Перевод: со всех языков на все языки

со всех языков на все языки

nickel+mining

  • 21 добыча никеля

    Sokrat personal > добыча никеля

  • 22 Международная никелевая корпорация

    Универсальный русско-английский словарь > Международная никелевая корпорация

  • 23 константановый (медно-никелевый) мостик накаливания

    Mining: copper-nickel bridge wire (в электровоспламенителе)

    Универсальный русско-английский словарь > константановый (медно-никелевый) мостик накаливания

  • 24 никелевая руда

    Mining: nickel ore

    Универсальный русско-английский словарь > никелевая руда

  • 25 сереброкобальтникельжелезная шпейза

    Универсальный русско-английский словарь > сереброкобальтникельжелезная шпейза

  • 26 константановый мостик накаливания

    Универсальный русско-английский словарь > константановый мостик накаливания

  • 27 Stanley, Robert Crooks

    [br]
    b. 1 August 1876 Little Falls, New Jersey, USA
    d. 12 February 1951 USA
    [br]
    American mining engineer and metallurgist, originator of Monel Metal
    [br]
    Robert, the son of Thomas and Ada (Crooks) Stanley, helped to finance his early training at the Stevens Institute of Technology, Hoboken, New Jersey, by working as a manual training instructor at Montclair High School. After graduating in mechanical engineering from Stevens in 1899, and as a mining engineer from the Columbia School of Mines in 1901, he accepted a two-year assignment from the S.S.White Dental Company to investigate platinum-bearing alluvial deposits in British Columbia. This introduced him to the International Nickel Company (Inco), which had been established on 29 March 1902 to amalgamate the major mining companies working the newly discovered cupro-nickel deposits at Sudbury, Ontario. Ambrose Monell, President of Inco, appointed Stanley as Assistant Superintendent of its American Nickel Works at Camden, near Philadelphia, in 1903. At the beginning of 1904 Stanley was General Superintendent of the Orford Refinery at Bayonne, New Jersey, where most of the output of the Sudbury mines was treated.
    Copper and nickel were separated there from the bessemerized matte by the celebrated "tops and bottoms" process introduced thirteen years previously by R.M.Thompson. It soon occurred to Stanley that such a separation was not invariably required and that, by reducing directly the mixed matte, he could obtain a natural cupronickel alloy which would be ductile, corrosion resistant, and no more expensive to produce than pure copper or nickel. His first experiment, on 30 December 1904, was completely successful. A railway wagon full of bessemerized matte, low in iron, was calcined to oxide, reduced to metal with carbon, and finally desulphurized with magnesium. Ingots cast from this alloy were successfully forged to bars which contained 68 per cent nickel, 23 per cent copper and about 1 per cent iron. The new alloy, originally named after Ambrose Monell, was soon renamed Monel to satisfy trademark requirements. A total of 300,000 ft2 (27,870 m2) of this white, corrosion-resistant alloy was used to roof the Pennsylvania Railway Station in New York, and it also found extensive applications in marine work and chemical plant. Stanley greatly increased the output of the Orford Refinery during the First World War, and shortly after becoming President of the company in 1922, he established a new Research and Development Division headed initially by A.J.Wadham and then by Paul D. Merica, who at the US Bureau of Standards had first elucidated the mechanism of age-hardening in alloys. In the mid- 1920s a nickel-ore body of unprecedented size was identified at levels between 2,000 and 3,000 ft (600 and 900 m) below the Frood Mine in Ontario. This property was owned partially by Inco and partially by the Mond Nickel Company. Efficient exploitation required the combined economic resources of both companies. They merged on 1 January 1929, when Mond became part of International Nickel. Stanley remained President of the new company until February 1949 and was Chairman from 1937 until his death.
    [br]
    Principal Honours and Distinctions
    American Society for Metals Gold Medal. Institute of Metals Platinum Medal 1948.
    Further Reading
    F.B.Howard-White, 1963, Nickel, London: Methuen (a historical review).
    ASD

    Biographical history of technology > Stanley, Robert Crooks

  • 28 Johnson, Percival Norton

    SUBJECT AREA: Metallurgy
    [br]
    b. 29 September 1792 London, England
    d. 1 June 1866 Stoke Fleming, Devon, England
    [br]
    English chemist, assayer, mining engineer and founder of the firm Johnson Matthey.
    [br]
    He was the son of John Johnson, then sole Commercial Assayer in London, from whom he inherited his aptitude for chemistry and metallurgy. At the age of 14 he was apprenticed to his father by the Worshipful Company of Goldsmiths. Ore samples then being analysed in Johnson's office introduced him to the new metal platinum, and resulted in a paper to Philosophical Magazine in 1812. Johnson established himself as a "practical mineralogist" in Maiden Lane, London, in 1818 and in Hatton Garden after 1822. He was greatly assisted by a fellow metallurgist, Thomas Cock (1787–1842), who developed the platinum fabrication and pigment sides of die business. In 1827 Johnson was consulted by the Russian government about the exploitation of the rich platinum deposits that had been discovered in the Urals in 1819. Between 1829 and 1832 Johnson became the first in England to manufacture nickel, extracted from nickel-bearing material imported from Germany at his plant at Bow Common on the Regent's Canal. In 1832 he began to réfine gold imported from the Imperial Brazilian Association by a process which separated without loss the metals silver, platinum, palladium, rhodium and iridium. This profitable activity continued until the Brazilian company was wound up in 1852. Since 1824, Johnson had been named "assay master" by a number of mining companies. From 1843 until the mid-1850s he had a considerable mining interest in the West Country. Meanwhile, the Hatton Garden establishment continued to prosper. In 1839 he was joined by George Matthey, who particularly fostered the Russian platinum business, and in 1851 he was taken unto partnership and the firm became the celebrated Johnson Matthey. In the following year the firm was officially recognized as one of the four Assayers to the Bank of England appointed to handle the flood of gold dust then arriving in England from the Australian gold fields. Soon after, however, ill health compelled him to retire to his Devon country house.
    [br]
    Principal Honours and Distinctions
    FRS 1846.
    Bibliography
    1812, "Experiments which prove platina, when combined with gold and silver, to be soluble in nitric acid", Philosophical Magazine (1st series) 40(171):3–4.
    Further Reading
    D.McDonald, 1951, Percival Norton Johnson, London: Johnson Matthey (includes lists of his publications and his honours and awards).
    ——1964, The Johnsons of Morden Lane, London: Martins.
    ——1960, A History of Platinum, London: Johnson Matthey.
    ASD

    Biographical history of technology > Johnson, Percival Norton

  • 29 листовая сталь

    1) General subject: plate
    4) Railway term: sheeting
    5) Automobile industry: sheet metal, sheet steel
    6) Mining: iron-plate, sheet-iron

    Универсальный русско-английский словарь > листовая сталь

  • 30 ресурсы и запасы никеля

    Универсальный русско-немецкий словарь > ресурсы и запасы никеля

  • 31 Haynes, Elwood

    [br]
    b. 14 October 1857 Portland, Indiana, USA
    d. 13 April 1925 Kokomo, Indiana, USA
    [br]
    American inventor ofStellite cobalt-based alloys, early motor-car manufacturer and pioneer in stainless steels.
    [br]
    From his early years, Haynes was a practising Presbyterian and an active prohibitionist. He graduated in 1881 at Worcester, Massachusetts, and a spell of teaching in his home town was interrupted in 1884–5 while he attended the Johns Hopkins University in Baltimore. In 1886 he became permanently diverted by the discovery of natural gas in Portland. He was soon appointed Superintendent of the local gas undertaking, and then in 1890 he was hired by the Indiana Natural Gas \& Oil Company. While continuing his gas-company employment until 1901, Haynes conducted numerous metallurgical experiments. He also designed an automobile: this led to the establishment of the Haynes- Apperson Company at Kokomo as one of the earliest motor-car makers in North America. From 1905 the firm traded as the Haynes Automobile Company, and before its bankruptcy in 1924 it produced more than 50,000 cars. After 1905, Haynes found the first "Stellite" alloys of cobalt and chromium, and in 1910 he was publicizing the patented material. He then discovered the valuable hardening effect of tungsten, and in 1912 began applying the "improved" Stellite to cutting tools. Three years later, the Haynes Stellite Company was incorporated, with Haynes as President, to work the patents. It was largely from this source that Haynes became a millionaire in 1920. In April 1912, Haynes's attempt to patent the use of chromium with iron to render the product rustless was unsuccessful. However, he re-applied for a US patent on 12 March 1915 and, although this was initially rejected, he persevered and finally obtained recognition of his modified claim. The American Stainless Steel Company licensed the patents of Brearley and Haynes jointly in the USA until the 1930s.
    [br]
    Principal Honours and Distinctions
    John Scott Medal 1919 (awarded for useful inventions).
    Bibliography
    Haynes was the author of more than twenty published papers and articles, among them: 1907, "Materials for automobiles", Proceedings of the American Society of Mechanical
    Engineers 29:1,597–606; 1910, "Alloys of nickel and cobalt with chromium", Journal of Industrial Engineering
    and Chemistry 2:397–401; 1912–13, "Alloys of cobalt with chromium and other metals", Transactions of the American Institute of 'Mining Engineers 44:249–55;
    1919–20, "Stellite and stainless steel", Proceedings of the Engineering Society of West
    Pennsylvania 35:467–74.
    1 April 1919, US patent no. 1,299,404 (stainless steel).
    The four US patents worked by the Haynes Stellite Company were: 17 December 1907, patent no. 873,745.
    1 April 1913, patent no. 1,057,423.
    1 April 1913, patent no. 1,057, 828.
    17 August 1915, patent no. 1,150, 113.
    Further Reading
    R.D.Gray, 1979, Alloys and Automobiles. The Life of Elwood Haynes, Indianapolis: Indiana Historical Society (a closely documented biography).
    JKA

    Biographical history of technology > Haynes, Elwood

См. также в других словарях:

  • Nickel mining in New Caledonia — A creek in southern New Caledonia. Red colours reveal the richness of the ground in nickel and iron oxides Location …   Wikipedia

  • Mining industry of Russia — The mineral industry of Russia is one of the world s leading mineral industries and accounts for a large percentage of the Commonwealth of Independent States production of a range of mineral products, including metals, industrial minerals, and… …   Wikipedia

  • Mining industry of Botswana — The mineral industry of Botswana has dominated the national economy since the early 1990s. Diamond has been the leading component of the mineral sector since large scale diamond production began 25 years ago. Most of Botswana’s diamond production …   Wikipedia

  • Nickel Mines, Pennsylvania — Nickel Mines   Hamlet   …   Wikipedia

  • Nickel Centre —   Community   Location of Nickel Centre within Greater Sudbury. Country …   Wikipedia

  • Nickel–iron battery — specific energy 30[1] −50[2] Wh/kg energy density 30[1] Wh/l specific power …   Wikipedia

  • Mining in Japan — is minimal because Japan possesses very few mining resources. Japanese mining was a rapidly declining industry in the 1980s. Domestic coal production shrank from a peak of 55 million tons in 1960 to slightly more than 16 million tons in 1985,… …   Wikipedia

  • Mining the Sky: Untold Riches from the Asteroids, Comets, and Planets — is a book by John S. Lewis which discusses the development of interplanetary space within our solar system. Lewis makes a prediction that the abundant natural resources of the solar system, including effectively limitless solar energy, could… …   Wikipedia

  • Mining in Western Australia — Main article: Mining in Australia Mining in Western Australia Position of Western Australia within Australia highlighted Loc …   Wikipedia

  • nickel processing — Introduction       preparation of the metal for use in various products.       Although it is best known for its use in coinage, nickel (Ni) has become much more important for its many industrial applications, which owe their importance to a… …   Universalium

  • mining — /muy ning/, n. 1. the act, process, or industry of extracting ores, coal, etc., from mines. 2. the laying of explosive mines. [1250 1300; ME: undermining (walls in an attack); see MINE2, ING1] * * * I Excavation of materials from the Earth s… …   Universalium

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»