-
1 modulo
1) модуль, по модулюостаток при целочисленном делении; например, modulo 2 adder - сумматор по модулю 22) см. modulus operatorАнгло-русский толковый словарь терминов и сокращений по ВТ, Интернету и программированию. > modulo
-
2 factor
1) фактор || факторный2) коэффициент; множитель3) показатель4) факторизовать; разлагать на множители•to reduce a fraction by a factor — приводить дробь к общему знаменателю; сокращать дробь на некоторый множитель
-
3 group
1) группа, ансамбль || групповой- roughing mill group2) совокупность; комплект3) группировка || группировать(ся)5) класс; категория || классифицировать; категоризировать6) хим. остаток7) сгусток; скопление8) узел9) матем. группа- absolute free group - absolute homotopy group - absolutely irreducible group - absolutely simple group - additively written group - adele group - adelic group - algebraically compact group - algebraically simple group - almost connected group - almost cyclic group - almost ordered group - almost periodic group - almost simple group - alternating form group - cancellative group - cellular homology group - characteristically simple group - complementing group - completely anisotropic group - completely discontinuous group - completely divisible group - completely indecomposable group - completely integrally closed group - deficient group - direct homology group - direct indecomposable group - doubly transitive group - finitely defined group - finitely generated group - finitely presented group - finitely related group - first homology group - first homotopy group - freely generated group - full linear group - full orthogonal group - full rotation group - full symmetric group - full unimodular group - group of classes of algebras - group of covering transformations - group of finite rank - group of infinite order - group of infinite rank - group of inner automorphisms - group of linear equivalence - group of linear forms - group of linear manifold - group of principal ideles - group of real line - group of recursive permutations - group of right quotients - idele class group - linearly ordered group - linearly transitive group - locally bicompact group - locally closed group - locally compact group - locally connected group - locally cyclic group - locally defined group - locally embeddable group - locally finite group - locally free group - locally infinite group - locally nilpotent group - locally normal group - locally solvable group - multiply primitive group - multiply transitive group - nonsolvable group - n-th homotopy group - ordered pair group - principal congruence group - properly orthogonal group - properly unimodular group - pure projective group - pure rotation group - pure simple group - quasipure projective group - quotient divisible group - residually nilpotent group - restricted holonomy group - sharply transitive group - simply ordered group - simply reducible group - simply transitive group - singular cogomology group - singular homology group - solvable group - stable group - strictly transitive group - strongly polycyclic group - subsolvable group - supersolvable group - totally ordered group - totally projective group - totally reducible group - triply transitive group - unitary symmetry group - unitary transformation group - value group - weak homology group - weakly mixing groupgroup with multiple operators — группа с многоместными операторами, мультиоператорная группа
-
4 index
1) индекс, указатель || вносить в указатель; снабжать указателем2) индекс, показатель || индексировать3) коэффициент4) метка•- index of a subgroup - index of critical point - index of multiple determination - reduced ramification index
См. также в других словарях:
Modulo operation — Quotient (red) and remainder (green) functions using different algorithms. In computing, the modulo operation finds the remainder of division of one number by another. Given two positive numbers, a (the dividend) and n (the divisor), a modulo n… … Wikipedia
modulo — MODÚLO s. n. (mat.) operator care furnizează drept rezultat un rest. (< fr. modulo) Trimis de raduborza, 15.09.2007. Sursa: MDN … Dicționar Român
Compact operator on Hilbert space — In functional analysis, compact operators on Hilbert spaces are a direct extension of matrices: in the Hilbert spaces, they are precisely the closure of finite rank operators in the uniform operator topology. As such, results from matrix theory… … Wikipedia
Unitary operator — For unitarity in physics, see unitarity (physics). In functional analysis, a branch of mathematics, a unitary operator (not to be confused with a unity operator) is a bounded linear operator U : H → H on a Hilbert space H… … Wikipedia
Fredholm-Operator — In der Funktionalanalysis, einem Teilgebiet der Mathematik, ist die Klasse der Fredholm Operatoren (nach E. I. Fredholm) ein bestimmte Klasse linearer Operatoren, die man „fast“ invertieren kann. Jedem Fredholm Operator ordnet man eine ganze Zahl … Deutsch Wikipedia
Fredholm operator — In mathematics, a Fredholm operator is an operator that arises in the Fredholm theory of integral equations. It is named in honour of Erik Ivar Fredholm. A Fredholm operator is a bounded linear operator between two Banach spaces whose range is… … Wikipedia
Hyponormaler Operator — In der Funktionalanalysis verallgemeinert der normale Operator den Begriff der normalen Matrix aus der linearen Algebra. Ist X ein Hilbertraum, so heißt ein Operator normal, falls er mit seiner Adjungierten kommutiert, d.h. wenn Dabei bezeichnet … Deutsch Wikipedia
Normaloider Operator — In der Funktionalanalysis verallgemeinert der normale Operator den Begriff der normalen Matrix aus der linearen Algebra. Ist X ein Hilbertraum, so heißt ein Operator normal, falls er mit seiner Adjungierten kommutiert, d.h. wenn Dabei bezeichnet … Deutsch Wikipedia
Paranormaler Operator — In der Funktionalanalysis verallgemeinert der normale Operator den Begriff der normalen Matrix aus der linearen Algebra. Ist X ein Hilbertraum, so heißt ein Operator normal, falls er mit seiner Adjungierten kommutiert, d.h. wenn Dabei bezeichnet … Deutsch Wikipedia
Quasinormaler Operator — In der Funktionalanalysis verallgemeinert der normale Operator den Begriff der normalen Matrix aus der linearen Algebra. Ist X ein Hilbertraum, so heißt ein Operator normal, falls er mit seiner Adjungierten kommutiert, d.h. wenn Dabei bezeichnet … Deutsch Wikipedia
Subnormaler Operator — In der Funktionalanalysis verallgemeinert der normale Operator den Begriff der normalen Matrix aus der linearen Algebra. Ist X ein Hilbertraum, so heißt ein Operator normal, falls er mit seiner Adjungierten kommutiert, d.h. wenn Dabei bezeichnet … Deutsch Wikipedia