio Engineers 1930. Institute of Electrical and Electronics Engineers Edison Medal 1946.
    Bibliography
    1904, "Electrolytic detectors", Electrician 54:94 (describes the electrolytic detector). 1907, US patent no. 841,387 (the Audion).
    1950, Father of Radio, Chicago: WIlcox \& Follett (autobiography).
    De Forest gave his own account of the development of his sound-on-film system in a series of articles: 1923. "The Phonofilm", Transactions of the Society of Motion Picture Engineers 16 (May): 61–75; 1924. "Phonofilm progress", Transactions of the Society of Motion Picture Engineers 20:17–19; 1927, "Recent developments in the Phonofilm", Transactions of the Society of Motion Picture Engineers 27:64–76; 1941, "Pioneering in talking pictures", Journal of the Society of Motion Picture Engineers 36 (January): 41–9.
    Further Reading
    G.Carneal, 1930, A Conqueror of Space (biography).
    I.Levine, 1964, Electronics Pioneer, Lee De Forest (biography).
    E.I.Sponable, 1947, "Historical development of sound films", Journal of the Society of Motion Picture Engineers 48 (April): 275–303 (an authoritative account of De Forest's sound-film work, by Case's assistant).
    W.R.McLaurin, 1949, Invention and Innovation in the Radio Industry.
    C.F.Booth, 1955, "Fleming and De Forest. An appreciation", in Thermionic Valves 1904– 1954, IEE.
    V.J.Phillips, 1980, Early Radio Detectors, London: Peter Peregrinus.
    KF / JW

    Biographical history of technology > De Forest, Lee

  • 49 Hunt, Robert

    [br]
    b. 6 September 1807 Devonport, Devon, England
    d. 19 March 1887 England
    [br]
    English photographic pioneer and writer.
    [br]
    A chemist by training, Hunt took an early interest in photography and during the 1840s devised several original photographic processes and techniques. The properties of iron sulphate as a developing agent, widely used by wet-collodion photographers, were first described by Hunt in 1844. He was a prolific author and it was as a writer that he was most influential. In 1841 he published the first substantial English-language photographic manual, a work that was to run to six editions. Perhaps his most important work was his Researches on Light, first published in 1844, with a second edition containing considerable additional material appearing in 1854. In 1851 Hunt was appointed Professor of Mechanical Science at the Royal School of Mines in London. He was a founder member of the London (later Royal) Photographic Society in 1853.
    [br]
    Principal Honours and Distinctions
    Member of the Royal Society 1854.
    Further Reading
    C.Thomas, 1988, Views and Likenesses, Truro: Royal Institution of Cornwall (a brief account of Hunt's life and work).
    H.Gernsheim and A.Gernsheim, 1969, The History of Photography, rev. edn, London.
    JW

    Biographical history of technology > Hunt, Robert

  • 50 Lauste, Eugène Augustin

    [br]
    b. 1857 Montmartre, France d. 1935
    [br]
    French inventor who devised the first practicable sound-on-film system.
    [br]
    Lauste was a prolific inventor who as a 22-year-old had more than fifty patents to his name. He joined Edison's West Orange Laboratory as Assistant to W.K.L. Dickson in 1887; he was soon involved in the development of early motion pictures, beginning an association with the cinema that was to dominate the rest of his working life. He left Edison in 1892 to pursue an interest in petrol engines, but within two years he returned to cinematography, where, in association with Major Woodville Latham, he introduced small but significant improvements to film-projection systems. In 1900 an interest in sound recording, dating back to his early days with Edison, led Lauste to begin exploring the possibility of recording sound photographically on film alongside the picture. In 1904 he moved to England, where he continued his experiments, and by 1907 he had succeeded in photographing a sound trace and picture simultaneously, each image occupying half the width of the film.
    Despite successful demonstrations of Lauste's system on both sides of the Atlantic, he enjoyed no commercial success. Handicapped by lack of capital, his efforts were finally brought to an end by the First World War. In 1906 Lauste had filed a patent for his sound-on-film system, which has been described by some authorities as the master patent for talking pictures. Although this claim is questionable, he was the first to produce a practicable scund-on-film system and establish the basic principles that were universally followed until the introduction of magnetic sound.
    [br]
    Bibliography
    11 August 1906, with Robert R.Haines and John S.Pletts, British Patent no. 18,057 (sound-on-film system).
    Further Reading
    The most complete accounts of Lauste's work and the history of sound films can be found in the Journal of the Society of Motion Picture (and Television) Engineers.
    For an excellent account of Lauste's work, see the Report of the Historical Committee, 1931, Journal of the Society of Motion Picture Engin eers 16 (January):105–9; and Merritt Crawford, 1941, Journal of the Society of Motion Picture Engineers, 17 (October) 632–44.
    For good general accounts of the evolution of sound in the cinema, see: E.I.Sponable, 1947, Journal of the Society of Motion Picture Engineers 48:275–303 and 407–22; E.W.Kellog, 1955, Journal of the Society of Motion Picture Engineers 64:291–302 and 356–74.
    JW

    Biographical history of technology > Lauste, Eugène Augustin

  • 51 Niepce, Joseph Nicéphore

    [br]
    b. 1765 France
    d. 5 July 1833 Chalon, France
    [br]
    French inventor who was the first to produce permanent photographic images with the aid of a camera.
    [br]
    Coming from a prosperous family, Niepce was educated in a Catholic seminary and destined for the priesthood. The French Revolution intervened and Niepce became an officer in an infantry regiment. An attack of typhoid fever in Italy ended his military career, and he returned to France and was married. Returning to his paternal home in Chalon in 1801, he joined with his brother Claude to construct an ingenious engine called the pyréolophore, which they patented in 1807. The French Government also encouraged the brothers in their attempts to produce large quantities of indigo-blue dye from wood, a venture that was ultimately unsuccessful.
    Nicéphore began to experiment with lithography, which led him to take an interest in the properties of light-sensitive materials. He pursued this interest after Claude moved to Paris in 1816 and is reported to have made negative images in a camera obscura using paper soaked in silver chloride. Niepce went on to experiment with bitumen of judea, a substance that hardened on exposure to light. In 1822, using bitumen of judea on glass, he produced a heliograph from an engraving. The first images from nature may have been made as early as 1824, but the world's earliest surviving photographic image was made in 1826. A view of the courtyard of Niepce's home in Chalon was captured on a pewter plate coated with bitumen of judea; an exposure of several hours was required, the softer parts of the bitumen being dissolved away by a solvent to reveal the image.
    In 1827 he took examples of his work to London where he met Francis Bauer, Secretary of the Royal Society. Nothing came of this meeting, but on returning to France Niepce continued his work and in 1829 entered into a formal partnership with L.J.M. Daguerre with a view to developing their mutual interest in capturing images formed by the camera obscura. However, the partnership made only limited progress and was terminated by Niepce's death in 1833. It was another six years before the announcement of the first practicable photographic processes was made.
    [br]
    Bibliography
    1973. Joseph Nicéphore Niepce lettres 1816–7, Pavillon de Photographie du Parc Naturel, Régional de Brotonne.
    1974, Joseph Nicéphore Niepce correspondences 1825–1829, Pavillon de Photographie du Parc Naturel, Régional de Brotonne.
    Further Reading
    J.M.Eder, 1945, History of Photography, trans. E. Epstean, New York (provides a full account of Niepce's life and work).
    H.Gernsheim and A.Gernsheim, 1969, The History of Photography, rev. edn, London (provides a full account of Niepce's life and work).
    JW

    Biographical history of technology > Niepce, Joseph Nicéphore

  • 52 Voigtländer, Peter Wilhelm Friedrich

    [br]
    b. 1812 Vienna, Austria d. 1878
    [br]
    Austrian manufacturer of the first purpose-designed photographic objective; key member of a dynasty of optical instrument makers.
    [br]
    Educated at the Polytechnic Institute in Vienna, Voigtländer travelled widely before taking over the family business in 1837. The business had been founded by Voigtländer's grandfather in 1756, and was continued by his father, Johann Friedrich, the inventor of the opera glass, and by the 1830s enjoyed one of the highest reputations in Europe. When Petzval made the calculations for the first purpose-designed photographic objective in 1840, it was inevitable that he should go to Peter Voigtländer for advice. The business went on to manufacture Petzval's lens, which was also fitted to an all-metal camera of totally original design by Voigtländer.
    The Petzval lens was an extraordinary commercial success and Voigtländer sold specimens all over the world. Unfortunately Petzval had no formal agreement with Voigtländer and made little financial gain from his design, a fact which was to lead to dispute and separation; the Voigtländer concern continued to prosper, however. To meet the increasing demand for his products, Peter Voigtländer built a new factory in Brunswick and closed the business in Vienna. The closure is seen by at least one commentator as the death blow to Vienna's optical industry, a field in which it was once preeminent. The Voigtländer dynasty continued long after Peter's death and the name enjoyed a reputation for high-quality photographic equipment well into the twentieth century.
    [br]
    Principal Honours and Distinctions
    Hereditary Peerage bestowed by the Emperor of Austria 1868.
    Further Reading
    L.W.Sipley, 1965, Photography's Great Inventors, Philadelphia (a brief biography). J.M.Eder, 1945, History of Photography, trans. E.Epstean, New York.
    JW

    Biographical history of technology > Voigtländer, Peter Wilhelm Friedrich

  • 53 Waterhouse, Major-General James

    [br]
    b. 1841
    d. 28 September 1922
    [br]
    English military man and photographer.
    [br]
    Waterhouse spent most of his career in the Indian Army. In 1861–2 he was commissioned to photograph the tribes of central India, and over the next few years visited many parts of the subcontinent. In November 1866, after working for five months in the Great Trigonometrical Survey learning the process of photozincography (an early photomechanical process used chiefly for map making), he took charge of photographic operations at the Surveyor-General's office in Calcutta, a post he held until retiring in 1897. During this time he developed many improvements in the photomechanical methods used for reproduction in his office. He also experimented with methods of colour-sensitizing photographic materials, experimenting with eosine dye and publishing in 1875 the fact that this made silver halide salts sensitive to yellow light. He also discovered that gelatine dry plates could be made sensitive to red and infra-red illumination by treatment with alizarine blue solution.
    He continued his researches upon his retirement and return to England in 1897, and made a special study of the early history of the photographic process. His work on dye sensitizing brought him the Progress Medal of the Royal Photographic Society, and the Vienna Photographic Society awarded him the Voigtländer Medal for researches in scientific photography. One invention often erroneously attributed to him is the Waterhouse stop, the use of a series of perforated plates as a means of adjusting the aperture of a photographic lens. This was described in 1858 by a John Waterhouse, being his only contribution to photography.
    BC

    Biographical history of technology > Waterhouse, Major-General James

  • 54 Bayard, Hippolyte

    [br]
    b. 1801 Breteuil-sur-Noye, France d. 1887
    [br]
    French photographer, inventor of an early direct positive paper process.
    [br]
    Educated as a notary's clerk, Bayard began his working life in Paris in the Ministry of Finance. His interest in art led him to investigations into the chemical action of light, and he began his experiments in 1837. In May 1839 Bayard described an original photographic process which produced direct positive images on paper. It was devised independently of Talbot and before details of Daguerre's process had been published. During the same period, similar techniques were announced by other investigators and Bayard became involved in a series of priority disputes. Bayard's photographs were well received when first exhibited, and examples survive to the present day. Because the process required long exposure times it was rarely practised, but Bayard is generally credited with being an independent inventor of photography.
    [br]
    Bibliography
    1840, Comptes rendus (24 February): 337 (the first published details of Bayard's process).
    Further Reading
    H.Gernsheim and A.Gernsheim, 1969, The History of Photography, rev. edn, London.
    JW

    Biographical history of technology > Bayard, Hippolyte

  • 55 Dagron, Prudent René-Patrice

    [br]
    b. 1819 Beaumont, France
    d. June 1900 Paris, France
    [br]
    French photographer who specialized in microphotography.
    [br]
    Dagron studied chemistry, but little else is known of his early career. He was the proprietor of a Paris shop selling stationery and office equipment in 1860, when he proposed making microscopic photographs mounted in jewellery. Dagron went on to produce examples using equipment constructed by the optician Debozcq. In 1864 Dagron became one of the celebrities of the day when he recorded 450 portraits on a single photograph that measured 1 mm3. The image was viewed by means of a tiny magnifying lens popularly known as a "Stanhope" after its supposed inventor, the English Lord Charles Stanhope. The great demand for Stanhoped jewellery soon allowed Dagron to build a factory for its manufacture. Dagron's main claim to fame rests on his work during the Franco-Prussian War. At the siege of Paris, Dagron was ballooned out of the city to organize a carrier-pigeon communication service. Thousands of microphotographed dispatches could be carried by a single pigeon, and Dagron set up a regular service between Paris and Tours. In Paris the messages from the outside world were enlarged and projected onto a white wall and transcribed by a team of clerks. After the war, Dagron dabbled in aerial photography from balloons, but his interest in microphotography continued until his death in 1900.
    [br]
    Further Reading
    G.Tissandier, 1874, Les Merveilles de la photographie, Paris (a contemporary account of Dagron's work during the siege of Paris).
    H.Gernsheim and A.Gernsheim, 1969, The History of Photography, rev. edn, London.
    JW

    Biographical history of technology > Dagron, Prudent René-Patrice

  • 56 England, William

    [br]
    b. early 19th century
    d. 1896 London, England
    [br]
    English photographer, inventor of an early focal-plane shutter.
    [br]
    England began his distinguished photographic career taking daguerreotype portraits in London in the 1840s. In 1854 he joined the London Stereoscopic Company and became its chief photographer, taking thousands of stereoscopic views all over the world. In 1859 he travelled to America to take views of the Niagara Falls. On returning to Britain he became a freelance photographer, adding to his considerable reputation with a long series of stereoscopic alpine views. He also became interested in panoramic photography and, later, photolithography. England's most important technical innovation was a drop shutter with a horizontal slit sited immediately in front of the plate. Proposed in 1861, this was a crude device, but is usually recognized as the precursor of the modern focal-plane shutter.
    [br]
    Further Reading
    Michael Aver, 1985, Photographers Encyclopedia International, Vol. I (A-K), Hermance, Switzerland.
    H.Gernsheim and A.Gernsheim, 1969, The History of Photography, rev. edn, London.
    JW

    Biographical history of technology > England, William

  • 57 Ponton, Mungo

    [br]
    b. 1801 Balgreen, Scotland
    d. 1880 Clifton, England
    [br]
    Scottish discoverer of the light sensitivity of potassium bichromate.
    [br]
    Employed as Secretary of the Bank of Scotland, Ponton was an amateur photographer and described details of experiments on the effect of light on potassium bichromate in May 1839, only months after the announcement of the first practicable photographic processes. In a paper communicated to the Society of Arts for Scotland (of which he was Vice-President), Ponton suggested that paper soaked in a solution of potassium bichromate could be used as a cheap substitute for paper coated with silver salts. Although Ponton's descriptions were received with interest, potassium bichromate was not widely employed at the time; his work was to be exploited later, however, in the development of permanent photographic and photomechanical printing processes.
    [br]
    Bibliography
    For the original announcement of Ponton's work, see Edinburgh New Philosophical Journal 1839, p. 169.
    Further Reading
    J.M.Eder, 1945, History of Photography, trans. E.Epstean, New York.
    H.Gernsheim and A.Gernsheim, 1969, The History of Photography, rev. edn, London.
    JW

    Biographical history of technology > Ponton, Mungo

  • 58 Anschütz, Ottomar

    [br]
    b. 1846 Lissa, Prussia (now Leszno, Poland) d. 1907
    [br]
    German photographer, chronophotographer ana inventor.
    [br]
    The son of a commercial photographer, Anschütz entered the business in 1868 and developed an interest in the process of instantaneous photography. The process was very difficult with the contemporary wet-plate process, but with the introduction of the much faster dry plates in the late 1870s he was able to make progress. Anschütz designed a focal plane shutter capable of operating at speeds up to 1/1000 of a second in 1883, and patented his design in 1888. it involved a vertically moving fabric roller-blind that worked at a fixed tension but had a slit the width of which could be adjusted to alter the exposure time. This design was adopted by C.P.Goerz, who from 1890 manufactures a number of cameras that incorporated it.
    Anschütz's action pictures of flying birds and animals attracted the attention of the Prussian authorities, and in 1886 the Chamber of Deputies authorized financial support for him to continue his work, which had started at the Hanover Military Institute in October 1885. Inspired by the work of Eadweard Muybridge in America, Anschütz had set up rows of cameras whose focal-plane shutters were released in sequence by electromagnets, taking twenty-four pictures in about three-quarters of a second. He made a large number of studies of the actions of people, animals and birds, and at the Krupp artillery range at Meppen, near Essen, he recorded shells in flight. His pictures were reproduced, and favourably commented upon, in scientific and photographic journals.
    To bring the pictures to the public, in 1887 he created the Electro-Tachyscope. The sequence negatives were printed as 90 x 120 mm transparencies and fixed around the circumference of a large steel disc. This was rotated in front of a spirally wound Geissler tube, which produced a momentary brilliant flash of light when a high voltage from an induction coil was applied to it, triggered by contacts on the steel disc. The flash duration, about 1/1000 of a second, was so short that it "froze" each picture as it passed the tube. The pictures succeeded each other at intervals of about 1/30 of a second, and the observer saw an apparently continuously lit moving picture. The Electro-Tachyscope was shown publicly in Berlin at the Kulturministerium from 19 to 21 March 1887; subsequently Siemens \& Halske manufactured 100 machines, which were shown throughout Europe and America in the early 1890s. From 1891 his pictures were available for the home in the form of the Tachyscope viewer, which used the principle of the zoetrope: sequence photographs were printed on long strips of thin card, perforated with narrow slots between the pictures. Placed around the circumference of a shallow cylinder and rotated, the pictures could be seen in life-like movement when viewed through the slots.
    In November 1894 Anschütz displayed a projector using two picture discs with twelve images each, which through a form of Maltese cross movement were rotated intermittently and alternately while a rotating shutter allowed each picture to blend with the next so that no flicker occurred. The first public shows, given in Berlin, were on a screen 6×8 m (20×26 ft) in size. From 22 February 1895 they were shown regularly to audiences of 300 in a building on the Leipzigstrasse; they were the first projected motion pictures seen in Germany.
    [br]
    Further Reading
    J.Deslandes, 1966, Histoire comparée du cinéma, Vol. I, Paris. B.Coe, 1992, Muybridge and the Chronophotographers, London.
    BC

    Biographical history of technology > Anschütz, Ottomar

  • 59 Edison, Thomas Alva

    [br]
    b. 11 February 1847 Milan, Ohio, USA
    d. 18 October 1931 Glenmont
    [br]
    American inventor and pioneer electrical developer.
    [br]
    He was the son of Samuel Edison, who was in the timber business. His schooling was delayed due to scarlet fever until 1855, when he was 8½ years old, but he was an avid reader. By the age of 14 he had a job as a newsboy on the railway from Port Huron to Detroit, a distance of sixty-three miles (101 km). He worked a fourteen-hour day with a stopover of five hours, which he spent in the Detroit Free Library. He also sold sweets on the train and, later, fruit and vegetables, and was soon making a profit of $20 a week. He then started two stores in Port Huron and used a spare freight car as a laboratory. He added a hand-printing press to produce 400 copies weekly of The Grand Trunk Herald, most of which he compiled and edited himself. He set himself to learn telegraphy from the station agent at Mount Clements, whose son he had saved from being run over by a freight car.
    At the age of 16 he became a telegraphist at Port Huron. In 1863 he became railway telegraphist at the busy Stratford Junction of the Grand Trunk Railroad, arranging a clock with a notched wheel to give the hourly signal which was to prove that he was awake and at his post! He left hurriedly after failing to hold a train which was nearly involved in a head-on collision. He usually worked the night shift, allowing himself time for experiments during the day. His first invention was an arrangement of two Morse registers so that a high-speed input could be decoded at a slower speed. Moving from place to place he held many positions as a telegraphist. In Boston he invented an automatic vote recorder for Congress and patented it, but the idea was rejected. This was the first of a total of 1180 patents that he was to take out during his lifetime. After six years he resigned from the Western Union Company to devote all his time to invention, his next idea being an improved ticker-tape machine for stockbrokers. He developed a duplex telegraphy system, but this was turned down by the Western Union Company. He then moved to New York.
    Edison found accommodation in the battery room of Law's Gold Reporting Company, sleeping in the cellar, and there his repair of a broken transmitter marked him as someone of special talents. His superior soon resigned, and he was promoted with a salary of $300 a month. Western Union paid him $40,000 for the sole rights on future improvements on the duplex telegraph, and he moved to Ward Street, Newark, New Jersey, where he employed a gathering of specialist engineers. Within a year, he married one of his employees, Mary Stilwell, when she was only 16: a daughter, Marion, was born in 1872, and two sons, Thomas and William, in 1876 and 1879, respectively.
    He continued to work on the automatic telegraph, a device to send out messages faster than they could be tapped out by hand: that is, over fifty words per minute or so. An earlier machine by Alexander Bain worked at up to 400 words per minute, but was not good over long distances. Edison agreed to work on improving this feature of Bain's machine for the Automatic Telegraph Company (ATC) for $40,000. He improved it to a working speed of 500 words per minute and ran a test between Washington and New York. Hoping to sell their equipment to the Post Office in Britain, ATC sent Edison to England in 1873 to negotiate. A 500-word message was to be sent from Liverpool to London every half-hour for six hours, followed by tests on 2,200 miles (3,540 km) of cable at Greenwich. Only confused results were obtained due to induction in the cable, which lay coiled in a water tank. Edison returned to New York, where he worked on his quadruplex telegraph system, tests of which proved a success between New York and Albany in December 1874. Unfortunately, simultaneous negotiation with Western Union and ATC resulted in a lawsuit.
    Alexander Graham Bell was granted a patent for a telephone in March 1876 while Edison was still working on the same idea. His improvements allowed the device to operate over a distance of hundreds of miles instead of only a few miles. Tests were carried out over the 106 miles (170 km) between New York and Philadelphia. Edison applied for a patent on the carbon-button transmitter in April 1877, Western Union agreeing to pay him $6,000 a year for the seventeen-year duration of the patent. In these years he was also working on the development of the electric lamp and on a duplicating machine which would make up to 3,000 copies from a stencil. In 1876–7 he moved from Newark to Menlo Park, twenty-four miles (39 km) from New York on the Pennsylvania Railway, near Elizabeth. He had bought a house there around which he built the premises that would become his "inventions factory". It was there that he began the use of his 200- page pocket notebooks, each of which lasted him about two weeks, so prolific were his ideas. When he died he left 3,400 of them filled with notes and sketches.
    Late in 1877 he applied for a patent for a phonograph which was granted on 19 February 1878, and by the end of the year he had formed a company to manufacture this totally new product. At the time, Edison saw the device primarily as a business aid rather than for entertainment, rather as a dictating machine. In August 1878 he was granted a British patent. In July 1878 he tried to measure the heat from the solar corona at a solar eclipse viewed from Rawlins, Wyoming, but his "tasimeter" was too sensitive.
    Probably his greatest achievement was "The Subdivision of the Electric Light" or the "glow bulb". He tried many materials for the filament before settling on carbon. He gave a demonstration of electric light by lighting up Menlo Park and inviting the public. Edison was, of course, faced with the problem of inventing and producing all the ancillaries which go to make up the electrical system of generation and distribution-meters, fuses, insulation, switches, cabling—even generators had to be designed and built; everything was new. He started a number of manufacturing companies to produce the various components needed.
    In 1881 he built the world's largest generator, which weighed 27 tons, to light 1,200 lamps at the Paris Exhibition. It was later moved to England to be used in the world's first central power station with steam engine drive at Holborn Viaduct, London. In September 1882 he started up his Pearl Street Generating Station in New York, which led to a worldwide increase in the application of electric power, particularly for lighting. At the same time as these developments, he built a 1,300yd (1,190m) electric railway at Menlo Park.
    On 9 August 1884 his wife died of typhoid. Using his telegraphic skills, he proposed to 19-year-old Mina Miller in Morse code while in the company of others on a train. He married her in February 1885 before buying a new house and estate at West Orange, New Jersey, building a new laboratory not far away in the Orange Valley.
    Edison used direct current which was limited to around 250 volts. Alternating current was largely developed by George Westinghouse and Nicola Tesla, using transformers to step up the current to a higher voltage for long-distance transmission. The use of AC gradually overtook the Edison DC system.
    In autumn 1888 he patented a form of cinephotography, the kinetoscope, obtaining film-stock from George Eastman. In 1893 he set up the first film studio, which was pivoted so as to catch the sun, with a hinged roof which could be raised. In 1894 kinetoscope parlours with "peep shows" were starting up in cities all over America. Competition came from the Latham Brothers with a screen-projection machine, which Edison answered with his "Vitascope", shown in New York in 1896. This showed pictures with accompanying sound, but there was some difficulty with synchronization. Edison also experimented with captions at this early date.
    In 1880 he filed a patent for a magnetic ore separator, the first of nearly sixty. He bought up deposits of low-grade iron ore which had been developed in the north of New Jersey. The process was a commercial success until the discovery of iron-rich ore in Minnesota rendered it uneconomic and uncompetitive. In 1898 cement rock was discovered in New Village, west of West Orange. Edison bought the land and started cement manufacture, using kilns twice the normal length and using half as much fuel to heat them as the normal type of kiln. In 1893 he met Henry Ford, who was building his second car, at an Edison convention. This started him on the development of a battery for an electric car on which he made over 9,000 experiments. In 1903 he sold his patent for wireless telegraphy "for a song" to Guglielmo Marconi.
    In 1910 Edison designed a prefabricated concrete house. In December 1914 fire destroyed three-quarters of the West Orange plant, but it was at once rebuilt, and with the threat of war Edison started to set up his own plants for making all the chemicals that he had previously been buying from Europe, such as carbolic acid, phenol, benzol, aniline dyes, etc. He was appointed President of the Navy Consulting Board, for whom, he said, he made some forty-five inventions, "but they were pigeonholed, every one of them". Thus did Edison find that the Navy did not take kindly to civilian interference.
    In 1927 he started the Edison Botanic Research Company, founded with similar investment from Ford and Firestone with the object of finding a substitute for overseas-produced rubber. In the first year he tested no fewer than 3,327 possible plants, in the second year, over 1,400, eventually developing a variety of Golden Rod which grew to 14 ft (4.3 m) in height. However, all this effort and money was wasted, due to the discovery of synthetic rubber.
    In October 1929 he was present at Henry Ford's opening of his Dearborn Museum to celebrate the fiftieth anniversary of the incandescent lamp, including a replica of the Menlo Park laboratory. He was awarded the Congressional Gold Medal and was elected to the American Academy of Sciences. He died in 1931 at his home, Glenmont; throughout the USA, lights were dimmed temporarily on the day of his funeral.
    [br]
    Principal Honours and Distinctions
    Member of the American Academy of Sciences. Congressional Gold Medal.
    Further Reading
    M.Josephson, 1951, Edison, Eyre \& Spottiswode.
    R.W.Clark, 1977, Edison, the Man who Made the Future, Macdonald \& Jane.
    IMcN

    Biographical history of technology > Edison, Thomas Alva

  • 60 Klic, Karol (Klietsch, Karl)

    [br]
    b. 31 May 1841 Arnau, Bohemia (now Czech Republic)
    d. 16 November 1826 Vienna, Austria
    [br]
    Czech inventor of photogravure and rotogravure.
    [br]
    Klic, sometimes known by the germanized form of his name Karl Klietsch, gained a knowledge of chemistry from his chemist father. However, he inclined towards the arts, preferring to mix paints rather than chemicals, and he trained in art at the Academy of Painting in Prague. His father thought to combine the chemical with the artistic by setting up his son in a photographic studio in Brno, but the arts won and in 1867 Klic moved to Vienna to practise as an illustrator and caricaturist. He also acquired skill as an etcher, and this led him to print works of art reproduced by photography by means of an intaglio process. He perfected the process c.1878 and, through it, Vienna became for a while the world centre for high-quality art reproductions. The prints were made by hand from flat plates, but Klic then proposed that the images should be etched onto power-driven cylinders. He found little support for rotary gravure, or rotogravure, on the European continent, but learning that Storey Brothers, textile printers of Lancaster, England, were working in a similar direction, he went there in 1890 to perfect his idea. Rotogravure printing on textiles began in 1893. They then turned to printing art reproductions on paper by rotogravure and in 1895 formed the Rembrandt Intaglio Printing Company. Their photogra-vures attracted worldwide attention when they appeared in the Magazine of Art. Klic saw photogravure as a small-scale medium for the art lover and not for mass-circulation publications, so he did not patent his invention and thought to control it by secrecy. That had the usual result, however, and knowledge of the process leaked out from Storey's, spreading to other countries in Europe and, from 1903, to the USA. Klic lived on in a modest way in Vienna, his later years troubled by failing sight. He hardly earned the credit for the invention, let alone the fortune reaped by others who used, and still use, photogravure for printing long runs of copy such as newspaper colour supplements.
    [br]
    Further Reading
    Obituary, 1927, Inland Printer (January): 614.
    Karol Klic. vynálezu hlubotisku, 1957, Prague (the only full-length biography; in Czech, with an introduction in English, French and German).
    S.H.Horgan, 1925, "The invention of photogravure", Inland Printer (April): 64 (contains brief details of his life and works).
    G.Wakeman, 1973, Victorian Book Illustration, Newton Abbot: David \& Charles, pp. 126–8.
    LRD

    Biographical history of technology > Klic, Karol (Klietsch, Karl)

См. также в других словарях:

  • Photography — is the art, science and practice of creating durable images by recording light or other electromagnetic radiation, either electronically by means of an image sensor or chemically by means of a light sensitive material such as photographic… …   Wikipedia

  • Optics — For the book by Sir Isaac Newton, see Opticks. Optical redirects here. For the musical artist, see Optical (artist). Optics includes study of dispersion of light. Optics is the branch of …   Wikipedia

  • photography, technology of — Introduction       equipment, techniques, and processes used in the production of photographs.  The most widely used photographic process is the black and white negative–positive system (Figure 1 >). In the camera the lens projects an image of… …   Universalium

  • optics — /op tiks/, n. (used with a sing. v.) the branch of physical science that deals with the properties and phenomena of both visible and invisible light and with vision. [1605 15; < ML optica < Gk optiká, n. use of neut. pl. of OPTIKÓS; see OPTIC,… …   Universalium

  • Digital photography — Nikon D700 a 12.1 megapixel full frame DSLR …   Wikipedia

  • Panoramic photography — is a format of photography that aims to create images with exceptionally wide fields of view, but has also come to refer to any photograph that is cropped to a relatively wide aspect ratio ( see Panoramic format ) While there is no formal… …   Wikipedia

  • Digital versus film photography — has been a topic of debate since the invention of digital cameras towards the end of the 20th Century. Both digital and film photography have advantages and drawbacks.[1][2] 21st century photography is dominated by digital operation, but the… …   Wikipedia

  • History of photography — The first permanent photograph was an image produced in 1826[1] by the French inventor Joseph Nicéphore Niépce.[2] …   Wikipedia

  • History of film — This article is about the history of cinema. For other uses, see History of photography. Years in film 1870s 1880s 1890s …   Wikipedia

  • Infrared photography — Top: tree photographed in the near infrared range. Bottom: same tree in the visible part of the spectrum …   Wikipedia

  • Filter (optics) — Coloured and Neutral Density filters Optical filters are devices which selectively transmit light of different wavelengths, usually implemented as plane glass or plastic devices in the optical path which are either dyed in the mass or have… …   Wikipedia

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»