Перевод: со всех языков на английский

с английского на все языки

monmouthshire

  • 1 Monmouthshire

    Cartography: Mon, Mons

    Универсальный русско-английский словарь > Monmouthshire

  • 2 Монмутшир

    Русско-английский синонимический словарь > Монмутшир

  • 3 Монмутшир

    Универсальный русско-английский словарь > Монмутшир

  • 4 графство Монмутшир

    Cartography: Monmouthshire

    Универсальный русско-английский словарь > графство Монмутшир

  • 5 Mannesmann, Reinhard

    SUBJECT AREA: Metallurgy
    [br]
    b. 13 May 1856 Remscheid, Bleidinghausen, Germany
    d. 22 February 1922 Remscheid, Bleidinghausen, Germany
    [br]
    German metallurgical engineer.
    [br]
    Reinhard Mannesmann and his four brothers developed the engineering works at Remscheid that had been founded by their father. With his brother Max, Reinhard devised c. 1885 a method of producing seamless tubes by a rolling process. Factories for manufacturing tubes by this process were established at Remscheid, at Bous in the Saar district and at Komotau in Bohemia. Further developments of the process were patented by the brothers in the years following the initial patent of 1885. The British patent rights for the Mannesmann process were purchased by the Landore Siemens Steel Company in 1888, and the Mannesmann Tube Company was established at Landore in South Wales. This company went into liquidation in 1899 after ten years of production and the Tube Works was then purchased by the Mannesmann family, and a new company, the British Mannesmann Tube Company, was formed. Reinhard and Max Mannesmann took up residence near the Landore works and the business prospered so that by 1914 Landore was employing 1,500 men and producing 35,000 tons of tubing each year. The company was taken over during the First World War by the Custodian of Enemy Property, and after the war a new tube works which had been planned in 1914 was built at Newport, Monmouthshire. The Mannesmann family were able to resume control in 1926 for some ten years, but in 1938 the company became part of the Stewarts \& Lloyds organization.
    [br]
    Further Reading
    G.Evans, 1934, Manufacture of Seamless Tubes Ferrous and Non-Ferrous, London; 1940, Proceedings of the Institution of Mechanical Engineers 143:62–3 (both provide technical details of the Mannesmann process for forming seamless tubes).
    RTS

    Biographical history of technology > Mannesmann, Reinhard

  • 6 Morrison, William Murray

    [br]
    b. 7 October 1873 Birchwood, Inverness-shire, Scotland
    d. 21 May 1948 London, England
    [br]
    Scottish pioneer in the development of the British aluminium industry and Highlands hydroelectric energy.
    [br]
    After studying at the West of Scotland Technical College in Glasgow, in January 1895 Morrison was appointed Engineer to the newly formed British Aluminium Company Limited (BAC); it was with this organization that he spent his entire career. The company secured the patent rights to the Héroult and Bayer processes. It constructed a 200 tonne per year electrolytic plant at Foyers on the shore of Loch Ness, together with an adjacent 5000 kW hydroelectric scheme, and it built an alumina factory at Larne Harbour in north-eastern Ireland. Morrison was soon Manager at Foyers, and he became the company's Joint Technical Adviser. In 1910 he was made General Manager, and later he was appointed Managing Director. Morrison successfully brought about improvements in all parts of the production process; between 1915 and 1930 he increased the size of individual electrolytic cells by a factor of five, from 8,000 to 40,000 amperes. Soon after 1901, BAC built a second works for electrolytic reduction, at Kinlochleven in Argyllshire, where the primary design originated from Morrison. In the 1920s a third plant was erected at Fort William, in the lee of Ben Nevis, with hydroelectric generators providing some 75 MW. Alumina factories were constructed at Burntisland on the Firth of Forth and, in the 1930s, at Newport in Monmouthshire. Rolling mills were developed at Milton in Staffordshire, Warrington, and Falkirk in Stirlingshire, this last coming into use in the 1940s, by which time the company had a primary-metal output of more than 30,000 tonnes a year. Morrison was closely involved in all of these developments. He retired in 1946 as Deputy Chairman of BAC.
    [br]
    Principal Honours and Distinctions
    Commander of the Order of St Olav of Norway 1933 (BAC had manufacturing interests in Norway). Knighted 1943. Vice-Chairman, British Non-Ferrous Metals Research Association, Faraday Society, Institute of Metals. Institute of Metals Platinum Medal 1942.
    Bibliography
    1939, "Aluminium and highland water power", Journal of the Institute of Metals 65:17– 36 (seventeenth autumn lecture),
    JKA

    Biographical history of technology > Morrison, William Murray

  • 7 Somerset, Edward, 2nd Marquis of Worcester

    [br]
    b. 1601
    d. 3 April 1667 Lambeth (?), London, England
    [br]
    English inventor of a steam-operated pump for raising water, described in his work A Century of…Inventions.
    [br]
    Edward Somerset became 6th Earl and 2nd Marquis of Worcester and Titular Earl of Glamorgan. He was educated privately and then abroad, visiting Germany, Italy and France. He was made Councillor of Wales in 1633 and Deputy Lord Lieutenant of Monmouthshire in 1635. On the outbreak of the Civil War, he was commissioned to levy forces against the Scots in 1640. He garrisoned Raglan Castle for the King and was employed by Charles I to bring troops in from Ireland. He was declared an enemy of the realm by Parliament and was banished, remaining in France for some years. On the Restoration, he recovered most of his estates, principally in South Wales, and was able to devote most of his time to mechanical studies and experiments.
    Soon after 1626, he had employed the services of a skilled Dutch or German mechanic, Caspar Kaltoff, to make small-scale models for display to interested people. In 1638 he showed Charles I a 14 ft (4.3m) diameter wheel carrying forty weights that was claimed to have solved the problem of perpetual motion. He wrote his Century of the Names and Scantlings of Such Inventions as at Present I Can Call to Mind to have Tried and Perfected in 1655, but it was not published until 1663: no. 68 describes "An admirable and most forcible way to drive up water by fire", which has been claimed as an early steam-engine. Before the Civil War he made experiments at Raglan Castle, and after the war he built one of his engines at Vauxhall, London, where it raised water to a height of 40 ft (12 m). An Act of Parliament enabling Worcester to receive the benefit and profits of his water-commanding engine for ninety-nine years did not restore his fortunes. Descriptions of this invention are so vague that it cannot be reconstructed.
    [br]
    Bibliography
    1655, Century of the Names and Scantlings of Such Inventions as at Present I Can Call to Mind to have Tried and Perfected.
    Further Reading
    H.Dircks, 1865, The Life, Times and Scientific Labours of the Second Marquis of Worcester.
    Dictionary of National Biography, 1898, Vol. L, London: Smith Elder \& Co. (mainly covers his political career).
    H.W.Dickinson, 1938, A Short History of the Steam Engine, Cambridge University Press (discusses his steam engine invention).
    W.H.Thorpe, 1932–3, "The Marquis of Worcester and Vauxhall", Transactions of the Newcomen Society 13.
    RLH

    Biographical history of technology > Somerset, Edward, 2nd Marquis of Worcester

  • 8 Thomas, Sidney Gilchrist

    SUBJECT AREA: Metallurgy
    [br]
    b. 16 April 1850 London, England
    d. 1 February 1885 Paris, France
    [br]
    English inventor of basic steelmaking.
    [br]
    Thomas was educated at Dulwich College and from the age of 17, for the next twelve years, he made his living as a police-court clerk, although he studied chemistry in his spare time as an evening student at Birkbeck College, London. While there, he heard of the difficulties encountered by the Bessemer steelmaking process, which at that time was limited to using phosphorus-free iron. Any of this element present in the iron was oxidized to phosphoric acid, which would not react with the acidic lining in the converter, with the result that it would remain in the iron and render it too brittle to use. Unfortunately, phosphoric iron ores are more common than those free of this harmful element. Thomas was attracted by the view that a fortune awaited anyone who could solve this problem, and was not discouraged by the failure of several august figures in the industry, including Siemens and Lowthian Bell.
    Thomas's knowledge of chemistry taught him that whereas an acidic lining allowed the phosphorus to remain in the iron, a basic lining would react with it to form part of the slag, which could then be tapped off. His experiments to find a suitable material were conducted in difficult conditions, in his spare time with meagre apparatus. Finally he found that a converter lined with dolomite, a form of limestone, would succeed, and he appealed to his cousin Percy Carlyle Gilchrist, Chemist at the Blaenavon Ironworks in Monmouthshire, for help in carrying out pilot-scale trials. In 1879 he gave up his police-court job to devote himself to the work, and in the same year they patented the Thomas- Gilchrist process. The first licence to use it was granted to Bolckow, Vaughan \& Co. of Middlesborough, and there the first steel was made in a basic Bessemer converter on 4 April 1879. The process was rapidly taken up and spread widely in Europe and beyond and was applied to other furnaces. Thomas made a fortune, but his health did not long allow him to enjoy it, for he died at the early age of 34.
    [br]
    Bibliography
    L.G.Thompson, 1940, Sidney Gilchrist Thomas, an Invention and Its Consequences, London: Faber.
    T.G.Davies, 1978, Blaenavon and Sidney Gilchrist Thomas, Sheffield: Historical Metallurgy Society.
    LRD

    Biographical history of technology > Thomas, Sidney Gilchrist

См. также в других словарях:

  • Monmouthshire — Principal Area Verwaltungssitz Cwmbran Fläche 850 km² Einwohner 88.000[1] (2009) …   Deutsch Wikipedia

  • Monmouthshire — (spr. mónnmöthschĭr), Grafschaft im westlichen England, von Wales, Hereford und Gloucestershire umschlossen, im SO. und S. von dem Ästuarium des Severn begrenzt, umfaßt ein Areal von 1383 qkm (25,1 QM.) Die Einwohner (1901: 292,317 [211 auf 1… …   Meyers Großes Konversations-Lexikon

  • Monmouthshire —   [ mʌnməθʃɪə], ehemaliges County in Wales, 1974 aufgeteilt in die Countys Gwent, Mid Glamorgan und South Glamorgan; seit 1996 Verwaltungsdistrikt, 850 km2, 85 600 Einwohner; Verwaltungssitz ist Cwmbran …   Universal-Lexikon

  • Monmouthshire — [mon mouthshir΄, mon mouthshər] former county of SE Wales: also Monmouth …   English World dictionary

  • Monmouthshire — For other uses, see Monmouthshire (disambiguation). County of Monmouthshire Sir Fynwy Geography Area Total  % Water …   Wikipedia

  • Monmouthshire — /mon meuhth shear , sheuhr/, n. a historic county in E Wales, now part of Gwent, Mid Glamorgan, and South Glamorgan. Also called Monmouth. * * * ▪ county, Wales, United Kingdom Welsh  Sir Fynwy   county of southeastern Wales. The present county… …   Universalium

  • Monmouthshire — 51° 47′ 06″ N 2° 52′ 21″ W / 51.785, 2.87241 …   Wikipédia en Français

  • Monmouthshire — Ubicación de Monmouthshire en Gales. Monmouthshire (en galés: Sir Fynwy) es una autoridad unitaria de Gales, en el Reino Unido. Constituyó asimismo uno de sus trece condados históricos, ocupando la región histórica homónima. Se encuentra en la… …   Wikipedia Español

  • MONMOUTHSHIRE —    (252), a west of England county lying N. of the Severn estuary, between Glamorgan and Gloucestershire; is low and flat in the S., but otherwise hilly, and is traversed by the Usk River; more than half the surface is under permanent pasture;… …   The Nuttall Encyclopaedia

  • Monmouthshire — Sp Mònmutšyras Ap Monmouthshire angliškai Ap Sir Fynwy vališkai L Velso grafystė, Jungtinė Karalystė …   Pasaulio vietovardžiai. Internetinė duomenų bazė

  • Monmouthshire — Admin ASC 2 Code Orig. name Monmouthshire Country and Admin Code GB.WLS.Y4 GB …   World countries Adminstrative division ASC I-II

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»