Перевод: со всех языков на английский

с английского на все языки

own+funds

  • 121 Blanchard, Helen Augusta

    [br]
    b. 25 October 1840 Portland, Maine, USA
    d. 1922 USA
    [br]
    American inventor who made improvements in the sewing machine.
    [br]
    Blanchard was the daughter of a wealthy ship owner. She was said to have had inventive talents but seems to have had no technical training. She patented nothing until she was over 30, although that may have been due to shortage of funds. Inheriting the family wealth after the death of her father brought her talents out into the open. She moved to Boston, Massachusetts, and made and patented a number of mechanical devices to improve the sewing machine: these included the "over seaming" machine, a crochet attachment and methods of making knitwear. In 1881, with an unmarried sister, she founded the Blanchard Overseam Machine Company to exploit her sewing machine inventions. Her company seems to have prospered, for in 1891 she was said to own "great estates", a factory and many patent rights, the returns from which made her a wealthy woman. Patents for sewing machine improvements and attachments continued to flow until 1915. She suffered a stroke in 1916, and died six years later; no will was ever probated, so the fate of her wealth can only be surmised.
    [br]
    Further Reading
    A.Stanley, 1993, Mothers and Daughters of Invention, Meruchen, NJ: Scarecrow Press, pp. 518–21.
    LRD

    Biographical history of technology > Blanchard, Helen Augusta

  • 122 Cousteau, Jacques-Yves

    SUBJECT AREA: Ports and shipping
    [br]
    b. 11 June 1910 Saint-André-de-Cubzac, France
    [br]
    French marine explorer who invented the aqualung.
    [br]
    He was the son of a country lawyer who became legal advisor and travelling companion to certain rich Americans. At an early age Cousteau acquired a love of travel, of the sea and of cinematography: he made his first film at the age of 13. After an interrupted education he nevertheless passed the difficult entrance examination to the Ecole Navale in Brest, but his naval career was cut short in 1936 by injuries received in a serious motor accident. For his long recuperation he was drafted to Toulon. There he met Philippe Tailliez, a fellow naval officer, and Frédéric Dumas, a champion spearfisher, with whom he formed a long association and began to develop his underwater swimming and photography. He apparently took little part in the Second World War, but under cover he applied his photographic skills to espionage, for which he was awarded the Légion d'honneur after the war.
    Cousteau sought greater freedom of movement underwater and, with Emile Gagnan, who worked in the laboratory of Air Liquide, he began experimenting to improve portable underwater breathing apparatus. As a result, in 1943 they invented the aqualung. Its simple design and robust construction provided a reliable and low-cost unit and revolutionized scientific and recreational diving. Gagnan shunned publicity, but Cousteau revelled in the new freedom to explore and photograph underwater and exploited the publicity potential to the full.
    The Undersea Research Group was set up by the French Navy in 1944 and, based in Toulon, it provided Cousteau with the Opportunity to develop underwater exploration and filming techniques and equipment. Its first aims were minesweeping and exploration, but in 1948 Cousteau pioneered an extension to marine archaeology. In 1950 he raised the funds to acquire a surplus US-built minesweeper, which he fitted out to further his quest for exploration and adventure and named Calypso. Cousteau also sought and achieved public acclaim with the publication in 1953 of The Silent World, an account of his submarine observations, illustrated by his own brilliant photography. The book was an immediate success and was translated into twenty-two languages. In 1955 Calypso sailed through the Red Sea and the western Indian Ocean, and the outcome was a film bearing the same title as the book: it won an Oscar and the Palme d'Or at the Cannes film festival. This was his favoured medium for the expression of his ideas and observations, and a stream of films on the same theme kept his name before the public.
    Cousteau's fame earned him appointment by Prince Rainier as Director of the Oceanographie Institute in Monaco in 1957, a post he held until 1988. With its museum and research centre, it offered Cousteau a useful base for his worldwide activities.
    In the 1980s Cousteau turned again to technological development. Like others before him, he was concerned to reduce ships' fuel consumption by harnessing wind power. True to form, he raised grants from various sources to fund research and enlisted technical help, namely Lucien Malavard, Professor of Aerodynamics at the Sorbonne. Malavard designed a 44 ft (13.4 m) high non-rotating cylinder, which was fitted onto a catamaran hull, christened Moulin à vent. It was intended that its maiden Atlantic crossing in 1983 should herald a new age in ship propulsion, with large royalties to Cousteau. Unfortunately the vessel was damaged in a storm and limped to the USA under diesel power. A more robust vessel, the Alcyone, was fitted with two "Turbosails" in 1985 and proved successful, with a 40 per cent reduction in fuel consumption. However, oil prices fell, removing the incentive to fit the new device; the lucrative sales did not materialize and Alcyone remained the only vessel with Turbosails, sharing with Calypso Cousteau's voyages of adventure and exploration. In September 1995, Cousteau was among the critics of the decision by the French President Jacques Chirac to resume testing of nuclear explosive devices under the Mururoa atoll in the South Pacific.
    [br]
    Principal Honours and Distinctions
    Légion d'honneur. Croix de Guerre with Palm. Officier du Mérite Maritime and numerous scientific and artistic awards listed in such directories as Who's Who.
    Bibliography
    Further Reading
    R.Munson, 1991, Cousteau, the Captain and His World, London: Robert Hale (published in the USA 1989).
    LRD

    Biographical history of technology > Cousteau, Jacques-Yves

  • 123 Crompton, Samuel

    SUBJECT AREA: Textiles
    [br]
    b. 3 December 1753 Firwood, near Bolton, Lancashire, England
    d. 26 June 1827 Bolton, Lancashire, England
    [br]
    English inventor of the spinning mule.
    [br]
    Samuel Crompton was the son of a tenant farmer, George, who became the caretaker of the old house Hall-i-th-Wood, near Bolton, where he died in 1759. As a boy, Samuel helped his widowed mother in various tasks at home, including weaving. He liked music and made his own violin, with which he later was to earn some money to pay for tools for building his spinning mule. He was set to work at spinning and so in 1769 became familiar with the spinning jenny designed by James Hargreaves; he soon noticed the poor quality of the yarn produced and its tendency to break. Crompton became so exasperated with the jenny that in 1772 he decided to improve it. After seven years' work, in 1779 he produced his famous spinning "mule". He built the first one entirely by himself, principally from wood. He adapted rollers similar to those already patented by Arkwright for drawing out the cotton rovings, but it seems that he did not know of Arkwright's invention. The rollers were placed at the back of the mule and paid out the fibres to the spindles, which were mounted on a moving carriage that was drawn away from the rollers as the yarn was paid out. The spindles were rotated to put in twist. At the end of the draw, or shortly before, the rollers were stopped but the spindles continued to rotate. This not only twisted the yarn further, but slightly stretched it and so helped to even out any irregularities; it was this feature that gave the mule yarn extra quality. Then, after the spindles had been turned backwards to unwind the yarn from their tips, they were rotated in the spinning direction again and the yarn was wound on as the carriage was pushed up to the rollers.
    The mule was a very versatile machine, making it possible to spin almost every type of yarn. In fact, Samuel Crompton was soon producing yarn of a much finer quality than had ever been spun in Bolton, and people attempted to break into Hall-i-th-Wood to see how he produced it. Crompton did not patent his invention, perhaps because it consisted basically of the essential features of the earlier machines of Hargreaves and Arkwright, or perhaps through lack of funds. Under promise of a generous subscription, he disclosed his invention to the spinning industry, but was shabbily treated because most of the promised money was never paid. Crompton's first mule had forty-eight spindles, but it did not long remain in its original form for many people started to make improvements to it. The mule soon became more popular than Arkwright's waterframe because it could spin such fine yarn, which enabled weavers to produce the best muslin cloth, rivalling that woven in India and leading to an enormous expansion in the British cotton-textile industry. Crompton eventually saved enough capital to set up as a manufacturer himself and around 1784 he experimented with an improved carding engine, although he was not successful. In 1800, local manufacturers raised a sum of £500 for him, and eventually in 1812 he received a government grant of £5,000, but this was trifling in relation to the immense financial benefits his invention had conferred on the industry, to say nothing of his expenses. When Crompton was seeking evidence in 1811 to support his claim for financial assistance, he found that there were 4,209,570 mule spindles compared with 155,880 jenny and 310,516 waterframe spindles. He later set up as a bleacher and again as a cotton manufacturer, but only the gift of a small annuity by his friends saved him from dying in total poverty.
    [br]
    Further Reading
    H.C.Cameron, 1951, Samuel Crompton, Inventor of the Spinning Mule, London (a rather discursive biography).
    Dobson \& Barlow Ltd, 1927, Samuel Crompton, the Inventor of the Spinning Mule, Bolton.
    G.J.French, 1859, The Life and Times of Samuel Crompton, Inventor of the Spinning Machine Called the Mule, London.
    The invention of the mule is fully described in H. Gatling, 1970, The Spinning Mule, Newton Abbot; W.English, 1969, The Textile Industry, London; R.L.Hills, 1970, Power in the Industrial Revolution, Manchester.
    C.Singer (ed.), 1958, A History of Technology, Vol. IV, Oxford: Clarendon Press (provides a brief account).
    RLH

    Biographical history of technology > Crompton, Samuel

  • 124 Hjorth, Soren

    SUBJECT AREA: Electricity
    [br]
    b. 13 October 1801 Vesterbygaard, Denmark
    d. 28 August 1870 Copenhagen, Denmark
    [br]
    Danish engineer and inventor who first proposed the principle of the self-excited dynamo.
    [br]
    After passing a legal examination, Hjorth found employment in the state treasury in Copenhagen and in 1830 advanced to be Clerk of the Exchequer and Secretary. In 1834 he visited England to study the use of steam road and rail vehicles. Hjorth was involved in the formation of the first railway company in Denmark and became Technical Director of Denmark's first railway, a line between Copenhagen and Roskilde that opened in 1847. In 1848 he petitioned the Government for funds to visit England and have built there an electric motor of his own design with oscillating motion. This petition, supported by Hans Christian Oersted (1777–1851), was granted. A British patent was obtained for the machine, an example being exhibited at the 1851 Great Exhibition in London. Turning his attention to the generation of electricity, he conceived as early as May 1851 the dynamo electric principle with self-excitation that was incorporated in his patent in 1855. Unfortunately, Hjorth held the firm but mistaken belief that if he could use his dynamo to drive a motor he would obtain more power than was consumed in driving the dynamo. The theory of conservation of energy was being only slowly accepted at that time, and Hjorth, with little scientific training, was to be disappointed at the failure of his schemes. He worked with great perseverance and industry to the end of his life on the design of his electrical machines.
    [br]
    Bibliography
    11 April 1855, British patent no. 806 (Hjorth's self-excited dynamo).
    11 April 1855, British patent nos. 807 and 808 (reciprocating and rotary electric motors).
    Further Reading
    S.Smith, 1912, Soren Hjorth, Copenhagen (the most detailed biography).
    1907, "Soren Hjorth, discoverer of the dynamo-electric principle", Electrical Engineering 1: 957–8 (a short biography).
    Catalogue of the 1851 Exhibition, 1851, London, pp. 1, 359–60 (for a description of Hjorth's electromagnetic engine with oscillating motion.
    GW

    Biographical history of technology > Hjorth, Soren

  • 125 Mole, Lancelot de

    SUBJECT AREA: Weapons and armour
    [br]
    b. 13 March 1880 Adelaide, Australia
    d. 6 May 1950 Sydney, Australia
    [br]
    Australian engineer and early tank designer.
    [br]
    De Mole's father was an architect and surveyor and he himself followed a similar avenue as a draughtsman working on mining, surveying and engineering projects in Australia. It was in 1911, while surveying in particularly rough terrain in Western Australia, that he first conceived the idea of the tank as a tracked, armoured vehicle capable of traversing the most difficult ground. He drew up detailed plans and submitted them to the War Office in London the following year, but although they were rejected, not all the plans were returned to him. When war broke out in 1914 he tried without success to interest the Australian authorities, even after he had constructed a model at their request. A further blow came in 1916, when the first tanks, built by the British, appeared on the battlefields of France and looked remarkably similar in design to his own. Believing that he could play a significant role in further tank development, but lacking the funds to travel to Britain, de Mole eventually succeeded, after an initial rejection by a medical board, in enlisting in the Australian Army, which got him to England at the beginning of 1918. He immediately took his model to the British Inventions Committee, who were sufficiently impressed to pass it to the Tank Board, who promptly mislaid it for six weeks. Meanwhile, in March 1918, Private de Mole was ordered to France and was unable to take matters further. On his return to England in early 1919 he made a formal claim for a reward for his invention, but this was turned down on the grounds that no direct link could be established between his design and the first tanks that were built. Even so, the Inventions Committee did authorize a sum of money to cover his expenses, and in 1920 de Mole was a made a Commander of the Order of the British Empire.
    Returning to Australia, de Mole worked as an engineer in the design branch of the Sydney Water Board. He continued to invent, but none of his designs, which covered a wide range of items, were ever taken up.
    [br]
    Principal Honours and Distinctions
    CBE 1920.
    Further Reading
    Australian Dictionary of Biography, 1918, Vol. 8.
    A.J.Smithers, 1986, A New Excalibur: The Development of the Tank 1909–1939, London: Leo Cooper (for illustrations of the model of his tank).
    Mention of his invention is made in a number of books on the history of the tank.
    CM

    Biographical history of technology > Mole, Lancelot de

  • 126 Robert, Nicolas Louis

    SUBJECT AREA: Paper and printing
    [br]
    b. 2 December 1761 Paris, France
    d. 8 August 1828 Dreux, France
    [br]
    French inventor of the papermaking machine.
    [br]
    Robert was born into a prosperous family and received a fair education, after which he became a lawyer's clerk. In 1780, however, he enlisted in the Army and joined the artillery, serving with distinction in the West Indies, where he fought against the English. When dissatisfied with his prospects, Robert returned to Paris and obtained a post as proof-reader to the firm of printers and publishers owned by the Didot family. They were so impressed with his abilities that they promoted him, c. 1790, to "clerk inspector of workmen" at their paper mill at Essonnes, south of Paris, under the control of Didot St Leger.
    It was there that Robert conceived the idea of a continuous papermaking machine. In 1797 he made a model of it and, after further models, he obtained a patent in 1798. The paper was formed on a continuously revolving wire gauze, from which the sheets were lifted off and hung up to dry. Didot was at first scathing, but he came round to encouraging Robert to make a success of the machine. However, they quarrelled over the financial arrangements and Robert left to try setting up his own mill near Rouen. He failed for lack of capital, and in 1800 he returned to Essonnes and sold his patent to Didot for part cash, part proceeds from the operation of the mill. Didot left for England to enlist capital and technical skills to exploit the invention, while Robert was left in charge at Essonnes. It was the Fourdrinier brothers and Bryan Donkin who developed the papermaking machine into a form in which it could succeed. Meanwhile the mill at Essonnes under Robert's direction had begun to falter and declined to the point where it had to be sold. He had never received the full return from the sale of his patent, but he managed to recover his rights in it. This profited him little, for Didot obtained a patent in France for the Fourdrinier machine and had two examples erected in 1814 and the following year, respectively, neatly side-tracking Robert, who was now without funds or position. To support himself and his family, Robert set up a primary school in Dreux and there passed his remaining years. Although it was the Fourdrinier papermaking machine that was generally adopted, it is Robert who deserves credit for the original initiative.
    [br]
    Further Reading
    R.H.Clapperton, 1967, The Papermaking Machine, Oxford: Pergamon Press, pp. 279–83 (provides a full description of Robert's invention and patent, together with a biography).
    LRD

    Biographical history of technology > Robert, Nicolas Louis

  • 127 Eigenmittel

    pl
    1. equity capital
    2. one's own resources [funds, capital]

    Deutsch-Englisches Wörterbuch > Eigenmittel

  • 128 ἐκδαπανάω

    ἐκδαπανάω 1 fut. pass. ἐκδαπανηθήσομαι spend, exhaust (s. δαπανάω; Polyb. 24, 7, 4 τὰς προσόδους; Jos., Ant. 15, 117 τὰς προθυμίας; Galen freq.; PBad 19, 19; GrBar 9:8; Tat. 6, 2) (orig. to spend completely, use up, as of funds in Polyb. above) in our lit. only fig. in pass. be spent of the sacrifice of one’s own life ὑπέρ τινος for someone 2 Cor 12:15 (ZNW 18, 1918, 201).—DELG s.v. δάπτω.

    Ελληνικά-Αγγλικά παλαιοχριστιανική Λογοτεχνία > ἐκδαπανάω

См. также в других словарях:

  • Own the Podium — Formation date 2004 (2004) Chief Exec Alex Baumann (Interim) …   Wikipedia

  • Own the Podium - 2010 — Own the Podium 2010, or À nous le podium en 2010! in French, is a Canadian sport technical program launched in January 2005 to prepare Canada to become the top winter sporting nation in the world by 2010 mdash; when Canada will host the next… …   Wikipedia

  • funds — /fʌndz/ plural noun 1. money which is available for spending ● The company has no funds to pay for the research programme. ⇒ insufficient funds ♦ the company called for extra funds the company asked for more money ♦ to convert funds to another… …   Dictionary of banking and finance

  • Funds for Endangered Parrots — The Funds for Endangered Parrots (FbP) (Germ: Fonds für bedrohte Papageien ) is a German non governmental organisation (NGO) in the field of species conservation, which supports and operates projects worldwide for endangered parrot… …   Wikipedia

  • Newman's Own — Type Private Founded 1982 Headquarters Westport, Connecticut …   Wikipedia

  • commingling of funds — A term often applied to the act of an agent, broker, attorney at law, or trustee in mingling the funds of his client, customer, or cestui with his own funds; the act of a fiduciary in mingling funds of different trusts. 54 Am J1st Trusts § 320;… …   Ballentine's law dictionary

  • Mutual funds in India — The first introduction of a mutual fund in India occurred in 1963, when the Government of India launched Unit Trust of India (UTI). Until 1987, UTI enjoyed a monopoly in the Indian mutual fund market. Then a host of other government controlled… …   Wikipedia

  • commingling of funds — Act of fiduciary in mingling funds of his beneficiary, client, employer, or ward with his own funds. Such act is generally considered to be a breach of his fiduciary relationship. May be applied to lawyer who mixes client s funds with his own and …   Black's law dictionary

  • commingling of funds — Act of fiduciary in mingling funds of his beneficiary, client, employer, or ward with his own funds. Such act is generally considered to be a breach of his fiduciary relationship. May be applied to lawyer who mixes client s funds with his own and …   Black's law dictionary

  • Structural Funds and Cohesion Funds — are funds allocated by the European Union for two related purposes: support for the poorer regions of Europe and support for integrating European infrastructure especially in the transport sector. Current programmes run from 1 January 2007 to 31… …   Wikipedia

  • Structural Funds and Cohesion Fund — The Structural Funds and the Cohesion Fund are financial tools set up to implement the Cohesion policy also referred to as the Regional policy of the European Union. They aim to reduce regional disparities in terms of income, wealth and… …   Wikipedia

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»