Перевод: со всех языков на английский

с английского на все языки

mersey

  • 1 Williams, Sir Edward Leader

    SUBJECT AREA: Canals, Civil engineering
    [br]
    b. 28 April 1828 Worcester, England
    d. 1 June 1910 Altrincham, Cheshire, England
    [br]
    English civil engineer, designer and first Chief Engineer of the Manchester Ship Canal.
    [br]
    After an apprenticeship with the Severn Navigation, of which his father was Chief Engineer, Williams was engaged as Assistant Engineer on the Great Northern Railway, Resident Engineer at Shoreham Harbour and Engineer to the contractors for the Admiralty Pier at Dover. In 1856 he was appointed Engineer to the River Weaver Trust, and among the improvements he made was the introduction of the Anderton barge lift linking the Weaver and the Trent and Mersey Canal. After rejecting the proposal of a flight of locks he considered that barges might be lifted and lowered by hydraulic means. Various designs were submitted and the final choice fell on one by Edwin Clark that had two troughs counterbalancing each other through pistons. Movement of the troughs was initiated by introducing excess water into the upper trough to lift the lower. The work was carried out by Clark.
    In 1872 Williams became Engineer to the Bridgewater Navigation, enlarging the locks at Runcorn and introducing steam propulsion on the canal. He later examined the possibility of upgrading the Mersey \& Irwell Navigation to a Ship Canal. In 1882 his proposals to the Provisional Committee of the proposed Manchester Ship Canal were accepted. His scheme was to use the Mersey Channel as far as Eastham and then construct a lock canal from there to Manchester. He was appointed Chief Engineer of the undertaking.
    The canal's construction was a major engineering work during which Williams overcame many difficulties. He used the principle of the troughs on the Anderton lift as a guide for the construction of the Barton swing aqueduct, which replaced Brindley's original masonry aqueduct on the Bridgewater Canal. The first sod was cut at Eastham on 11 November 1887 and the lower portion of the canal was used for traffic in September 1891. The canal was opened to sea-borne traffic on 1 January 1894 and was formally opened by Queen Victoria on 21 May 1894. In acknowledgement of his work, a knighthood was conferred on him. He continued as Consulting Engineer until ill health forced his retirement.
    [br]
    Principal Honours and Distinctions
    Knighted. Vice-President, Institution of Civil Engineers 1905–7.
    JHB

    Biographical history of technology > Williams, Sir Edward Leader

  • 2 Мерси

    1) General subject: Mercy (женское имя)
    2) Geography: (река) Mersey, (р.) Mersey (Великобритания)

    Универсальный русско-английский словарь > Мерси

  • 3 сорт сыра

    Australian slang: Mersey Valley cheese (от названия долины (Mersey Valley) в Тасмании; соединяющий характеристики нескольких разных сортов австралийских сыров; производится в Тасмании)

    Универсальный русско-английский словарь > сорт сыра

  • 4 Gilbert, Thomas

    [br]
    b. 1720 Cotton Hall, Cotton, Staffordshire, England
    d. 18 December 1798
    [br]
    English politician, mine and canal entrepreneur.
    [br]
    He was the older brother of John Gilbert and, trained as a lawyer, he became Land Agent to Earl Gower and Legal Adviser to the Duke of Bridgewater (Francis Egerton). Brindley had carried out work for Gilbert on the Gower estates and the standard of work impressed him. In 1759 he recommended Brindley to his brother at Worsley as a competent engineer who would be valuable in the construction of the new canal. Gilbert became Member of Parliament for Newcastle under Lyme in 1763 and was thus able to sponsor the Trent and Mersey Bill when it came before Parliament. He joined the committee of the Trent and Mersey, representing the interests of both Earl Gower and himself. He was also involved with the East Shropshire mines and canals with his brother. He continued as a Member of Parliament (until 1768 for Newcastle and afterwards for Lichfield) until December 1794.
    [br]
    Further Reading
    P.Lead, 1990, Agents of Revolution: John and Thomas Gilbert—Entrepreneurs, Keele University Centre for Local History.
    JHB

    Biographical history of technology > Gilbert, Thomas

  • 5 Steers, Thomas

    [br]
    b. c. 1672 Kent, England
    d. buried November 1750 Liverpool, England
    [br]
    English dock and canal engineer.
    [br]
    An Army officer serving at the Battle of the Boyne in 1690 and later in the Low Countries, Steers thus gained experience in water control and development, canals and drainage. After his return to England he was associated with George Sorocold in the construction of Howland Great Dock, Rotherhithe, London, opened in 1699 and the first wet dock built in England. He was again associated with Sorocold in planning the first of Liverpool's wet docks and subsequently was responsible for its construction. On its completion, he became Dockmaster in 1717.
    In 1712 he surveyed the River Douglas for navigation, and received authorization to make it navigable from the Ribble estuary to Wigan in 1720. Although work was started by Steers, the undertaking was hit by the collapse of the South Sea Bubble and Steers was no longer associated with it when it was restarted in 1738. In 1721 he proposed making the Mersey and Irwell navigable.
    In 1736 he surveyed and engineered the first summit-level canal in the British Isles, between Portadown and Newry in Ulster, thus providing through-water communication between Lough Neagh and the Irish Sea. The canal was completed in 1741. He also carried out a survey of the river Boyne. Also in 1736, he surveyed the Worsley Brook in South Lancashire to provide navigation from Worsley to the Mersey. This was done on behalf of Scroop, 1st Duke of Bridgewater; an Act was obtained in 1737, but no work was started on the scheme at that time. It was left to Francis Egerton, the 3rd Duke, to initiate the Bridgewater Canal to provide water transport for coal from the Worsley pits direct to Manchester. In 1739 Steers was elected Mayor of Liverpool. The following year, jointly with John Eyes of Liverpool, he surveyed a possible navigation along the Calder from its junction with the Aire \& Calder at Wakefield to the Hebble and so through to Halifax, but, owing to opposition at the time, the construction of the Calder \& Hebble Navigation had to wait until after Steers's death. In the opinion of Professor A.W. Skempton, Steers was the most distinguished civil engineer before Smeaton's time.
    [br]
    Further Reading
    Henry Peet, 1932, Thomas Steers. The Engineer of Liverpool's First Dock; reprinted with App. from Transactions of the Historic Society of Lancashire and Cheshire 82:163– 242.
    JHB

    Biographical history of technology > Steers, Thomas

  • 6 (р.) Мерси

    Geography: Mersey (Великобритания)

    Универсальный русско-английский словарь > (р.) Мерси

  • 7 (река) Мерси

    Geography: Mersey

    Универсальный русско-английский словарь > (река) Мерси

  • 8 совокупляться с мужчиной с небольшим пенисом

    Универсальный русско-английский словарь > совокупляться с мужчиной с небольшим пенисом

  • 9 тасманит

    Универсальный русско-английский словарь > тасманит

  • 10 Мерси

    I
    мыс (Канада) Mercy, Cape
    II
    р. (Великобритания) Mersey

    Русско-английский географический словарь > Мерси

  • 11 Brindley, James

    SUBJECT AREA: Canals
    [br]
    b. 1716 Tunstead, Derbyshire, England
    d. 27 September 1772 Turnhurst, Staffordshire, England
    [br]
    English canal engineer.
    [br]
    Born in a remote area and with no material advantages, Brindley followed casual rural labouring occupations until 1733, when he became apprenticed to Abraham Bennett of Macclesfield, a wheelwright and millwright. Though lacking basic education in reading and writing, he demonstrated his ability, partly through his photographic memory, to solve practical problems. This established his reputation, and after Bennett's death in 1742 he set up his own business at Leek as a millwright. His skill led to an invitation to solve the problem of mine drainage at Wet Earth Colliery, Clifton, near Manchester. He tunnelled 600 ft (183 m) through rock to provide a leat for driving a water-powered pump.
    Following work done on a pump on Earl Gower's estate at Trentham, Brindley's name was suggested as the engineer for the proposed canal for which the Duke of Bridge water (Francis Egerton) had obtained an Act in 1759. The Earl and the Duke were brothers-in-law, and the agents for the two estates were, in turn, the Gilbert brothers. The canal, later known as the Bridgewater Canal, was to be constructed to carry coal from the Duke's mines at Worsley into Manchester. Brindley advised on the details of its construction and recommended that it be carried across the river Irwell at Barton by means of an aqueduct. His proposals were accepted, and under his supervision the canal was constructed on a single level and opened in 1761. Brindley had also surveyed for Earl Gower a canal from the Potteries to Liverpool to carry pottery for export, and the signal success of the Bridgewater Canal ensured that the Trent and Mersey Canal would also be built. These undertakings were the start of Brindley's career as a canal engineer, and it was largely from his concepts that the canal system of the Midlands developed, following the natural contours rather than making cuttings and constructing large embankments. His canals are thus winding navigations unlike the later straight waterways, which were much easier to traverse. He also adopted the 7 ft (2.13 m) wide lock as a ruling dimension for all engineering features. For cheapness, he formed his canal tunnels without a towpath, which led to the notorious practice of legging the boats through the tunnels.
    Brindley surveyed a large number of projects and such was his reputation that virtually every proposal was submitted to him for his opinion. Included among these projects were the Staffordshire and Worcestershire, the Rochdale, the Birmingham network, the Droitwich, the Coventry and the Oxford canals. Although he was nominally in charge of each contract, much of the work was carried out by his assistants while he rushed from one undertaking to another to ensure that his orders were being carried out. He was nearly 50 when he married Anne Henshall, whose brother was also a canal engineer. His fees and salaries had made him very wealthy. He died in 1772 from a chill sustained when carrying out a survey of the Caldon Canal.
    [br]
    Further Reading
    A.G.Banks and R.B.Schofield, 1968, Brindley at Wet Earth Colliery: An Engineering Study, Newton Abbot: David \& Charles.
    S.E.Buckley, 1948, James Brindley, London: Harrap.
    JHB

    Biographical history of technology > Brindley, James

  • 12 Clark, Edwin

    SUBJECT AREA: Civil engineering
    [br]
    b. 7 January 1814 Marlow, Buckinghamshire, England
    d. 22 October 1894 Marlow, Buckinghamshire, England
    [br]
    English civil engineer.
    [br]
    After a basic education in mathematics, latin, French and geometry, Clark was articled to a solicitor, but he left after two years because he did not like the work. He had no permanent training otherwise, and for four years he led an idle life, becoming self-taught in the subjects that interested him. He eventually became a teacher at his old school before entering Cambridge, although he returned home after two years without taking a degree. He then toured the European continent extensively, supporting himself as best he could. He returned to England in 1839 and obtained further teaching posts. With the railway boom in progress he decided to become a surveyor and did some work on a proposed line between Oxford and Brighton.
    After being promised an interview with Robert Stephenson, he managed to see him in March 1846. Stephenson took a liking to Clark and asked him to investigate the strains on the Britannia Bridge tubes under various given conditions. This work so gained Stephenson's full approval that, after being entrusted with experiments and designs, Clark was appointed Resident Engineer for the Britannia Bridge across the Menai Straits. He not only completed the bridge, which was opened on 19 October 1850, but also wrote the history of its construction. After the completion of the bridge—and again without any professional experience—he was appointed Engineer-in-Chief to the Electric and International Telegraph Company. He was consulted by Captain Mark Huish of the London \& North Western Railway on a telegraphic system for the railway, and in 1853 he introduced the Block Telegraph System.
    Clark was engaged on the Crystal Palace and was responsible for many railway bridges in Britain and abroad. He was Engineer and part constructor of the harbour at Callao, Peru, and also of harbour works at Colón, Panama. On canal works he was contractor for the marine canal, the Morskoy Canal, in 1875 between Kronstadt and St Petersburg. His great work on canals, however, was the concept with Edward Leader Williams of the hydraulically operated barge lift at Anderton, Cheshire, linking the Weaver Navigation to the Trent \& Mersey Canal, whose water levels have a vertical separation of 50 ft (15 m). This was opened on 26 July 1875. The structure so impressed the French engineers who were faced with a bottleneck of five locks on the Neuffossée Canal south of Saint-Omer that they commissioned Clark to design a lift there. This was completed in 1878 and survives as a historic monument. The design was also adopted for four lifts on the Canal du Centre at La Louvière in Belgium, but these were not completed until after Clark's death.
    JHB

    Biographical history of technology > Clark, Edwin

  • 13 Egerton, Francis, 3rd Duke of Bridgewater

    SUBJECT AREA: Ports and shipping
    [br]
    b. 21 May 1736
    d. 9 March 1803 London, England
    [br]
    English entrepreneur, described as the "father of British inland navigation".
    [br]
    Francis Egerton was the younger of the two surviving sons of Scroop, 1st Duke of Bridgewater, and on the death of his brother, the 2nd Duke, he succeeded to the title in 1748. Until that time he had received little or no education as his mother considered him to be of feeble intellect. His guardians, the Duke of Bedford and Lord Trentham, decided he should be given an opportunity and sent him to Eton in 1749. He remained there for three years and then went on the "grand tour" of Europe. During this period he saw the Canal du Midi, though whether this was the spark that ignited his interest in canals is hard to say. On his return to England he indulged in the social round in London and raced at Newmarket. After two unsuccessful attempts at marriage he retired to Lancashire to further his mining interests at Worsley, where the construction of a canal to Manchester was already being considered. In fact, the Act for the Bridgewater Canal had been passed at the time he left London. John Gilbert, his land agent at Worsley, encouraged the Duke to pursue the canal project, which had received parliamentary approval in March 1759. Brindley had been recommended on account of his work at Trentham, the estate of the Duke's brother-in-law, and Brindley was consulted and subsequently appointed Engineer; the canal opened on 17 July 1761. This was immediately followed by an extension project from Longford Brook to Runcorn to improve communications between Manchester and Liverpool; this was completed on 31 December 1772, after Brindley's death. The Duke also invested heavily in the Trent \& Mersey Canal, but his interests were confined to his mines and the completed canals for the rest of his life.
    It is said that he lacked a sense of humour and even refused to read books. He was untidy in his dress and habits yet he was devoted to the Worsley undertakings. When travelling to Worsley he would have his coach placed on a barge so that he could inspect the canal during the journey. He amassed a great fortune from his various activities, but when he died, instead of leaving his beloved canal to the beneficiaries under his will, he created a trust to ensure that the canal would endure; the trust did not expire until 1903. The Duke is commemorated by a large Corinthian pillar, which is now in the care of the National Trust, in the grounds of his mansion at Ashridge, Hertfordshire.
    [br]
    Further Reading
    H.Malet, 1961, The Canal Duke, Dawlish: David \& Charles.
    JHB

    Biographical history of technology > Egerton, Francis, 3rd Duke of Bridgewater

  • 14 Gilbert, John

    [br]
    b. 1724 Cotton Hall, Cotton, Staffordshire, England
    d. 3 August 1795 Worsley, Lancashire, England
    [br]
    English land agent, mining engineer and canal entrepreneur.
    [br]
    Younger son of a gentleman farmer, Gilbert was apprenticed to Matthew Boulton, a buckle maker of Birmingham and father of the Matthew Boulton who was associated with James Watt. He also gained mining experience. Through the influence of his older brother, Thomas Gilbert, he became Land Agent to the Duke of Bridgewater (Francis Egerton) for the Worsley estate. He proposed extensions to the underground waterway system and also made a preliminary survey for a canal from Worsley to Salford, a project which Brindley joined as Assistant Engineer. Gilbert was therefore the prime mover in the construction of the Bridgewater Canal, which received its Act in 1759. He then collected evidence for the second Act to permit construction of the aqueduct across the Irwell at Barton. He was involved in a consortium with his brother Thomas and Earl Gower to develop the Earl's East Shropshire mines and to build the Shrewsbury and the Shropshire Coal Canals. He also excavated the Speedwell Mine at Castleton in Derbyshire between 1774 and 1781 and constructed the underground canal to serve the workings. With his brother, he was involved in the promotion of the Trent \& Mersey Canal and was a shareholder in the undertaking. Among his other entrepreneurial activities, he entered the canal-carrying business. His last work was beginning the underground inclined planes at Worsley, but these were not completed until after his death. His important place in the historical development of the inland navigational system in England has been very much overlooked.
    [br]
    Further Reading
    P.Lead, 1990, Agents of Revolution: John and Thomas Gilbert-Entrepreneurs, Keele University Centre for Local History.
    JHB

    Biographical history of technology > Gilbert, John

  • 15 Giles, Francis

    [br]
    b. 1787 England
    d. 4 March 1847 England
    [br]
    English civil engineer engaged in canal, harbour and railway construction.
    [br]
    Trained as a surveyor in John Rennie's organization, Giles carried out surveys on behalf of Rennie before setting up in practice on his own. His earliest survey seems to have been on the line of the proposed Weald of Kent Canal in 1809. Then in 1811 he surveyed the proposed London \& Cambridge Canal linking Bishops Stortford on the Stort with Cambridge and with a branch to Shefford on the Ivel. In the same year he surveyed the line of the Wey \& Arun Junction Canal, and in 1816, in the same area, the Portsmouth \& Arundel Canal. In 1819 he carried out what is regarded as his first independent commission—the extension of the River Ivel Navigation from Biggleswade to Shefford. At this time he was helping John Rennie on the Aire \& Calder Navigation and continued there after Rennie's death in 1821. In 1825 he was engaged on plans for a London to Portsmouth Ship Canal and also on a suggested link between the Basingstoke and Kennet \& Avon Canals. Later, on behalf of Sir George Duckett, he was Engineer to the Hertford Union Canal, which was completed in 1830, and linked the Regent's Canal to the Lee Navigation. In 1833 he completed the extension of the Sankey Brook Navigation from Fiddler's Ferry to the Mersey at Widnes. One of his last canal works was a survey of the River Lee in 1844. Apart from his canal work, he was appointed Engineer to the Newcastle \& Carlisle Railway in 1829 and designed, among other works, the fine viaducts at Wetheral and Cor by. He was also, for a very short time, Engineer to the London \& Southampton Railway. Among other commissions, he was involved in harbour surveys and works at Dover, Rye, Holyhead, Dundee, Bridport and Dun Laoghaire (Kingstown). He was elected a member of the Institution of Civil Engineers in 1842 and succeeded Telford on the Exchequer Bill Loans Board.
    [br]
    Further Reading
    1848, Memoir 17, London: Institution of Civil Engineers, 9.
    JHB

    Biographical history of technology > Giles, Francis

  • 16 Lever, William Hesketh

    [br]
    b. 19 September 1851 Bolton, Lancashire, England
    d. 7 May 1925 Hampstead, London, England
    [br]
    English manufacturer of soap.
    [br]
    William Hesketh Lever was the son of the retail grocer James Lever, who built up the large wholesale firm of Lever \& Co. in the north-west of England. William entered the firm at the age of 19 as a commercial traveller, and in the course of his work studied the techniques of manufacture and the quality of commercial soaps available at the time. He decided that he would concentrate on the production of a soap that was not evil-smelling, would lather easily and be attractively packaged. In 1884 he produced Sunlight Soap, which became the trade mark for Lever \& Co. He had each tablet wrapped, partly to protect the soap from oxygenization and thus prevent it from becoming rancid, and partly to display his brand name as a form of advertising. In 1885 he raised a large capital sum, purchased the Soap Factory in Warrington of Winser \& Co., and began manufacture. His product contained oils from copra, palm and cotton blended with tallow and resin, and its quality was carefully monitored during production. In a short time it was in great demand and began to replace the previously available alternatives of home-made soap and poor-quality, unpleasant-smelling bars.
    It soon became necessary to expand the firm's premises, and in 1887 Lever purchased fifty-six acres of land upon which he set up a new centre of manufacture. This was in the Wirral in Cheshire, near the banks of the River Mersey. Production at the new factory, which was called Port Sunlight, began in January 1889. Lever introduced a number of technical improvements in the production process, including the heating systems and the recovery of glycerine (which could later be sold) from the boiling process.
    Like Sir Titus Salt of Saltaire before him, Lever believed it to be in the interest of the firm to house his workers in a high standard of building and comfort close to the factory.
    By the early twentieth century he had created Port Sunlight Village, one of the earliest and certainly the most impressive housing estates, for his employees. Architecturally the estate is highly successful, being built from a variety of natural materials and vernacular styles by a number of distinguished architects, so preventing an overall architectural monotony. The comprehensive estate comprises, in addition to the factory and houses, a church, an art gallery, schools, a cottage hospital, library, bank, fire station, post office and shops, as well as an inn and working men's institute, both of which were later additions. In 1894 Lever \& Co. went public and soon was amalgamated with other soap firms. It was at its most successful high point by 1910.
    [br]
    Principal Honours and Distinctions
    First Viscount Leverhulme of the Western Isles.
    Further Reading
    1985, Dictionary of Business Biography. Butterworth.
    Ian Campbell Bradley, 1987, Enlightened Entrepreneurs, London: Weidenfeld \& Nicolson.
    DY

    Biographical history of technology > Lever, William Hesketh

  • 17 Telford, Thomas

    SUBJECT AREA: Canals, Civil engineering
    [br]
    b. 9 August 1757 Glendinning, Dumfriesshire, Scotland
    d. 2 September 1834 London, England.
    [br]
    Scottish civil engineer.
    [br]
    Telford was the son of a shepherd, who died when the boy was in his first year. Brought up by his mother, Janet Jackson, he attended the parish school at Westerkirk. He was apprenticed to a stonemason in Lochmaben and to another in Langholm. In 1780 he walked from Eskdale to Edinburgh and in 1872 rode to London on a horse that he was to deliver there. He worked for Sir William Chambers as a mason on Somerset House, then on the Eskdale house of Sir James Johnstone. In 1783–4 he worked on the new Commissioner's House and other buildings at Portsmouth dockyard.
    In late 1786 Telford was appointed County Surveyor for Shropshire and moved to Shrewsbury Castle, with work initially on the new infirmary and County Gaol. He designed the church of St Mary Magdalene, Bridgnorth, and also the church at Madley. Telford built his first bridge in 1790–2 at Montford; between 1790 and 1796 he built forty-five road bridges in Shropshire, including Buildwas Bridge. In September 1793 he was appointed general agent, engineer and architect to the Ellesmere Canal, which was to connect the Mersey and Dee rivers with the Severn at Shrewsbury; William Jessop was Principal Engineer. This work included the Pont Cysyllte aqueduct, a 1,000 ft (305 m) long cast-iron trough 127 ft (39 m) above ground level, which entailed an on-site ironworks and took ten years to complete; the aqueduct is still in use today. In 1800 Telford put forward a plan for a new London Bridge with a single cast-iron arch with a span of 600 ft (183 m) but this was not built.
    In 1801 Telford was appointed engineer to the British Fisheries Society "to report on Highland Communications" in Scotland where, over the following eighteen years, 920 miles (1,480 km) of new roads were built, 280 miles (450 km) of the old military roads were realigned and rebuilt, over 1,000 bridges were constructed and much harbour work done, all under Telford's direction. A further 180 miles (290 km) of new roads were also constructed in the Lowlands of Scotland. From 1804 to 1822 he was also engaged on the construction of the Caledonian Canal: 119 miles (191 km) in all, 58 miles (93 km) being sea loch, 38 miles (61 km) being Lochs Lochy, Oich and Ness, 23 miles (37 km) having to be cut.
    In 1808 he was invited by King Gustav IV Adolf of Sweden to assist Count Baltzar von Platen in the survey and construction of a canal between the North Sea and the Baltic. Telford surveyed the 114 mile (183 km) route in six weeks; 53 miles (85 km) of new canal were to be cut. Soon after the plans for the canal were completed, the King of Sweden created him a Knight of the Order of Vasa, an honour that he would have liked to have declined. At one time some 60,000 soldiers and seamen were engaged on the work, Telford supplying supervisors, machinery—including an 8 hp steam dredger from the Donkin works and machinery for two small paddle boats—and ironwork for some of the locks. Under his direction an ironworks was set up at Motala, the foundation of an important Swedish industrial concern which is still flourishing today. The Gotha Canal was opened in September 1832.
    In 1811 Telford was asked to make recommendations for the improvement of the Shrewsbury to Holyhead section of the London-Holyhead road, and in 1815 he was asked to survey the whole route from London for a Parliamentary Committee. Construction of his new road took fifteen years, apart from the bridges at Conway and over the Menai Straits, both suspension bridges by Telford and opened in 1826. The Menai bridge had a span of 579 ft (176 m), the roadway being 153 ft (47 m) above the water level.
    In 1817 Telford was appointed Engineer to the Exchequer Loan Commission, a body set up to make capital loans for deserving projects in the hard times that followed after the peace of Waterloo. In 1820 he became the first President of the Engineers Institute, which gained its Royal Charter in 1828 to become the Institution of Civil Engineers. He was appointed Engineer to the St Katharine's Dock Company during its construction from 1825 to 1828, and was consulted on several early railway projects including the Liverpool and Manchester as well as a number of canal works in the Midlands including the new Harecastle tunnel, 3,000 ft (914 m) long.
    Telford led a largely itinerant life, living in hotels and lodgings, acquiring his own house for the first time in 1821, 24 Abingdon Street, Westminster, which was partly used as a school for young civil engineers. He died there in 1834, after suffering in his later years from the isolation of deafness. He was buried in Westminster Abbey.
    [br]
    Principal Honours and Distinctions
    FRSE 1803. Knight of the Order of Vasa, Sweden 1808. FRS 1827. First President, Engineers Insitute 1820.
    Further Reading
    L.T.C.Rolt, 1979, Thomas Telford, London: Penguin.
    C.Hadfield, 1993, Thomas Telford's Temptation, London: M. \& M.Baldwin.
    IMcN

    Biographical history of technology > Telford, Thomas

См. также в других словарях:

  • Mersey — Der Mersey bei RuncornVorlage:Infobox Fluss/KARTE fehlt DatenVorlage:Infobox Fluss/ …   Deutsch Wikipedia

  • Mersey — (Angleterre) Pour les articles homonymes, voir Mersey (homonymie). La Mersey est un fleuve du nord ouest de l Angleterre. Son nom vient de l anglo saxon Mǽres ēa (fleuve frontière) car ce fleuve délimite les frontières des comtés du Cheshire et… …   Wikipédia en Français

  • Mersey — may refer to:* River Mersey, the river in northwest England * Two other rivers, one in Tasmania and the other in Canada, both named after the Mersey in England * Mersey (1805 ship), a ship wrecked off Torres Strait, Australia in 1805 * Mersey… …   Wikipedia

  • Mersey — (spr. Mersi), 1) Insel zwischen dem Blackwater u. dem Busen von Colchester in der englischen Grafschaft Essex; berühmte Austerbänke; 2) Fluß in England, entsteht auf der Grenze der Grafschaften Chester u. Derby beim Dorfe Chat Kirk, östlich von… …   Pierer's Universal-Lexikon

  • Mersey — (spr. mörsĭ), Fluß in England, entsteht östlich von Stockport durch den Zusammenfluß des Tame und Goyt, bildet dann, westlich fließend, die Grenze zwischen Cheshire und Lancashire und mündet nach 137 km langem Lauf in die Irische See. Vor seiner… …   Meyers Großes Konversations-Lexikon

  • Mersey — (spr. mörsĕ), Fluß in England, kommt von der Penninischen Bergkette, empfängt den Irwell, bildet unterhalb Warrington ein 32 km langes Ästuar, mündet nach 109 km in die Irische See; von Eastham Schiffahrtskanal nach Manchester. [Karte:… …   Kleines Konversations-Lexikon

  • Mersey — (–si), engl. Fluß, entsteht durch die Vereinigung des Etherow u. Goyt, mündet nach 15 Ml. als stark benutzte Wasserstraße bei Liverpool …   Herders Conversations-Lexikon

  • Mersey —   [ məːzɪ] der, Fluss in England, 110 km lang, entsteht aus den vom Penninischen Gebirge kommenden Flüssen Goyt und Tame, mündet mit einem 32 km langen, zwischen Liverpool und Birkenhead etwa 1,5 km breiten Ästuar (untertunnelt durch einen… …   Universal-Lexikon

  • Mersey — [mʉr′zē] river in NW England, flowing into the Irish Sea through an estuary at Liverpool: 70 mi (113 km) …   English World dictionary

  • Mersey — Este artículo o sección necesita una revisión de ortografía y gramática. Puedes colaborar editándolo (lee aquí sugerencias para mejorar tu ortografía). Cuando se haya corregido, borra este aviso por favor. El Río Mersey transcurre por el noroeste …   Wikipedia Español

  • Mersey — Mer|sey the Mersey a river in northwest England, which flows through Cheshire, Greater Manchester, and Merseyside into the Irish Sea. For British people, the Mersey is usually connected with Liverpool, and the music of the Beatles and other ↑pop… …   Dictionary of contemporary English

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»