Перевод: со всех языков на английский

с английского на все языки

obtained+a+position

  • 61 Berliner, Emile

    SUBJECT AREA: Recording
    [br]
    b. 20 May 1851 Hannover, Germany
    d. 3 August 1929 Montreal, Canada
    [br]
    German (naturalized American) inventor, developer of the disc record and lateral mechanical replay.
    [br]
    After arriving in the USA in 1870 and becoming an American citizen, Berliner worked as a dry-goods clerk in Washington, DC, and for a period studied electricity at Cooper Union for the Advancement of Science and Art, New York. He invented an improved microphone and set up his own experimental laboratory in Washington, DC. He developed a microphone for telephone use and sold the rights to the Bell Telephone Company. Subsequently he was put in charge of their laboratory, remaining in that position for eight years. In 1881 Berliner, with his brothers Joseph and Jacob, founded the J.Berliner Telephonfabrik in Hanover, the first factory in Europe specializing in telephone equipment.
    Inspired by the development work performed by T.A. Edison and in the Volta Laboratory (see C.S. Tainter), he analysed the existing processes for recording and reproducing sound and in 1887 developed a process for transferring lateral undulations scratched in soot into an etched groove that would make a needle and diaphragm vibrate. Using what may be regarded as a combination of the Phonautograph of Léon Scott de Martinville and the photo-engraving suggested by Charles Cros, in May 1887 he thus demonstrated the practicability of the laterally recorded groove. He termed the apparatus "Gramophone". In November 1887 he applied the principle to a glass disc and obtained an inwardly spiralling, modulated groove in copper and zinc. In March 1888 he took the radical step of scratching the lateral vibrations directly onto a rotating zinc disc, the surface of which was protected, and the subsequent etching created the groove. Using well-known principles of printing-plate manufacture, he developed processes for duplication by making a negative mould from which positive copies could be pressed in a thermoplastic compound. Toy gramophones were manufactured in Germany from 1889 and from 1892–3 Berliner manufactured both records and gramophones in the USA. The gramophones were hand-cranked at first, but from 1896 were based on a new design by E.R. Johnson. In 1897–8 Berliner spread his activities to England and Germany, setting up a European pressing plant in the telephone factory in Hanover, and in 1899 a Canadian company was formed. Various court cases over patents removed Berliner from direct running of the reconstructed companies, but he retained a major economic interest in E.R. Johnson's Victor Talking Machine Company. In later years Berliner became interested in aeronautics, in particular the autogiro principle. Applied acoustics was a continued interest, and a tile for controlling the acoustics of large halls was successfully developed in the 1920s.
    [br]
    Bibliography
    16 May 1888, Journal of the Franklin Institute 125 (6) (Lecture of 16 May 1888) (Berliner's early appreciation of his own work).
    1914, Three Addresses, privately printed (a history of sound recording). US patent no. 372,786 (basic photo-engraving principle).
    US patent no. 382,790 (scratching and etching).
    US patent no. 534,543 (hand-cranked gramophone).
    Further Reading
    R.Gelatt, 1977, The Fabulous Phonograph, London: Cassell (a well-researched history of reproducible sound which places Berliner's contribution in its correct perspective). J.R.Smart, 1985, "Emile Berliner and nineteenth-century disc recordings", in Wonderful
    Inventions, ed. Iris Newson, Washington, DC: Library of Congress, pp. 346–59 (provides a reliable account).
    O.Read and W.L.Welch, 1959, From Tin Foil to Stereo, Indianapolis: Howard W.Sams, pp. 119–35 (provides a vivid account, albeit with less precision).
    GB-N

    Biographical history of technology > Berliner, Emile

  • 62 Flügge-Lotz, Irmgard

    SUBJECT AREA: Aerospace
    [br]
    b. 1903 Germany
    d. 1974 USA
    [br]
    German/American aeronautical engineer, specializing inflight control.
    [br]
    Both her father, a mathematician, and her mother encouraged Flügge-Lotz in her desire, unusual for a woman at that time, for a technical education. Her interest in aeronautics was awakened when she was a child, by seeing zeppelins (see Zeppelin, Ferdinand, Count von) being tested. In 1923 she entered the Technische Hochschule in Hannover to study engineering, specializing in aeronautics; she was often the only woman in the class. She obtained her doctorate in 1929 and began working in aeronautics. Two years later she derived the Lotz Method for calculating the distribution in aircraft wings of different shapes, which became widely used. Later, Flügge-Lotz took up an interest in automatic flight control of aircraft, notably of the discontinuous or "on-off" type. These were simple in design, inexpensive to manufacture and reliable in operation. By 1928 she had risen to the position of head of the Department of Theoretical Aerodynamics at Göttingen University, but she and her husband, Wilhelm Flügge, an engineering academic known for his anti-Nazi views, felt themselves increasingly discriminated against by the Hitler regime. In 1948 they emigrated to the USA, where Flügge was soon offered a professorship in engineering, while his wife had at first to make do with a lectureship. But her distinguished work eventually earned her appointment as the first woman full professor in the Engineering Department at Stanford University.
    She later extended her work on automatic flight control to the guidance of rockets and missiles, earning herself the description "a female Werner von Braun ".
    [br]
    Principal Honours and Distinctions
    Society of Women Engineers Achievement Award 1970. Fellow, Institution of Aeronautics and Astronautics.
    Bibliography
    Flügge-Lotz was the author of two books on automatic control and over fifty scientific papers.
    Further Reading
    A.Stanley, 1993, Mothers and Daughters of Invention, Meruchen, NJ: Scarecrow Press, pp. 899–901.
    LRD

    Biographical history of technology > Flügge-Lotz, Irmgard

  • 63 Lawrence, Richard Smith

    SUBJECT AREA: Weapons and armour
    [br]
    b. 22 November 1817 Chester, Vermont, USA
    d. 10 March 1892 Hartford, Connecticut, USA
    [br]
    American gunsmith and inventor.
    [br]
    Richard S.Lawrence received only an elementary education and as a young man worked on local farms and later in a woodworking shop. His work there included making carpenters' and joiners' tools and he spent some of his spare time in a local gunsmith's shop. After a brief period of service in the Army, he obtained employment in 1838 with N.Kendall \& Co. of Windsor, Vermont, making guns at the Windsor prison. Within six months he was put in charge of the work, continuing in this position until 1842 when the gun-making ceased; he remained at the prison for a time in charge of the carriage shop. In 1843 he opened a gun shop in Windsor in partnership with Kendall, and the next year S.E. Robbins, a businessman, helped them obtain a contract from the Federal Government for 10,000 rifles. A new company, Robbins, Kendall \& Lawrence, was formed and a factory was built at Windsor. Three years later Kendall's share of the business was purchased by his partners and the firm became Robbins \& Lawrence. Lawrence supervised the design and production and, to improve methods of manufacture, developed new machine tools with the aid of F.W. Howe. In 1850 Lawrence introduced the lubrication of bullets, which practice ensured the success of the breech-loading rifle. Also in 1850, the company undertook to manufacture railway cars, but this involved them in a considerable financial loss. The company took to the Great Exhibition of 1851 in London, England, a set of rifles built on the interchangeable system. The interest this created resulted in a visit of some members of the British Royal Small Arms Commission to America and subsequently an order for 150 machine tools, jigs and fixtures from Robbins \& Lawrence, to be installed at the small-arms factory at Enfield. In 1852 the company contracted to manufacture Sharps rifles and carbines at a new factory to be built at Hartford, Connecticut. Lawrence moved to Hartford in 1853 to superintend the building and equipment of the plant. Shortly afterwards, however, a promised order for a large number of rifles failed to materialize and, following its earlier financial difficulties, Robbins \& Lawrence was forced into bankruptcy. The Hartford plant was acquired by the Sharps Rifle Company in 1856 and Lawrence remained there as Superintendent until 1872. From then he was for many years Superintendent of Streets in the city of Hartford and he also served on the Water Board, the Board of Aldermen and as Chairman of the Fire Board.
    [br]
    Further Reading
    J.W.Roe, 1916, English and American Tool Builders, New Haven; repub. 1926, New York; and 1987, Bradley, Ill. (provides biographical information and includes in an Appendix (pp. 281–94) autobiographical notes written by Richard S.Lawrence in 1890).
    Merritt Roe Smith, 1974, "The American Precision Museum", Technology and Culture 15 (3): 413–37 (for information on Robbins \& Lawrence and products).
    RTS

    Biographical history of technology > Lawrence, Richard Smith

  • 64 Muller, Paul Hermann

    [br]
    b. 12 January 1899 Olten, Solothurn, Switzerland
    d. 13 October 1965 Basle, Switzerland
    [br]
    Swiss chemist, inventor of the insecticide DDT.
    [br]
    Muller was educated in Basle and his interest in chemistry was stimulated when he started work as a laboratory assistant in the chemical factory of Dreyfus \& Co. After further laboratory work, he entered the University of Basle in 1919, achieving his doctorate in 1925. The same year, he entered the dye works of J.R.Geigy AG as a research chemist. He spent the rest of his career there, rising to the position of Deputy Head of Pest Control Research. From 1935 he began the search for an insecticide that was fast acting and persistent, but harmless to plants and warmblooded animals. In 1940 he patented the use of a compound known since 1873, dichlorodiphenyltrichloroethane, or DDT. It could be easily and cheaply manufactured and was highly effective. Muller obtained a Swiss patent for DDT in 1940 and it went into commercial production two years later. One useful application of DDT at the end of the Second World War was in killing lice to prevent typhus epidemics. It was widely used and an important factor in farmers' postwar success in raising food production, but after twenty years or so, some species of insects were found to have developed resistance to its action, thus limiting its effectiveness. Worse, it was found to be harmful to other animals, which gave rise to anxieties about its persistence in the food chain. By the 1970s its use was banned or strictly limited in developed countries. Nevertheless, in its earlier career it had conferred undoubted benefits and was highly valued, as reflected by the award of a Nobel Prize in Medicine or Physiology in 1948.
    [br]
    Principal Honours and Distinctions
    Nobel Prize in Medicine or Physiology 1948.
    Bibliography
    Further Reading
    Obituary, 1965, Nature 208:1,043–4.
    LRD

    Biographical history of technology > Muller, Paul Hermann

  • 65 Sholes, Christopher Latham

    SUBJECT AREA: Paper and printing
    [br]
    b. 14 February 1819 Mooresburg, Pennsylvania, USA
    d. 17 February 1890 USA
    [br]
    American inventor of the first commercially successful typewriter.
    [br]
    Sholes was born on his parents' farm, of a family that had originally come from England. After leaving school at 14, he was apprenticed for four years to the local newspaper, the Danville Intelligencer. He moved with his parents to Wisconsin, where he followed his trade as journalist and printer, within a year becoming State Printer and taking charge of the House journal of the State Legislature. When he was 20 he left home and joined his brother in Madison, Wisconsin, on the staff of the Wisconsin Enquirer. After marrying, he took the editorship of the Southport Telegraph, until he became Postmaster of Southport. His experiences as journalist and postmaster drew him into politics and, in spite of the delicate nature of his health and personality, he served with credit as State Senator and in the State Assembly. In 1860 he moved to Milwaukee, where he became Editor of the local paper until President Lincoln offered him the post of Collector of Customs at Milwaukee.
    That position at last gave Sholes time to develop his undoubted inventive talents. With a machinist friend, Samuel W.Soule, he obtained a patent for a paging machine and another two years later for a machine for numbering the blank pages of a book serially. At the small machine shop where they worked, there was a third inventor, Carlos Glidden. It was Glidden who suggested to Sholes that, in view of his numbering machine, he would be well equipped to develop a letter printing machine. Glidden drew Sholes's attention to an account of a writing machine that had recently been invented in London by John Pratt, and Sholes was so seized with the idea that he devoted the rest of his life to perfecting the machine. With Glidden and Soule, he took out a patent for a typewriter on June 1868 followed by two further patents for improvements. Sholes struggled unsuccessfully for five years to exploit his invention; his two partners gave up their rights in it and finally, on 1 March 1873, Sholes himself sold his rights to the Remington Arms Company for $12,000. With their mechanical skills and equipment, Remingtons were able to perfect the Sholes typewriter and put it on the market. This, the first commercially successful typewriter, led to a revolution not only in office work, but also in work for women, although progress was slow at first. When the New York Young Women's Christian Association bought six Remingtons in 1881 to begin classes for young women, eight turned up for the first les-son; and five years later it was estimated that there were 60,000 female typists in the USA. Sholes said, "I feel that I have done something for the women who have always had to work so hard. This will more easily enable them to earn a living."
    Sholes continued his work on the typewriter, giving Remingtons the benefit of his results. His last patent was granted in 1878. Never very strong, Sholes became consumptive and spent much of his remaining nine years in the vain pursuit of health.
    [br]
    Bibliography
    23 June 1868, US patent no. 79,265 (the first typewriter patent).
    Further Reading
    M.H.Adler, 1973, The Writing Machine, London: Allen \& Unwin.
    LRD

    Biographical history of technology > Sholes, Christopher Latham

  • 66 Smith, Sir Francis Pettit

    SUBJECT AREA: Ports and shipping
    [br]
    b. 9 February 1808 Copperhurst Farm, near Hythe, Kent, England
    d. 12 February 1874 South Kensington, London, England
    [br]
    English inventor of the screw propeller.
    [br]
    Smith was the only son of Charles Smith, Postmaster at Hythe, and his wife Sarah (née Pettit). After education at a private school in Ashford, Kent, he took to farming, first on Romney Marsh, then at Hendon, Middlesex. As a boy, he showed much skill in the construction of model boats, especially in devising their means of propulsion. He maintained this interest into adult life and in 1835 he made a model propelled by a screw driven by a spring. This worked so well that he became convinced that the screw propeller offered a better method of propulsion than the paddle wheels that were then in general use. This notion so fired his enthusiasm that he virtually gave up farming to devote himself to perfecting his invention. The following year he produced a better model, which he successfully demonstrated to friends on his farm at Hendon and afterwards to the public at the Adelaide Gallery in London. On 31 May 1836 Smith was granted a patent for the propulsion of vessels by means of a screw.
    The idea of screw propulsion was not new, however, for it had been mooted as early as the seventeenth century and since then several proposals had been advanced, but without successful practical application. Indeed, simultaneously but quite independently of Smith, the Swedish engineer John Ericsson had invented the ship's propeller and obtained a patent on 13 July 1836, just weeks after Smith. But Smith was completely unaware of this and pursued his own device in the belief that he was the sole inventor.
    With some financial and technical backing, Smith was able to construct a 10 ton boat driven by a screw and powered by a steam engine of about 6 hp (4.5 kW). After showing it off to the public, Smith tried it out at sea, from Ramsgate round to Dover and Hythe, returning in stormy weather. The screw performed well in both calm and rough water. The engineering world seemed opposed to the new method of propulsion, but the Admiralty gave cautious encouragement in 1839 by ordering that the 237 ton Archimedes be equipped with a screw. It showed itself superior to the Vulcan, one of the fastest paddle-driven ships in the Navy. The ship was put through its paces in several ports, including Bristol, where Isambard Kingdom Brunel was constructing his Great Britain, the first large iron ocean-going vessel. Brunel was so impressed that he adapted his ship for screw propulsion.
    Meanwhile, in spite of favourable reports, the Admiralty were dragging their feet and ordered further trials, fitting Smith's four-bladed propeller to the Rattler, then under construction and completed in 1844. The trials were a complete success and propelled their lordships of the Admiralty to a decision to equip twenty ships with screw propulsion, under Smith's supervision.
    At last the superiority of screw propulsion was generally accepted and virtually universally adopted. Yet Smith gained little financial reward for his invention and in 1850 he retired to Guernsey to resume his farming life. In 1860 financial pressures compelled him to accept the position of Curator of Patent Models at the Patent Museum in South Kensington, London, a post he held until his death. Belated recognition by the Government, then headed by Lord Palmerston, came in 1855 with the grant of an annual pension of £200. Two years later Smith received unofficial recognition when he was presented with a national testimonial, consisting of a service of plate and nearly £3,000 in cash subscribed largely by the shipbuilding and engineering community. Finally, in 1871 Smith was honoured with a knighthood.
    [br]
    Principal Honours and Distinctions
    Knighted 1871.
    Further Reading
    Obituary, 1874, Illustrated London News (7 February).
    1856, On the Invention and Progress of the Screw Propeller, London (provides biographical details).
    Smith and his invention are referred to in papers in Transactions of the Newcomen Society, 14 (1934): 9; 19 (1939): 145–8, 155–7, 161–4, 237–9.
    LRD

    Biographical history of technology > Smith, Sir Francis Pettit

  • 67 Stephenson, George

    [br]
    b. 9 June 1781 Wylam, Northumberland, England
    d. 12 August 1848 Tapton House, Chesterfield, England
    [br]
    English engineer, "the father of railways".
    [br]
    George Stephenson was the son of the fireman of the pumping engine at Wylam colliery, and horses drew wagons of coal along the wooden rails of the Wylam wagonway past the house in which he was born and spent his earliest childhood. While still a child he worked as a cowherd, but soon moved to working at coal pits. At 17 years of age he showed sufficient mechanical talent to be placed in charge of a new pumping engine, and had already achieved a job more responsible than that of his father. Despite his position he was still illiterate, although he subsequently learned to read and write. He was largely self-educated.
    In 1801 he was appointed Brakesman of the winding engine at Black Callerton pit, with responsibility for lowering the miners safely to their work. Then, about two years later, he became Brakesman of a new winding engine erected by Robert Hawthorn at Willington Quay on the Tyne. Returning collier brigs discharged ballast into wagons and the engine drew the wagons up an inclined plane to the top of "Ballast Hill" for their contents to be tipped; this was one of the earliest applications of steam power to transport, other than experimentally.
    In 1804 Stephenson moved to West Moor pit, Killingworth, again as Brakesman. In 1811 he demonstrated his mechanical skill by successfully modifying a new and unsatisfactory atmospheric engine, a task that had defeated the efforts of others, to enable it to pump a drowned pit clear of water. The following year he was appointed Enginewright at Killingworth, in charge of the machinery in all the collieries of the "Grand Allies", the prominent coal-owning families of Wortley, Liddell and Bowes, with authorization also to work for others. He built many stationary engines and he closely examined locomotives of John Blenkinsop's type on the Kenton \& Coxlodge wagonway, as well as those of William Hedley at Wylam.
    It was in 1813 that Sir Thomas Liddell requested George Stephenson to build a steam locomotive for the Killingworth wagonway: Blucher made its first trial run on 25 July 1814 and was based on Blenkinsop's locomotives, although it lacked their rack-and-pinion drive. George Stephenson is credited with building the first locomotive both to run on edge rails and be driven by adhesion, an arrangement that has been the conventional one ever since. Yet Blucher was far from perfect and over the next few years, while other engineers ignored the steam locomotive, Stephenson built a succession of them, each an improvement on the last.
    During this period many lives were lost in coalmines from explosions of gas ignited by miners' lamps. By observation and experiment (sometimes at great personal risk) Stephenson invented a satisfactory safety lamp, working independently of the noted scientist Sir Humphry Davy who also invented such a lamp around the same time.
    In 1817 George Stephenson designed his first locomotive for an outside customer, the Kilmarnock \& Troon Railway, and in 1819 he laid out the Hetton Colliery Railway in County Durham, for which his brother Robert was Resident Engineer. This was the first railway to be worked entirely without animal traction: it used inclined planes with stationary engines, self-acting inclined planes powered by gravity, and locomotives.
    On 19 April 1821 Stephenson was introduced to Edward Pease, one of the main promoters of the Stockton \& Darlington Railway (S \& DR), which by coincidence received its Act of Parliament the same day. George Stephenson carried out a further survey, to improve the proposed line, and in this he was assisted by his 18-year-old son, Robert Stephenson, whom he had ensured received the theoretical education which he himself lacked. It is doubtful whether either could have succeeded without the other; together they were to make the steam railway practicable.
    At George Stephenson's instance, much of the S \& DR was laid with wrought-iron rails recently developed by John Birkinshaw at Bedlington Ironworks, Morpeth. These were longer than cast-iron rails and were not brittle: they made a track well suited for locomotives. In June 1823 George and Robert Stephenson, with other partners, founded a firm in Newcastle upon Tyne to build locomotives and rolling stock and to do general engineering work: after its Managing Partner, the firm was called Robert Stephenson \& Co.
    In 1824 the promoters of the Liverpool \& Manchester Railway (L \& MR) invited George Stephenson to resurvey their proposed line in order to reduce opposition to it. William James, a wealthy land agent who had become a visionary protagonist of a national railway network and had seen Stephenson's locomotives at Killingworth, had promoted the L \& MR with some merchants of Liverpool and had carried out the first survey; however, he overreached himself in business and, shortly after the invitation to Stephenson, became bankrupt. In his own survey, however, George Stephenson lacked the assistance of his son Robert, who had left for South America, and he delegated much of the detailed work to incompetent assistants. During a devastating Parliamentary examination in the spring of 1825, much of his survey was shown to be seriously inaccurate and the L \& MR's application for an Act of Parliament was refused. The railway's promoters discharged Stephenson and had their line surveyed yet again, by C.B. Vignoles.
    The Stockton \& Darlington Railway was, however, triumphantly opened in the presence of vast crowds in September 1825, with Stephenson himself driving the locomotive Locomotion, which had been built at Robert Stephenson \& Co.'s Newcastle works. Once the railway was at work, horse-drawn and gravity-powered traffic shared the line with locomotives: in 1828 Stephenson invented the horse dandy, a wagon at the back of a train in which a horse could travel over the gravity-operated stretches, instead of trotting behind.
    Meanwhile, in May 1826, the Liverpool \& Manchester Railway had successfully obtained its Act of Parliament. Stephenson was appointed Engineer in June, and since he and Vignoles proved incompatible the latter left early in 1827. The railway was built by Stephenson and his staff, using direct labour. A considerable controversy arose c. 1828 over the motive power to be used: the traffic anticipated was too great for horses, but the performance of the reciprocal system of cable haulage developed by Benjamin Thompson appeared in many respects superior to that of contemporary locomotives. The company instituted a prize competition for a better locomotive and the Rainhill Trials were held in October 1829.
    Robert Stephenson had been working on improved locomotive designs since his return from America in 1827, but it was the L \& MR's Treasurer, Henry Booth, who suggested the multi-tubular boiler to George Stephenson. This was incorporated into a locomotive built by Robert Stephenson for the trials: Rocket was entered by the three men in partnership. The other principal entrants were Novelty, entered by John Braithwaite and John Ericsson, and Sans Pareil, entered by Timothy Hackworth, but only Rocket, driven by George Stephenson, met all the organizers' demands; indeed, it far surpassed them and demonstrated the practicability of the long-distance steam railway. With the opening of the Liverpool \& Manchester Railway in 1830, the age of railways began.
    Stephenson was active in many aspects. He advised on the construction of the Belgian State Railway, of which the Brussels-Malines section, opened in 1835, was the first all-steam railway on the European continent. In England, proposals to link the L \& MR with the Midlands had culminated in an Act of Parliament for the Grand Junction Railway in 1833: this was to run from Warrington, which was already linked to the L \& MR, to Birmingham. George Stephenson had been in charge of the surveys, and for the railway's construction he and J.U. Rastrick were initially Principal Engineers, with Stephenson's former pupil Joseph Locke under them; by 1835 both Stephenson and Rastrick had withdrawn and Locke was Engineer-in-Chief. Stephenson remained much in demand elsewhere: he was particularly associated with the construction of the North Midland Railway (Derby to Leeds) and related lines. He was active in many other places and carried out, for instance, preliminary surveys for the Chester \& Holyhead and Newcastle \& Berwick Railways, which were important links in the lines of communication between London and, respectively, Dublin and Edinburgh.
    He eventually retired to Tapton House, Chesterfield, overlooking the North Midland. A man who was self-made (with great success) against colossal odds, he was ever reluctant, regrettably, to give others their due credit, although in retirement, immensely wealthy and full of honour, he was still able to mingle with people of all ranks.
    [br]
    Principal Honours and Distinctions
    President, Institution of Mechanical Engineers, on its formation in 1847. Order of Leopold (Belgium) 1835. Stephenson refused both a knighthood and Fellowship of the Royal Society.
    Bibliography
    1815, jointly with Ralph Dodd, British patent no. 3,887 (locomotive drive by connecting rods directly to the wheels).
    1817, jointly with William Losh, British patent no. 4,067 (steam springs for locomotives, and improvements to track).
    Further Reading
    L.T.C.Rolt, 1960, George and Robert Stephenson, Longman (the best modern biography; includes a bibliography).
    S.Smiles, 1874, The Lives of George and Robert Stephenson, rev. edn, London (although sycophantic, this is probably the best nineteenthcentury biography).
    PJGR

    Biographical history of technology > Stephenson, George

  • 68 Watt, James

    [br]
    b. 19 January 1735 Greenock, Renfrewshire, Scotland
    d. 19 August 1819 Handsworth Heath, Birmingham, England
    [br]
    Scottish engineer and inventor of the separate condenser for the steam engine.
    [br]
    The sixth child of James Watt, merchant and general contractor, and Agnes Muirhead, Watt was a weak and sickly child; he was one of only two to survive childhood out of a total of eight, yet, like his father, he was to live to an age of over 80. He was educated at local schools, including Greenock Grammar School where he was an uninspired pupil. At the age of 17 he was sent to live with relatives in Glasgow and then in 1755 to London to become an apprentice to a mathematical instrument maker, John Morgan of Finch Lane, Cornhill. Less than a year later he returned to Greenock and then to Glasgow, where he was appointed mathematical instrument maker to the University and was permitted in 1757 to set up a workshop within the University grounds. In this position he came to know many of the University professors and staff, and it was thus that he became involved in work on the steam engine when in 1764 he was asked to put in working order a defective Newcomen engine model. It did not take Watt long to perceive that the great inefficiency of the Newcomen engine was due to the repeated heating and cooling of the cylinder. His idea was to drive the steam out of the cylinder and to condense it in a separate vessel. The story is told of Watt's flash of inspiration as he was walking across Glasgow Green one Sunday afternoon; the idea formed perfectly in his mind and he became anxious to get back to his workshop to construct the necessary apparatus, but this was the Sabbath and work had to wait until the morrow, so Watt forced himself to wait until the Monday morning.
    Watt designed a condensing engine and was lent money for its development by Joseph Black, the Glasgow University professor who had established the concept of latent heat. In 1768 Watt went into partnership with John Roebuck, who required the steam engine for the drainage of a coal-mine that he was opening up at Bo'ness, West Lothian. In 1769, Watt took out his patent for "A New Invented Method of Lessening the Consumption of Steam and Fuel in Fire Engines". When Roebuck went bankrupt in 1772, Matthew Boulton, proprietor of the Soho Engineering Works near Birmingham, bought Roebuck's share in Watt's patent. Watt had met Boulton four years earlier at the Soho works, where power was obtained at that time by means of a water-wheel and a steam engine to pump the water back up again above the wheel. Watt moved to Birmingham in 1774, and after the patent had been extended by Parliament in 1775 he and Boulton embarked on a highly profitable partnership. While Boulton endeavoured to keep the business supplied with capital, Watt continued to refine his engine, making several improvements over the years; he was also involved frequently in legal proceedings over infringements of his patent.
    In 1794 Watt and Boulton founded the new company of Boulton \& Watt, with a view to their retirement; Watt's son James and Boulton's son Matthew assumed management of the company. Watt retired in 1800, but continued to spend much of his time in the workshop he had set up in the garret of his Heathfield home; principal amongst his work after retirement was the invention of a pantograph sculpturing machine.
    James Watt was hard-working, ingenious and essentially practical, but it is doubtful that he would have succeeded as he did without the business sense of his partner, Matthew Boulton. Watt coined the term "horsepower" for quantifying the output of engines, and the SI unit of power, the watt, is named in his honour.
    [br]
    Principal Honours and Distinctions
    FRS 1785. Honorary LLD, University of Glasgow 1806. Foreign Associate, Académie des Sciences, Paris 1814.
    Further Reading
    H.W.Dickinson and R Jenkins, 1927, James Watt and the Steam Engine, Oxford: Clarendon Press.
    L.T.C.Rolt, 1962, James Watt, London: B.T. Batsford.
    R.Wailes, 1963, James Watt, Instrument Maker (The Great Masters: Engineering Heritage, Vol. 1), London: Institution of Mechanical Engineers.
    IMcN

    Biographical history of technology > Watt, James

  • 69 kredi

    "1. good credit standing; good credit rating. 2. bank loan, loan of money (obtained from a bank). 3. reputation, one´s position in the public eye. 4. education credit, credit hour. - açmak /a/ 1. to let (someone) buy on credit. 2. (for a bank) to give (someone) a loan of money. - almak to get a bank loan, get a loan of money from a bank. -si düşmek 1. to lose one´s credit standing. 2. to lose the esteem of others. - kartı credit card. - limiti credit line, Brit. credit limit. - mektubu letter of credit. - vermek /a/ (for a bank) to give (someone) a loan (of money)."

    Saja Türkçe - İngilizce Sözlük > kredi

  • 70 уровень образования

    1. level of education

     

    уровень образования

    [ http://www.eionet.europa.eu/gemet/alphabetic?langcode=en]

    EN

    level of education
    A position along a scale of increasingly advanced training marking the degree or grade of instruction either obtained by an individual, offered by a some entity or necessary for a particular job or task. (Source: RHW)
    [http://www.eionet.europa.eu/gemet/alphabetic?langcode=en]

    Тематики

    EN

    DE

    FR

    Русско-английский словарь нормативно-технической терминологии > уровень образования

См. также в других словарях:

  • Position — Po*si tion, n. [F. position, L. positio, fr. ponere, positum, to put, place; prob. for posino, fr. an old preposition used only in comp. (akin to Gr. ?) + sinere to leave, let, permit, place. See {Site}, and cf. {Composite}, {Compound}, v.,… …   The Collaborative International Dictionary of English

  • Position finder — Position Po*si tion, n. [F. position, L. positio, fr. ponere, positum, to put, place; prob. for posino, fr. an old preposition used only in comp. (akin to Gr. ?) + sinere to leave, let, permit, place. See {Site}, and cf. {Composite}, {Compound},… …   The Collaborative International Dictionary of English

  • Position micrometer — Position Po*si tion, n. [F. position, L. positio, fr. ponere, positum, to put, place; prob. for posino, fr. an old preposition used only in comp. (akin to Gr. ?) + sinere to leave, let, permit, place. See {Site}, and cf. {Composite}, {Compound},… …   The Collaborative International Dictionary of English

  • position — 1. An attitude, posture, or place occupied. 2. Posture or attitude assumed by a patient for comfort and to facilitate the performance of diagnostic, surgical, or therapeutic procedures. 3. In obstetrics, the relation of an arbitrarily chosen …   Medical dictionary

  • Position of the arms in ballet — There are two basic positions for the arms. In one, the dancer keeps the fingers of both arms almost touching to form an oval shape, either almost touching the hips, or at navel level, or raised above the dancer s head. In the other, the arms are …   Wikipedia

  • position error — An error in pressure instruments caused by the difference between the actual static pressure and that obtained from the aircraft. It depends upon the location of the static port pickup points and the attitude of the aircraft. Also called pressure …   Aviation dictionary

  • Angle of position — Position Po*si tion, n. [F. position, L. positio, fr. ponere, positum, to put, place; prob. for posino, fr. an old preposition used only in comp. (akin to Gr. ?) + sinere to leave, let, permit, place. See {Site}, and cf. {Composite}, {Compound},… …   The Collaborative International Dictionary of English

  • Double position — Position Po*si tion, n. [F. position, L. positio, fr. ponere, positum, to put, place; prob. for posino, fr. an old preposition used only in comp. (akin to Gr. ?) + sinere to leave, let, permit, place. See {Site}, and cf. {Composite}, {Compound},… …   The Collaborative International Dictionary of English

  • Guns of position — Position Po*si tion, n. [F. position, L. positio, fr. ponere, positum, to put, place; prob. for posino, fr. an old preposition used only in comp. (akin to Gr. ?) + sinere to leave, let, permit, place. See {Site}, and cf. {Composite}, {Compound},… …   The Collaborative International Dictionary of English

  • Single position — Position Po*si tion, n. [F. position, L. positio, fr. ponere, positum, to put, place; prob. for posino, fr. an old preposition used only in comp. (akin to Gr. ?) + sinere to leave, let, permit, place. See {Site}, and cf. {Composite}, {Compound},… …   The Collaborative International Dictionary of English

  • Strategic position — Position Po*si tion, n. [F. position, L. positio, fr. ponere, positum, to put, place; prob. for posino, fr. an old preposition used only in comp. (akin to Gr. ?) + sinere to leave, let, permit, place. See {Site}, and cf. {Composite}, {Compound},… …   The Collaborative International Dictionary of English

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»