Перевод: со всех языков на все языки

со всех языков на все языки

national+technology+university

  • 61 Baekeland, Leo Hendrik

    [br]
    b. 14 November 1863 Saint-Martens-Latern, Belgium
    d. 23 February 1944 Beacon, New York, USA
    [br]
    Belgian/American inventor of the Velox photographic process and the synthetic plastic Bakélite.
    [br]
    The son of an illiterate shoemaker, Baekeland was first apprenticed in that trade, but was encouraged by his mother to study, with spectacular results. He won a scholarship to Gand University and graduated in chemistry. Before he was 21 he had achieved his doctorate, and soon afterwards he obtained professorships at Bruges and then at Gand. Baekeland seemed set for a distinguished academic career, but he turned towards the industrial applications of chemistry, especially in photography.
    Baekeland travelled to New York to further this interest, but his first inventions met with little success so he decided to concentrate on one that seemed to have distinct commercial possibilities. This was a photographic paper that could be developed in artificial light; he called this "gas light" paper Velox, using the less sensitive silver chloride as a light-sensitive agent. It proved to have good properties and was easy to use, at a time of photography's rising popularity. By 1896 the process began to be profitable, and three years later Baekeland disposed of his plant to Eastman Kodak for a handsome sum, said to be $3–4 million. That enabled him to retire from business and set up a laboratory at Yonkers to pursue his own research, including on synthetic resins. Several chemists had earlier obtained resinous products from the reaction between phenol and formaldehyde but had ignored them. By 1907 Baekeland had achieved sufficient control over the reaction to obtain a good thermosetting resin which he called "Bakélite". It showed good electrical insulation and resistance to chemicals, and was unchanged by heat. It could be moulded while plastic and would then set hard on heating, with its only drawback being its brittleness. Bakelite was an immediate success in the electrical industry and Baekeland set up the General Bakelite Company in 1910 to manufacture and market the product. The firm grew steadily, becoming the Bakélite Corporation in 1924, with Baekeland still as active President.
    [br]
    Principal Honours and Distinctions
    President, Electrochemical Society 1909. President, American Chemical Society 1924. Elected to the National Academy of Sciences 1936.
    Further Reading
    J.Gillis, 1965, Leo Baekeland, Brussels.
    A.R.Matthis, 1948, Leo H.Baekeland, Professeur, Docteur ès Sciences, chimiste, inventeur et grand industriel, Brussels.
    J.K.Mumford, 1924, The Story of Bakélite.
    C.F.Kettering, 1947, memoir on Baekeland, Biographical Memoirs of the National Academy of Sciences 24 (includes a list of his honours and publications).
    LRD

    Biographical history of technology > Baekeland, Leo Hendrik

  • 62 Carothers, Wallace Hume

    [br]
    b. 27 April 1896 Burlington, Iowa, USA
    d. 29 April 1937 Philadelphia, Pennsylvania, USA
    [br]
    American chemist, inventor of nylon.
    [br]
    After graduating in chemistry, Carothers embarked on academic research at several universities, finally at Harvard University. His earliest published papers, from 1923, heralded the brilliance and originality of his later work. In 1928, Du Pont de Nemours persuaded him to forsake the academic world to lead their new organic-chemistry group in a programme of fundamental research at their central laboratories at Wilmington, Delaware. The next nine years were extraordinarily productive, yielding important contributions to theoretical organic chemistry and the foundation of two branches of chemical industry, namely the production of synthetic rubber and of wholly synthetic fibres.
    Carothers began work on high molecular weight substances yielding fibres and introduced polymerization by condensation: polymerization by addition was already known. He developed a clear understanding of the relation between the repeating structural units in a large molecule and its physical chemical properties. In 1931, Carothers found that chloroprene could be polymerized much faster than isoprene, the monomer in natural rubber. This process yielded polychloroprene or neoprene, a synthetic rubber with improved properties. Manufacture began the following year, and the material has continued to be used for speciality rubbers.
    There followed many publications announcing new condensations polymers. On 2 January 1935, he obtained a patent for the formation of new polyamides, including one from adipic acid and hexamethylenediamene. After four years of development work, which cost Du Pont some $27 million, this new polyamide, or nylon, reached the stage of commercial production, beginning on 23 October 1938. Nylon stockings appeared the following year and 64 million were sold during the first twelve months. However, Carothers saw none of this spectacular success: he had died by his own hand in 1937, after a long history of gradually intensifying depression.
    [br]
    Principal Honours and Distinctions
    Elected to the National Academy of Science 1936 (he was the first industrial organic chemist to be so honoured).
    Bibliography
    H.M.Whitby and G.S.Whitby, 1940, Collected Papers of Wallace H.Carothers on Polymerisation, New York.
    Further Reading
    R.Adams, 1939, memoir, Biographical Memoirs of the National Academy of Sciences 20:293–309 (includes a complete list of Carothers's sixty-two scientific papers and most of his sixty-nine US patents).
    LRD

    Biographical history of technology > Carothers, Wallace Hume

  • 63 Lovelock, James Ephraim

    [br]
    b. 26 July 1919 Brixton, London, England
    [br]
    English biologist and philosopher, inventor of the microwave oven and electron capture detector.
    [br]
    Lovelock was brought up in Brixton in modest circumstances. At the age of 4 he was given a toy electrical set, which first turned his attention towards the study of science. From the Strand School, Brixton, he went on to the universities of Manchester and London, and after graduating in science, in 1941 he joined the National Institute for Medical Research, Mill Hill, as a staff scientist, remaining there for twenty years. During the early 1950s, he and his colleagues were engaged in research into freezing live animals and bringing them back to life by heating: Lovelock was struck by the intense pain this process caused the animals, and he sought a more humane method. He tried diathermy or internal heating through the effect of a continuous wave magnetron borrowed from the Navy. He found that the animals were brought back to life painlessly, and impressed with his success he tried baking a potato for his lunch in the apparatus and found that it cooked amazingly quickly compared with the one hour normally needed in an ordinary oven. Lovelock had invented the microwave oven, but its commercial possibilities were not at first realized.
    In the late 1950s he invented the electron capture detector, which proved to be more sensitive than any other analytical equipment in detecting and measuring toxic substances. The apparatus therefore had obvious uses in testing the quality of the environment and so offered a tremendous boost to the "green" movement. In 1961 he was invited to joint the US National Aeronautics and Space Administration (NASA) to employ the apparatus in an attempt to detect life in space.
    In the early 1970s Lovelock relinquished his biological work in order to devote his attention to philosophical matters, specifically to develop his theory of the Universe, now widely celebrated as the "Gaia theory". In this controversial theory, Lovelock regards our planet and all its living beings, including humans, as a single living organism.
    [br]
    Principal Honours and Distinctions
    CBE 1990. FRS 1974. Many academic awards and honorary degrees. Visiting Professor, University of Reading 1967–90.
    Bibliography
    1979, Gaia.
    1983, The Great Extinction.
    1988, The Ages of Gaia.
    1991, Gaia: The Practical Science of Planetary Medicine.
    LRD

    Biographical history of technology > Lovelock, James Ephraim

  • 64 Cambridge

    1) Город на северо-востоке штата Массачусетс, на р. Чарльз [ Charles River], западный пригород Бостона. 101,3 тыс. жителей (2000). Основан в 1630. Крупный центр науки и образования. Здесь находятся Гарвардский университет [ Harvard University], Массачусетский технологический институт [ Massachusetts Institute of Technology], Рэдклиффский колледж [ Radcliffe College]. Полиграфическая промышленность, производство фототехники и оптических приборов, электротехника. В 1639 С. Дей [Daye, Stephen] основал здесь первую в Северной Америке типографию, а в 1775 Дж. Вашингтон [ Washington, George] принял на себя командование американской армией. Дом-музей Лонгфелло [ Longfellow National Historic Site].
    2) Город на востоке штата Мэриленд, на Восточном побережье [ Eastern Shore]. 10,9 тыс. жителей (2000). Рыболовство, добыча устриц, креветок. Яхты. Пищевая промышленность. Основан в 1684.

    English-Russian dictionary of regional studies > Cambridge

  • 65 Forrester, Jay Write

    (р. 1918) Форрестер, Джей Райт
    Ученый, создатель метода системной динамики [ system dynamics]. Получил образование в Университете штата Небраска [Nebraska State University], инженер-электрик. В 40-е-50-е гг. разработал многокоординатное устройство хранения цифровой информации [multicoordinated digital information storage device]. Организовал компьютерную лабораторию в Массачусетском технологическом институте [ Massachusetts Institute of Technology], профессор менеджмента в том же институте. Член Американской академии гуманитарных и точных наук [ American Academy of Arts and Sciences]. Член Национальной галереи славы изобретателей [National Inventors Hall of Fame] (1979)

    English-Russian dictionary of regional studies > Forrester, Jay Write

  • 66 Solow, Robert Merton

    (р. 1924) Солоу, Роберт Мертон
    Экономист. В 1947 окончил Гарвардский университет [ Harvard University]. Преподавал в Массачусетском технологическом институте [ Massachusetts Institute of Technology], был консультантом корпорации РЭНД [ RAND Corporation]. В начале 1960-х член Экономического совета [ Council of Economic Advisers] при президенте Кеннеди [ Kennedy, John Fitzgerald (JFK)], в 1975-80 директор Бостонского федерального резервного банка [Boston Federal Reserve Bank]. Основные труды - по общим экономическим проблемам, теоретической и прикладной макроэкономике. Создал одну из известных моделей теории экономического роста - модель Солоу. Член Национальной академии наук США [ National Academy of Sciences] и Академии гуманитарных и точных наук [ American Academy of Arts and Sciences] США, в 1964 был президентом Эконометрического общества [Econometrics Society], в 1979 избран президентом Американской экономической ассоциации [ American Economic Association]. Лауреат Нобелевской премии по экономике (1987) за фундаментальные работы в области теории экономического роста

    English-Russian dictionary of regional studies > Solow, Robert Merton

  • 67 Cartwright, Revd Edmund

    [br]
    b. 24 April 1743 Marnham, Nottingham, England
    d. 30 October 1823 Hastings, Sussex, England
    [br]
    English inventor of the power loom, a combing machine and machines for making ropes, bread and bricks as well as agricultural improvements.
    [br]
    Edmund Cartwright, the fourth son of William Cartwright, was educated at Wakefield Grammar School, and went to University College, Oxford, at the age of 14. By special act of convocation in 1764, he was elected Fellow of Magdalen College. He married Alice Whitaker in 1772 and soon after was given the ecclesiastical living of Brampton in Derbyshire. In 1779 he was presented with the living of Goadby, Marwood, Leicestershire, where he wrote poems, reviewed new works, and began agricultural experiments. A visit to Matlock in the summer of 1784 introduced him to the inventions of Richard Arkwright and he asked why weaving could not be mechanized in a similar manner to spinning. This began a remarkable career of inventions.
    Cartwright returned home and built a loom which required two strong men to operate it. This was the first attempt in England to develop a power loom. It had a vertical warp, the reed fell with the weight of at least half a hundredweight and, to quote Gartwright's own words, "the springs which threw the shuttle were strong enough to throw a Congreive [sic] rocket" (Strickland 19.71:8—for background to the "rocket" comparison, see Congreve, Sir William). Nevertheless, it had the same three basics of weaving that still remain today in modern power looms: shedding or dividing the warp; picking or projecting the shuttle with the weft; and beating that pick of weft into place with a reed. This loom he proudly patented in 1785, and then he went to look at hand looms and was surprised to see how simply they operated. Further improvements to his own loom, covered by two more patents in 1786 and 1787, produced a machine with the more conventional horizontal layout that showed promise; however, the Manchester merchants whom he visited were not interested. He patented more improvements in 1788 as a result of the experience gained in 1786 through establishing a factory at Doncaster with power looms worked by a bull that were the ancestors of modern ones. Twenty-four looms driven by steam-power were installed in Manchester in 1791, but the mill was burned down and no one repeated the experiment. The Doncaster mill was sold in 1793, Cartwright having lost £30,000, However, in 1809 Parliament voted him £10,000 because his looms were then coming into general use.
    In 1789 he began working on a wool-combing machine which he patented in 1790, with further improvements in 1792. This seems to have been the earliest instance of mechanized combing. It used a circular revolving comb from which the long fibres or "top" were. carried off into a can, and a smaller cylinder-comb for teasing out short fibres or "noils", which were taken off by hand. Its output equalled that of twenty hand combers, but it was only relatively successful. It was employed in various Leicestershire and Yorkshire mills, but infringements were frequent and costly to resist. The patent was prolonged for fourteen years after 1801, but even then Cartwright did not make any profit. His 1792 patent also included a machine to make ropes with the outstanding and basic invention of the "cordelier" which he communicated to his friends, including Robert Fulton, but again it brought little financial benefit. As a result of these problems and the lack of remuneration for his inventions, Cartwright moved to London in 1796 and for a time lived in a house built with geometrical bricks of his own design.
    Other inventions followed fast, including a tread-wheel for cranes, metallic packing for pistons in steam-engines, and bread-making and brick-making machines, to mention but a few. He had already returned to agricultural improvements and he put forward suggestions in 1793 for a reaping machine. In 1801 he received a prize from the Board of Agriculture for an essay on husbandry, which was followed in 1803 by a silver medal for the invention of a three-furrow plough and in 1805 by a gold medal for his essay on manures. From 1801 to 1807 he ran an experimental farm on the Duke of Bedford's estates at Woburn.
    From 1786 until his death he was a prebendary of Lincoln. In about 1810 he bought a small farm at Hollanden near Sevenoaks, Kent, where he continued his inventions, both agricultural and general. Inventing to the last, he died at Hastings and was buried in Battle church.
    [br]
    Principal Honours and Distinctions
    Board of Agriculture Prize 1801 (for an essay on agriculture). Society of Arts, Silver Medal 1803 (for his three-furrow plough); Gold Medal 1805 (for an essay on agricultural improvements).
    Bibliography
    1785. British patent no. 1,270 (power loom).
    1786. British patent no. 1,565 (improved power loom). 1787. British patent no. 1,616 (improved power loom).
    1788. British patent no. 1,676 (improved power loom). 1790, British patent no. 1,747 (wool-combing machine).
    1790, British patent no. 1,787 (wool-combing machine).
    1792, British patent no. 1,876 (improved wool-combing machine and rope-making machine with cordelier).
    Further Reading
    M.Strickland, 1843, A Memoir of the Life, Writings and Mechanical Inventions of Edmund Cartwright, D.D., F.R.S., London (remains the fullest biography of Cartwright).
    Dictionary of National Biography (a good summary of Cartwright's life). For discussions of Cartwright's weaving inventions, see: A.Barlow, 1878, The History and Principles of Weaving by Hand and by Power, London; R.L. Hills, 1970, Power in the Industrial Revolution, Manchester. F.Nasmith, 1925–6, "Fathers of machine cotton manufacture", Transactions of the
    Newcomen Society 6.
    H.W.Dickinson, 1942–3, "A condensed history of rope-making", Transactions of the Newcomen Society 23.
    W.English, 1969, The Textile Industry, London (covers both his power loom and his wool -combing machine).
    RLH

    Biographical history of technology > Cartwright, Revd Edmund

  • 68 Chevreul, Michel Eugène

    SUBJECT AREA: Chemical technology
    [br]
    b. 31 August 1786 Angers, France
    d. 9 April 1889 Paris, France
    [br]
    French chemist who made significant research contributions to scientific knowledge in the field of colour contrast and standardization and demonstrated the chemical nature of fats.
    [br]
    Between 1811 and 1823, Chevreul's work on the fundamental basis of fats led to a great improvement in both the quality of wax candles and in the fats used in the manufacture of soap, and this had considerable advantageous implications for domestic life. The publication of his researches provided the first specific account of the nature of the fats used in the manufacture of soap. His work also led to the development and manufacture of the stearine candle. Stearine was first described by Chevreul in 1814 and was produced by heating glycerine with stearic acid. As early as 1825 M.Gay Lussac obtained a patent in England for making candles from a similar substance. The stearine candle was much more satisfactory than earlier products; it was firmer and gave a brighter light without any accompanying odour. Chevreul became Director of Dyeing in 1824 at the Royal Manufactory of Gobelins, the French national tapestry firm. While there, he carried out research into 1,442 different shades of colour. From 1830 he occupied the Chair of Chemistry at the Muséum d'Histoire Naturelle in Paris.
    [br]
    Further Reading
    G.Bouchard, 1932, Chevreul (biography).
    Albert da Costa, 1962, Michel Eugène Chevreul: Pioneer of Organic Chemistry', Wisconsin: Dept of History, University of Wisconsin.
    DY

    Biographical history of technology > Chevreul, Michel Eugène

  • 69 Coolidge, William David

    SUBJECT AREA: Electricity, Metallurgy
    [br]
    b. 23 October 1873 Hudson, Massachusetts, USA
    d. 3 February 1975 New York, USA
    [br]
    American physicist and metallurgist who invented a method of producing ductile tungsten wire for electric lamps.
    [br]
    Coolidge obtained his BS from the Massachusetts Institute of Technology (MIT) in 1896, and his PhD (physics) from the University of Leipzig in 1899. He was appointed Assistant Professor of Physics at MIT in 1904, and in 1905 he joined the staff of the General Electric Company's research laboratory at Schenectady. In 1905 Schenectady was trying to make tungsten-filament lamps to counter the competition of the tantalum-filament lamps then being produced by their German rival Siemens. The first tungsten lamps made by Just and Hanaman in Vienna in 1904 had been too fragile for general use. Coolidge and his life-long collaborator, Colin G. Fink, succeeded in 1910 by hot-working directly dense sintered tungsten compacts into wire. This success was the result of a flash of insight by Coolidge, who first perceived that fully recrystallized tungsten wire was always brittle and that only partially work-hardened wire retained a measure of ductility. This grasped, a process was developed which induced ductility into the wire by hot-working at temperatures below those required for full recrystallization, so that an elongated fibrous grain structure was progressively developed. Sintered tungsten ingots were swaged to bar at temperatures around 1,500°C and at the end of the process ductile tungsten filament wire was drawn through diamond dies around 550°C. This process allowed General Electric to dominate the world lamp market. Tungsten lamps consumed only one-third the energy of carbon lamps, and for the first time the cost of electric lighting was reduced to that of gas. Between 1911 and 1914, manufacturing licences for the General Electric patents had been granted for most of the developed work. The validity of the General Electric monopoly was bitterly contested, though in all the litigation that followed, Coolidge's fibering principle was upheld. Commercial arrangements between General Electric and European producers such as Siemens led to the name "Osram" being commonly applied to any lamp with a drawn tungsten filament. In 1910 Coolidge patented the use of thoria as a particular additive that greatly improved the high-temperature strength of tungsten filaments. From this development sprang the technique of "dispersion strengthening", still being widely used in the development of high-temperature alloys in the 1990s. In 1913 Coolidge introduced the first controllable hot-cathode X-ray tube, which had a tungsten target and operated in vacuo rather than in a gaseous atmosphere. With this equipment, medical radiography could for the first time be safely practised on a routine basis. During the First World War, Coolidge developed portable X-ray units for use in field hospitals, and between the First and Second World Wars he introduced between 1 and 2 million X-ray machines for cancer treatment and for industrial radiography. He became Director of the Schenectady laboratory in 1932, and from 1940 until 1944 he was Vice-President and Director of Research. After retirement he was retained as an X-ray consultant, and in this capacity he attended the Bikini atom bomb trials in 1946. Throughout the Second World War he was a member of the National Defence Research Committee.
    [br]
    Bibliography
    1965, "The development of ductile tungsten", Sorby Centennial Symposium on the History of Metallurgy, AIME Metallurgy Society Conference, Vol. 27, ed. Cyril Stanley Smith, Gordon and Breach, pp. 443–9.
    Further Reading
    D.J.Jones and A.Prince, 1985, "Tungsten and high density alloys", Journal of the Historical Metallurgy Society 19(1):72–84.
    ASD

    Biographical history of technology > Coolidge, William David

  • 70 Jenkins, Charles Francis

    [br]
    b. 1867 USA
    d. 1934 USA
    [br]
    American pioneer of motion pictures and television.
    [br]
    During the early years of the motion picture industry, Jenkins made many innovations, including the development in 1894 of his own projector, the "Phantoscope", which was widely used for a number of years. In the same year he also suggested the possibility of electrically transmitting pictures over a distance, an interest that led to a lifetime of experimentation. As a result of his engineering contributions to the practical realization of moving pictures, in 1915 the National Motion Picture Board of Trade asked him to chair a committee charged with establishing technical standards for the industry. This in turn led to his proposing the creation of a professional society for those engineers in the industry, and the following year the Society of Motion Picture Engineers (later to become the Society of Motion Picture and Television Engineers) was formed, with Jenkins as its first President. Soon after this he began experiments with mechanical television, using both the Nipkow hole-spiral disc and a low-definition system of his own, based on rotating bevelled glass discs (his so-called "prismatic rings") and alkali-metal photocells. In the 1920s he gave many demonstrations of mechanical television, including a cable transmission of a crude silhouette of President Harding from Washington, DC, to Philadelphia in 1923 and a radio broadcast from Washington in 1928. The following year he formed the Jenkins Television Company to make television transmitters and receivers, but it soon went into debt and was acquired by the de Forest Company, from whom RCA later purchased the patents.
    [br]
    Principal Honours and Distinctions
    First President, Society of Motion Picture Engineers 1916.
    Bibliography
    1923, "Radio photographs, radio movies and radio vision", Transactions of the Society of Motion Picture Engineers 16:78.
    1923, "Recent progress in the transmission of motion pictures by radio", Transactions of
    the Society of Motion Picture Engineers 17:81.
    1925, "Radio movies", Transactions of the Society of Motion Picture Engineers 21:7. 1930, "Television systems", Journal of the Society of Motion Picture Engineers 15:445. 1925. Vision by Radio.
    Further Reading
    J.H.Udelson, 1982, The Great Television Race: A History of the American Television Industry, 1925–41: University of Alabama Press.
    R.W.Hubbell, 1946, 4,000 Years of Television, London: G.Harrap \& Sons.
    1926. "The Jenkins system", Wireless World 18: 642 (contains a specific account of Jenkins's work).
    KF

    Biographical history of technology > Jenkins, Charles Francis

  • 71 Kettering, Charles Franklin

    [br]
    b. 29 August 1876 near Londonsville, Ohio, USA
    d. 25 November 1958 Dayton, Ohio, USA
    [br]
    American engineer and inventor.
    [br]
    Kettering gained degrees in mechanical and electrical engineering from Ohio State University. He was employed by the National Construction Register (NCR) of Dayton, Ohio, where he devised an electric motor for use in cash registers. He became Head of the Inventions Department of that company but left in 1909 to form, with the former Works Manager of NCR, Edward A. Deeds, the Dayton Engineering Laboratories (later called Delco), to develop improved lighting and ignition systems for automobiles. In the first two years of the new company he produced not only these but also the first self-starter, both of which were fitted to the Cadillac, America's leading luxury car. In 1914 he founded Dayton Metal Products and the Dayton Wright Airplane Company. Two years later Delco was bought by General Motors. In 1925 the independent research facilities of Delco were moved to Detroit and merged with General Motors' laboratories to form General Motors Research Corporation, of which Kettering was President and General Manager. (He had been Vice-President of General Motors since 1920.) In that position he headed investigations into methods of achieving maximum engine performance as well as into the nature of friction and combustion. Many other developments in the automobile field were made under his leadership, such as engine coolers, variable-speed transmissions, balancing machines, the two-way shock absorber, high-octane fuel, leaded petrol or gasoline, fast-drying lacquers, crank-case ventilators, chrome plating, and the high-compression automobile engine. Among his other activities were the establishment of the Charles Franklin Kettering Foundation for the Study of Chlorophyll and Photosynthesis at Antioch College, and the founding of the Sloan- Kettering Institute for Cancer Research in New York City. He sponsored the Fever Therapy Research Project at Miami Valley Hospital at Dayton, which developed the hypertherm, or artificial fever machine, for use in the treatment of disease. He resigned from General Motors in 1947.
    IMcN

    Biographical history of technology > Kettering, Charles Franklin

  • 72 Maxim, Sir Hiram Stevens

    [br]
    b. 5 February 1840 Brockway's Mills, Maine, USA
    d. 24 November 1916 Streatham, London, England
    [br]
    American (naturalized British) inventor; designer of the first fully automatic machine gun and of an experimental steam-powered aircraft.
    [br]
    Maxim was born the son of a pioneer farmer who later became a wood turner. Young Maxim was first apprenticed to a carriage maker and then embarked on a succession of jobs before joining his uncle in his engineering firm in Massachusetts in 1864. As a young man he gained a reputation as a boxer, but it was his uncle who first identified and encouraged Hiram's latent talent for invention.
    It was not, however, until 1878, when Maxim joined the first electric-light company to be established in the USA, as its Chief Engineer, that he began to make a name for himself. He developed an improved light filament and his electric pressure regulator not only won a prize at the first International Electrical Exhibition, held in Paris in 1881, but also resulted in his being made a Chevalier de la Légion d'honneur. While in Europe he was advised that weapons development was a more lucrative field than electricity; consequently, he moved to England and established a small laboratory at Hatton Garden, London. He began by investigating improvements to the Gatling gun in order to produce a weapon with a faster rate of fire and which was more accurate. In 1883, by adapting a Winchester carbine, he successfully produced a semi-automatic weapon, which used the recoil to cock the gun automatically after firing. The following year he took this concept a stage further and produced a fully automatic belt-fed weapon. The recoil drove barrel and breechblock to the vent. The barrel then halted, while the breechblock, now unlocked from the former, continued rearwards, extracting the spent case and recocking the firing mechanism. The return spring, which it had been compressing, then drove the breechblock forward again, chambering the next round, which had been fed from the belt, as it did so. Keeping the trigger pressed enabled the gun to continue firing until the belt was expended. The Maxim gun, as it became known, was adopted by almost every army within the decade, and was to remain in service for nearly fifty years. Maxim himself joined forces with the large British armaments firm of Vickers, and the Vickers machine gun, which served the British Army during two world wars, was merely a refined version of the Maxim gun.
    Maxim's interests continued to occupy several fields of technology, including flight. In 1891 he took out a patent for a steam-powered aeroplane fitted with a pendulous gyroscopic stabilizer which would maintain the pitch of the aeroplane at any desired inclination (basically, a simple autopilot). Maxim decided to test the relationship between power, thrust and lift before moving on to stability and control. He designed a lightweight steam-engine which developed 180 hp (135 kW) and drove a propeller measuring 17 ft 10 in. (5.44 m) in diameter. He fitted two of these engines into his huge flying machine testrig, which needed a wing span of 104 ft (31.7 m) to generate enough lift to overcome a total weight of 4 tons. The machine was not designed for free flight, but ran on one set of rails with a second set to prevent it rising more than about 2 ft (61 cm). At Baldwyn's Park in Kent on 31 July 1894 the huge machine, carrying Maxim and his crew, reached a speed of 42 mph (67.6 km/h) and lifted off its rails. Unfortunately, one of the restraining axles broke and the machine was extensively damaged. Although it was subsequently repaired and further trials carried out, these experiments were very expensive. Maxim eventually abandoned the flying machine and did not develop his idea for a stabilizer, turning instead to other projects. At the age of almost 70 he returned to the problems of flight and designed a biplane with a petrol engine: it was built in 1910 but never left the ground.
    In all, Maxim registered 122 US and 149 British patents on objects ranging from mousetraps to automatic spindles. Included among them was a 1901 patent for a foot-operated suction cleaner. In 1900 he became a British subject and he was knighted the following year. He remained a larger-than-life figure, both physically and in character, until the end of his life.
    [br]
    Principal Honours and Distinctions
    Chevalier de la Légion d'Honneur 1881. Knighted 1901.
    Bibliography
    1908, Natural and Artificial Flight, London. 1915, My Life, London: Methuen (autobiography).
    Further Reading
    Obituary, 1916, Engineer (1 December).
    Obituary, 1916, Engineering (1 December).
    P.F.Mottelay, 1920, The Life and Work of Sir Hiram Maxim, London and New York: John Lane.
    Dictionary of National Biography, 1912–1921, 1927, Oxford: Oxford University Press.
    CM / JDS

    Biographical history of technology > Maxim, Sir Hiram Stevens

  • 73 Wiles, Philip

    SUBJECT AREA: Medical technology
    [br]
    b. 18 August 1899 London, England
    d. 17 May 1967 Kingston, Jamaica
    [br]
    English orthopaedic surgeon involved in the development of hip-replacement surgery.
    [br]
    From 1917, Wiles served during the First World War in the artillery, air force and army service corps. After a short postwar period in the City, he qualified in medicine at the Middlesex Hospital in 1928. His distinguished student career led to posts at the Middlesex and the Royal National Orthopaedic Hospital. He served as a brigadier orthopaedic surgeon in the Army during the Second World War and in 1946 returned as Consultant Orthopaedic Surgeon to the Middlesex.
    He made outstanding contributions to postwar developments in orthopaedics and, as well as practising, wrote extensively on a variety of subjects including joint replacement. Taking early retirement in 1959 he moved to Jamaica, where he was involved in the affairs of the University of the West Indies.
    [br]
    Principal Honours and Distinctions
    President, British Orthopaedic Association 1955. Honorary Member of the American Orthopedic Association. Middlesex Hospital Lyell Gold Medal 1927.
    Bibliography
    1965, Essentials of Orthopaedics.
    1960, Fractures, Dislocations and Sprains.
    MG

    Biographical history of technology > Wiles, Philip

См. также в других словарях:

  • National Taiwan University — 國立臺灣大學 seal of the National Taiwan University Motto 敦品勵學,愛國愛人 (Chinese) Motto in English …   Wikipedia

  • National Central University — 國立中央大學 Motto Sincerity and Simplicity (誠樸) Established 1962 (Founded: 1915) Type Pub …   Wikipedia

  • National Taipei University — 國立臺北大學 Motto 追求真理,服務人群 (Searching for the truth and serving the people) Established 1949 …   Wikipedia

  • National Formosa University — 國立虎尾科技大學 Motto 誠正精勤(Integrity, Righteousness, Spirit, Diligence) Established 1980 as Central Party Affairs School Type Public President Dr. Jenn Der Lin(林振德) …   Wikipedia

  • National Ilan University — 國立宜蘭大學 Motto Studying diligently, practicing with earnestness, respect for professionalism and being gregarious. (篤學, 力行, 敬業, 樂群) Established 12 May 1926 (reformed in 2003) …   Wikipedia

  • National Chiayi University — National Chiayi University, abbreviated NCYU, is a public university located in Minxiong, Chiayi County, Taiwan. NCYU comprises four campuses. External links Official website (English) Official website (Chinese (Taiwan)) …   Wikipedia

  • National Quemoy University — 國立金門大學 File:NQU logo.png Motto 真知、力行、兼善天下 Motto in English Real knowledge, Strong performance, for the good of thew world Established 1997 Type National …   Wikipedia

  • National Taichung University — of Education 國立臺中教育大學 National Taichung University of Education Motto …   Wikipedia

  • National Textile University — National Textile University, Pakistan Emblem of National Textile University Motto Innovate and Lead Established 1959 Type …   Wikipedia

  • National Agrarian University — (UNALM) Universidad Nacional Agraria La Molina Motto Colere cupio Hominem et Agrum (in English: I want to work on the Man and on the Land) Establi …   Wikipedia

  • National Aerospace University — – Kharkiv Aviation Institute (KhAI) is a university in Ukraine which specializes in aviation and space engineering. The KhAI was founded in 1930. Contents 1 History 2 Students and faculty 3 Memberships and programs …   Wikipedia

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»