-
1 нормальная гиперплоскость
normal hyperplane мат.Русско-английский научно-технический словарь Масловского > нормальная гиперплоскость
-
2 нормальная гиперплоскость
Mathematics: normal hyperplaneУниверсальный русско-английский словарь > нормальная гиперплоскость
-
3 гиперплоскость
(Гипер… [греч. hyper над, сверх, по ту сторону]. Приставка, указывающая на превышение нормы.)- опорная гиперплоскость - разделяющая гиперплоскостьПолупространство является множеством вида {x ∈ RL: p . x ≥ c} для некоторого p ≠ 0, называемого нормальным вектором относительно полупространства, и некоторого c ∈ R. Его граница {x ∈ RL: p . x = c} называется гиперплоскостью. Термин нормальный возник потому, что всякий раз, когда p . x = p . x' = c, мы имеем p .(x . x') = 0, и поэтому p ортогонален (т.е. перпендикулярен, или нормален) к гиперплоскости. Отметим, что как полупространства, так и гиперплоскости являются выпуклыми множествами. — A half-space is a set of the form {x ∈ RL: p . x ≥ c} for some p ≠ 0, called the normal vectornto the half-space, and some c ∈ R. Its boundary {x ∈ RL: p . x = c} is called a hyperplane. The term normal comes from the fact tat whenever p . x = p . x' = c, we have p .(x . x') = 0, and so p is orthogonal to (i.e., perpendicular, or normal) to the hyperplane. Note that both half-spaces and hyperplanes are convex sets.
Russian-English Dictionary "Microeconomics" > гиперплоскость
-
4 вектор общего потребления
вектор, проведенный из начала координат — vector at the origin
Полупространство является множеством вида {x ∈ RL: p . x ≥ c} для некоторого p ≠ 0, называемого нормальным вектором относительно полупространства, и некоторого c ∈ R. Его граница {x ∈ RL: p . x = c} называется гиперплоскостью. Термин нормальный возник потому, что всякий раз, когда p . x = p . x' = c, мы имеем p .(x . x') = 0, и поэтому p ортогонален (т.е. перпендикулярен или нормален) к гиперплоскости. — A half-space is a set of the form {x ∈ RL: p . x ≥ c} for some p ≠ 0, called the normal vectornto the half-space, and some c ∈ R. Its boundary {x ∈ RL: p . x = c} is called a hyperplane. The term normal comes from the fact that whenever p . x = p . x' = c, we have p .(x . x') = 0, and so p is orthogonal to (i.e., perpendicular, or normal) to the hyperplane.
Russian-English Dictionary "Microeconomics" > вектор общего потребления
-
5 полупространство
Полупространство является множеством вида {x ∈ RL: p . x ≥ c} для некоторого p ≠ 0, называемого нормальным вектором относительно полупространства, и некоторого c ∈ R. Его граница {x ∈ RL: p . x = c} называется гиперплоскостью. — A half-space is a set of the form {x ∈ RL: p . x ≥ c} for some p ≠ 0, called the normal vectortto the half-space, and some c ∈ R. Its boundary {x ∈ RL: p . x = c} is called a hyperplane.
Russian-English Dictionary "Microeconomics" > полупространство
См. также в других словарях:
Normal polytope — In mathematics, specifically in combinatorial commutative algebra, a convex lattice polytope P is called normal if it has the following property: given any positive integer n, every lattice point of the dilation nP, obtained from P by scaling its … Wikipedia
Surface normal — Normal vector redirects here. For a normalized vector, or vector of length one, see unit vector. A polygon and two of its normal vectors … Wikipedia
Rational normal curve — In mathematics, the rational normal curve is a smooth, rational curve C of degree n in projective n space mathbb{P}^n. It is a simple example of a projective variety. The twisted cubic is the special case of n =3.DefinitionThe rational normal… … Wikipedia
Support vector machine — Support vector machines (SVMs) are a set of related supervised learning methods used for classification and regression. Viewing input data as two sets of vectors in an n dimensional space, an SVM will construct a separating hyperplane in that… … Wikipedia
Convex cone — In linear algebra, a convex cone is a subset of a vector space over an ordered field that is closed under linear combinations with positive coefficients. A convex cone (light blue). Inside of it, the light red convex cone consists of all points… … Wikipedia
Ham sandwich theorem — In measure theory, a branch of mathematics, the ham sandwich theorem, also called the Stone–Tukey theorem after Arthur H. Stone and John Tukey, states that given n objects in n dimensional space, it is possible to divide all of them in half… … Wikipedia
Möbius transformation — Not to be confused with Möbius transform or Möbius function. In geometry, a Möbius transformation of the plane is a rational function of the form of one complex variable z; here the coefficients a, b, c, d are complex numbers satisfying ad − … Wikipedia
Linear discriminant analysis — (LDA) and the related Fisher s linear discriminant are methods used in statistics, pattern recognition and machine learning to find a linear combination of features which characterize or separate two or more classes of objects or events. The… … Wikipedia
List of mathematics articles (H) — NOTOC H H cobordism H derivative H index H infinity methods in control theory H relation H space H theorem H tree Haag s theorem Haagerup property Haaland equation Haar measure Haar wavelet Haboush s theorem Hackenbush Hadamard code Hadamard… … Wikipedia
Hilbert space — For the Hilbert space filling curve, see Hilbert curve. Hilbert spaces can be used to study the harmonics of vibrating strings. The mathematical concept of a Hilbert space, named after David Hilbert, generalizes the notion of Euclidean space. It… … Wikipedia
Supervised learning — is a machine learning technique for learning a function from training data. The training data consist of pairs of input objects (typically vectors), and desired outputs. The output of the functioncan be a continuous value (called regression), or… … Wikipedia