Перевод: со всех языков на все языки

со всех языков на все языки

master+a+subject

  • 101 Cubitt, Thomas

    [br]
    b. 25 February 1788 Buxton, Norfolk, England
    d. 20 December 1855 Dorking, Surrey, England
    [br]
    English master builder and founder of the first building firm of modern type.
    [br]
    He started his working life as a carpenter at a time when work in different trades such as bricklaying, masonry, carpentry and plumbing was subcontracted. The system had worked well enough until about 1800, but when large-scale development was required, as in the nineteenth century, it showed itself to be inefficient and slow. To avoid long delays in building, Cubitt bought land and established workshops, founding a firm that employed all the craftsmen necessary to the building trade on a permanent-wage basis. To keep his firm financially solvent he had to provide continuous work for his staff, which he achieved by large-scale, speculative building even while maintaining high architectural standards.
    Cubitt performed a major service to London, with many of his houses, squares and terraces still surviving as sound and elegant as they were over 150 years ago in the large estates he laid out. His most ambitious enterprise was Belgravia, where he built 200 imposing houses for the aristocracy upon an area of previously swampy land that he leased from Lord Grosvenor. His houses expose as inferior much of the later phases of development which surround them. All his life Cubitt used his influence to combat the abuses of architecture, building and living standards to which speculative building is heir. He was especially interested in drainage, smoke control and London's sewage arrangement, and constantly worked to improve these. He supplied first-class amenities in the way of land drainage, sewage disposal, street lighting and roads, and his own houses were soundly built, pleasant to live in and created to last.
    [br]
    Further Reading
    Hermione Hobhouse, 1971, Thomas Cubitt: Master Builder, Macmillan.
    Henry Russell-Hitchcock, 1976, Early Victorian Architecture, 2 vols, New York: Da Capo.
    DY

    Biographical history of technology > Cubitt, Thomas

  • 102 Forsyth, Alexander John

    SUBJECT AREA: Weapons and armour
    [br]
    b. 28 December 1769 Belhevie, Aberdeenshire, Scotland
    d. 11 June 1843 Belhevie, Aberdeenshire, Scotland
    [br]
    Scottish cleric and ammunition designer.
    [br]
    The son of a Scottish Presbyterian minister, Forsyth also took Holy Orders and took over his father's parish on his death. During his spare time he experimented with explosives and in 1805 he succeeded in developing mercury fulminate as a percussion cap for use in small-arms ammunition, thus paving the way for the eventual design of the self-contained metallic cartridge and contact fuse. This he did by rolling the compound into small pellets, which he placed in a nipple at the breech end of the barrel, where they could be detonated by the falling hammer of the gun. In spring 1806 he went to London, and so impressed was the Master-General of the Ordnance by Forsyth's concept that he gave him facilities in the Tower of London in order to allow him to perfect it. Unfortunately, the Master-General of the Ordnance was replaced shortly afterwards and his successor abruptly stopped the project. Forsyth returned to Scotland and his parish, and it was only after much persuasion by his friends that he eventually petitioned Parliament for recognition of his invention. He was ultimately awarded a small state pension, but died before he received any of it.
    CM

    Biographical history of technology > Forsyth, Alexander John

  • 103 Hipp, Matthäus

    [br]
    b. 25 October 1813 Blaubeuren, Germany
    d. 3 May 1893 Zurich, Switzerland
    [br]
    German inventor and entrepreneur who produced the first reliable electric clock.
    [br]
    After serving an apprenticeship with a clock-maker in Blaubeuren, Hipp worked for various clockmakers before setting up his own workshop in Reutlingen in 1840. In 1842 he made his first electric clock with an ingenious toggle mechanism for switching the current, although he claimed that the idea had occurred to him eight years earlier. The switching mechanism was the Achilles' heel of early electric clocks. It was usually operated by the pendulum and it presented the designer with a dilemma: if the switch made a firm contact it adversely affected the timekeeping, but if the contact was lightened it sometimes failed to operate due to dirt or corrosion on the contacts. The Hipp toggle switch overcame this problem by operating only when the amplitude of the pendulum dropped below a certain value. As this occurred infrequently, the contact pressure could be increased to provide reliable switching without adversely affecting the timekeeping. It is an indication of the effectiveness of the Hipp toggle that it was used in clocks for over one hundred years and was adopted by many other makers in addition to Hipp and his successor Favag. It was generally preferred for its reliability rather than its precision, although a regulator made in 1881 for the observatory at Neuchâtel performed creditably. This regulator was enclosed in an airtight case at low pressure, eliminating errors due to changes in barometric pressure. This practice later became standard for observatory regulators such as those of Riefler and Shortt. The ability of the Hipp toggle to provide more power when the clock was subjected to an increased load made it particularly suitable for use in turret clocks, whose hands were exposed to the vagaries of the weather. Hipp also improved the operation of slave dials, which were advanced periodically by an electrical impulse from a master clock. If the electrical contacts "chattered" and produced several impulses instead of a single sharp impulse, the slave dials would not indicate the correct time. Hipp solved this problem by producing master clocks which delivered impulses that alternated in polarity, and slave dials which only advanced when the polarity was changed in this way. Polarized impulses delivered every minute became the standard practice for slave dials used on the European continent. Hipp also improved Wheatstone's chronoscope, an instrument that was used for measuring very short intervals of time (such as those involved in ballistics).
    [br]
    Principal Honours and Distinctions
    Honorary doctorate, University of Zurich 1875.
    Further Reading
    Neue deutsche Biographie, 1972, Vol. 9, Berlin, pp. 199–200.
    "Hipp's sich selbst conrolirende Uhr", Dinglers polytechnisches Journal (1843), 88:258– 64 (the first description of the Hipp toggle).
    F.Hope-Jones, 1949, Electrical Timekeeping, 2nd edn, London, pp. 62–6, 97–8 (a modern description in English of the Hipp toggle and the slave dial).
    C.A.Aked, 1983, "Electrical precision", Antiquarian Horology 14:172–81 (describes the observatory clock at Neuchâtel).
    DV

    Biographical history of technology > Hipp, Matthäus

  • 104 Holtzapffel, John Jacob

    [br]
    b. June 1836 London, England
    d. 14 October 1897 Eastbourne, Sussex, England
    [br]
    English mechanical engineer and author of several volumes of Turning and Mechanical Manipulation.
    [br]
    John Jacob Holtzapffel was the second son of Charles Holtzapffel and was educated at King's College School, London, and at Cromwell House, Highgate. Following the death of his father in 1847 and of his elder brother, Charles, at the age of 10, he was called on at an early age to take part in the business of lathe-making and turning founded by his grandfather. He made many improvements to the lathe for ornamental turning, but he is now remembered chiefly for the continuation of his father's publication Turning and Mechanical Manipulation. J.J. Holtzapffel produced the fourth volume, on Plain Turning, in 1879, and the fifth, on Ornamental Turning, in 1884. In 1894 he revised and enlarged the third volume, but the intended sixth volume was never completed. J.J.Holtzapffel was admitted to the Turners' Company of London in 1862 and became Master in 1879. He was associated with the establishment of the Turners' Competition to encourage the art of turning and was one of the judges for many years. He was also an examiner for the City and Guilds of London Institute and the British Horological Institute. He was a member of the Society of Arts and a corresponding member of the Franklin Institute of Philadelphia. He was elected an Associate of the Institution of Civil Engineers in 1863 and became an Associate Member after reorganization of the classes of membership in 1878.
    [br]
    Principal Honours and Distinctions
    Master, Turners' Company of London 1879.
    Bibliography
    1879, Turning and Mechanical Manipulation, Vol. IV: Plain Turning, London; 1884, Vol. V: The Principles and Practice of Ornamental or Complex Turning, London; reprinted 1894; reprinted 1973, New York.
    RTS

    Biographical history of technology > Holtzapffel, John Jacob

  • 105 Humfrey, William

    SUBJECT AREA: Metallurgy
    [br]
    b. c.1515
    d. 14 July 1579
    [br]
    English goldsmith and Assay Master of the Royal Mint who attempted to introduce brass production to England.
    [br]
    William Humfrey, goldsmith of the parish of St Vedast, was appointed Assay Master of the Royal Mint in 1561. At the Tower of London he assumed responsibility for the weight of silver and for production standards at a time of intense activity in recoining the debased coinage of the realm. Separation of copper from the debased silver involved liquation techniques which enabled purification of the recovered silver and copper. German co-operation in introducing these methods to England developed their interest in English copper mining, resulting in the formation of the Mines Royal Company. Shareholders in this government-led monopoly included Humfrey, whose assay of Keswick copper ore, mined with German expertise, was bitterly disputed. As a result of this dispute, Humfrey promoted the formation of a smaller monopoly, the Company of Mineral Battery Works, with plans to mine lead and especially the zinc carbonate ore, calamine, using it to introduce brassmaking and wire manufacture into England. Humfrey acquired technical assistance from further skilled German immigrants, relying particularly on Christopher Schutz of Annaberg in Saxony, who claimed experience in such matters. However, the brassmaking project set up at Tintern was abandoned by 1569 after failure to make a brass suitable for manufacturing purposes. The works changed its production to iron wire. Humfrey had meanwhile been under suspicion of embezzlement at the Tower in connection with his work there. He died intestate while involved in litigation regarding infringement of rights and privileges claimed from his introduction of new techniques in later lead-mining activities under the auspices of the Company of Mineral and Battery Works.
    [br]
    Further Reading
    M.B.Donald, 1961, Elizabethan Monopolies, London: Oliver \& Boyd (the most detailed account).
    ——1955, Elizabethan Copper, reprinted 1989, Michael Moon.
    JD

    Biographical history of technology > Humfrey, William

  • 106 Keller, Friedrich Gottlieb

    SUBJECT AREA: Paper and printing
    [br]
    b. 27 June 1818 Hainichen, Saxony, Germany
    d. 8 September 1895 Krippen, Bad Schandau, Germany
    [br]
    German inventor of wood-pulp paper.
    [br]
    The son of a master weaver, he originally wished to become an engineer, but while remaining in the parental home he had to follow his father's trade in the textile industry, becoming a master weaver himself in 1839 at Hainichen. He was a good observer and a keen model maker. It was at this stage, in the early 1840s, that he began experimenting with a new material for papermaking. Until then the raw material had been waste rag from the textile industry, but the ever-increasing demands of the mechanical printing presses, especially those producing newspapers, were beginning to outstrip supply. Keller tried using pine wood ground with a wet grindstone. The mass of fibres that resulted was then heated with water to form a thick brew which he then strained through a cloth. By this means Keller obtained a pulp that could be used for papermaking. He constructed a simple grinding machine that could disintegrate the wood without splinters; this was used to make paper in the Altchemnitzer paper mill, and the newspaper Frankenberger Intelligenz-und Wochenblatt was the first to be printed on wood-pulp paper. Keller could not secure state funds to promote his invention, so he approached an expert in papermaking, Heinrich Voelter, Technical Director of the Vereinigten Bautzener Papierfabrik. Voelter put up 700 thaler, and in August 1845 the state of Saxony granted a patent in both their names. In 1848 the first practical machine for grinding wood was produced, but four years later the patent expired. Unfortunately Keller could not afford the renewal fee, and it was Voelter who developed the process of wood-pulp papermaking under his own name, leaving Keller behind. Without this invention, the output of paper from the mills could not have kept pace with the demands of the printing industry, and the mass readership that these technological developments made possible could not have been served. It is no fault of Keller's that wood-pulp paper contains within itself the seeds of its own deterioration and ultimate destruction, presenting librarians of today with an intractable problem of preservation. Keller's part in this technical breakthrough is established in his "ideas" notebook covering the years 1841 and 1842, preserved in the museum at Hainichen.
    [br]
    Further Reading
    Neue deutsche Biographie. VDI Zeitschrift, Vol. 39, p. 1,238.
    "EineErfindungvon Weltruf", 1969, VDI Nachrichten. Vol. 29, p. 18.
    Clapperton, History ofPapermaking Through the Ages (provides details of the development of wood-pulp papermaking in its historical context).
    LRD

    Biographical history of technology > Keller, Friedrich Gottlieb

  • 107 Lee, Revd William

    SUBJECT AREA: Textiles
    [br]
    d. c. 1615
    [br]
    English inventor of the first knitting machine, called the stocking frame.
    [br]
    It would seem that most of the stories about Lee's invention of the stocking frame cannot be verified by any contemporary evidence, and the first written accounts do not appear until the second half of the seventeenth century. The claim that he was Master of Arts from St John's College, Cambridge, was first made in 1607 but cannot be checked because the records have not survived. The date for the invention of the knitting machine as being 1589 was made at the same time, but again there is no supporting evidence. There is no evidence that Lee was Vicar of Calverton, nor that he was in Holy Orders at all. Likewise there is no evidence for the existence of the woman, whether she was girlfriend, fiancée or wife, who is said to have inspired the invention, and claims regarding the involvement of Queen Elizabeth I and her refusal to grant a patent because the stockings were wool and not silk are also without contemporary foundation. Yet the first known reference shows that Lee was the inventor of the knitting machine, for the partnership agreement between him and George Brooke dated 6 June 1600 states that "William Lee hath invented a very speedy manner of making works usually wrought by knitting needles as stockings, waistcoats and such like". This agreement was to last for twenty-two years, but terminated prematurely when Brooke was executed for high treason in 1603. Lee continued to try and exploit his invention, for in 1605 he described himself as "Master of Arts" when he petitioned the Court of Aldermen of the City of London as the first inventor of an engine to make silk stockings. In 1609 the Weavers' Company of London recorded Lee as "a weaver of silk stockings by engine". These petitions suggest that he was having difficulty in establishing his invention, which may be why in 1612 there is a record of him in Rouen, France, where he hoped to have better fortune. If he had been invited there by Henry IV, his hopes were dashed by the assassination of the king soon afterwards. He was to supply four knitting machines, and there is further evidence that he was in France in 1615, but it is thought that he died in that country soon afterwards.
    The machine Lee invented was probably the most complex of its day, partly because the need to use silk meant that the needles were very fine. Henson (1970) in 1831 took five pages in his book to describe knitting on a stocking frame which had over 2,066 pieces. To knit a row of stitches took eleven separate stages, and great care and watchfulness were required to ensure that all the loops were equal and regular. This shows how complex the machines were and points to Lee's great achievement in actually making one. The basic principles of its operation remained unaltered throughout its extraordinarily long life, and a few still remained in use commercially in the early 1990s.
    [br]
    Further Reading
    J.T.Millington and S.D.Chapman (eds), 1989, Four Centuries of Machine Knitting, Commemorating William Lee's Invention of the Stocking Frame in 1589, Leicester (N.Harte examines the surviving evidence for the life of William Lee and this must be considered as the most up-to-date biographical information).
    Dictionary of National Biography (this contains only the old stories).
    Earlier important books covering Lee's life and invention are G.Henson, 1970, History of the Framework Knitters, reprint, Newton Abbot (orig. pub. 1831); and W.Felkin, 1967, History of the Machine-wrought Hosiery and Lace Manufactures, reprint, Newton Abbot (orig. pub. 1867).
    M.Palmer, 1984, Framework Knitting, Aylesbury (a simple account of the mechanism of the stocking frame).
    R.L.Hills, "William Lee and his knitting machine", Journal of the Textile Institute 80(2) (a more detailed account).
    M.Grass and A.Grass, 1967, Stockings for a Queen. The Life of William Lee, the Elizabethan Inventor, London.
    RLH

    Biographical history of technology > Lee, Revd William

  • 108 Le Roy, Pierre

    SUBJECT AREA: Horology
    [br]
    b. 24 November 1717 Paris, France
    d. 25 August 1785 Viry-sur-Orge, France
    [br]
    French horologist who invented the detached détente escapement and the compensation balance.
    [br]
    Le Roy was born into a distinguished horological family: his father, Julien, was Clockmaker to the King. Pierre became Master in 1737 and continued to work with his father, taking over the business when his father died in 1759. However, he seems to have left the commercial side of the business to others so that he could concentrate on developing the marine chronometer. Unlike John Harrison, he believed that the solution lay in detaching the escapement from the balance, and in 1748 he submitted a proposal for the first detached escapement to the Académie des Sciences in Paris. He also differed from Harrison in his method of temperature compensation, which acted directly on the balance by altering its radius of gyration. This was achieved either by mounting thermometers on the balance or by using bimetallic strips which effectively reduced the diameter of the balance as the temperature rose (with refinements, this later became the standard method of temperature compensation in watches and chronometers). Le Roy had already discovered that for every spiral balance spring there was a particular length at which it would be isochronous, and this method of temperature compensation did not destroy that isochronism by altering the length, as other methods did. These innovations were incorporated in a chronometer with an improved detached escapement which he presented to Louis XV in 1766 and described in a memoir to the Académie des Sciences. This instrument contained the three essential elements of all subsequent chronometers: an isochronous balance spring, a detached escapement and a balance with temperature compensation. Its performance was similar to that of Harrison's fourth timepiece, and Le Roy was awarded prizes by the Académie des Sciences for the chronometer and for his memoir. However, his work was never fully appreciated in France, where he was over-shadowed by his rival Ferdinand Berthoud. When Berthoud was awarded the coveted title of Horloger de la Marine, Le Roy became disillusioned and shortly afterwards gave up chronometry and retired to the country.
    [br]
    Principal Honours and Distinctions
    Horloger du Roi 1760.
    Bibliography
    1748, "Echappement à détente", Histoire et mémoires de l'Académie Royale des Sciences.
    Further Reading
    R.T.Gould, 1923, The Marine Chronometer: Its History and Development, London; reprinted 1960, Holland Press (still the standard work on the subject).
    DV

    Biographical history of technology > Le Roy, Pierre

  • 109 Pattinson, Hugh Lee

    SUBJECT AREA: Metallurgy
    [br]
    b. 25 December 1796 Alston, Cumberland, England
    d. 11 November 1858 Scot's House, Gateshead, England
    [br]
    English inventor of a silver-extraction process.
    [br]
    Born into a Quaker family, he was educated at private schools; his studies included electricity and chemistry, with a bias towards metallurgy. Around 1821 Pattinson became Clerk and Assistant to Anthony Clapham, a soap-boiler of Newcastle upon Tyne. In 1825 he secured appointment as Assay Master to the lords of the manor of Alston. There he was able to pursue the subject of special interest to him, and in January 1829 he devised a method of separating silver from lead ore; however, he was prevented from developing it because of a lack of funds.
    Two years later he was appointed Manager of Wentworth Beaumont's lead-works. There he was able to continue his researches, which culminated in the patent of 1833 enshrining the invention by which he is best known: a new process for extracting silver from lead by skimming crystals of pure lead with a perforated ladle from the surface of the molten silver-bearing lead, contained in a succession of cast-iron pots. The molten metal was stirred as it cooled until one pot provided a metal containing 300 oz. of silver to the ton (8,370 g to the tonne). Until that time, it was unprofitable to extract silver from lead ores containing less than 8 oz. per ton (223 g per tonne), but the Pattinson process reduced that to 2–3 oz. (56–84 g per tonne), and it therefore won wide acceptance. Pattinson resigned his post and went into partnership to establish a chemical works near Gateshead. He was able to devise two further processes of importance, one an improved method of obtaining white lead and the other a new process for manufacturing magnesia alba, or basic carbonate of magnesium. Both processes were patented in 1841.
    Pattinson retired in 1858 and devoted himself to the study of astronomy, aided by a 7½ in. (19 cm) equatorial telescope that he had erected at his home at Scot's House.
    [br]
    Principal Honours and Distinctions
    Vice-President, British Association Chemical Section 1838. Fellow of the Geological Society, Royal Astronomical Society and Royal Society 1852.
    Bibliography
    Pattinson wrote eight scientific papers, mainly on mining, listed in Royal Society Catalogue of Scientific Papers, most of which appeared in the Philosophical
    Magazine.
    Further Reading
    J.Percy, Metallurgy (volume on lead): 121–44 (fully describes Pattinson's desilvering process).
    Lonsdale, 1873, Worthies of Cumberland, pp. 273–320 (contains details of his life). T.K.Derry and T.I.Williams, 1960, A Short History ofTechnology, Oxford: Oxford University Press.
    LRD

    Biographical history of technology > Pattinson, Hugh Lee

  • 110 Shannon, Claude Elwood

    [br]
    b. 30 April 1916 Gaylord, Michigan, USA
    [br]
    American mathematician, creator of information theory.
    [br]
    As a child, Shannon tinkered with radio kits and enjoyed solving puzzles, particularly crypto-graphic ones. He graduated from the University of Michigan in 1936 with a Bachelor of Science in mathematics and electrical engineering, and earned his Master's degree from the Massachusetts Institute of Technology (MIT) in 1937. His thesis on applying Boolean algebra to switching circuits has since been acclaimed as possibly the most significant this century. Shannon earned his PhD in mathematics from MIT in 1940 with a dissertation on the mathematics of genetic transmission.
    Shannon spent a year at the Institute for Advanced Study in Princeton, then in 1941 joined Bell Telephone Laboratories, where he began studying the relative efficiency of alternative transmission systems. Work on digital encryption systems during the Second World War led him to think that just as ciphers hide information from the enemy, "encoding" information could also protect it from noise. About 1948, he decided that the amount of information was best expressed quantitatively in a two-value number system, using only the digits 0 and 1. John Tukey, a Princeton colleague, named these units "binary digits" (or, for short, "bits"). Almost all digital computers and communications systems use such on-off, or two-state logic as their basis of operation.
    Also in the 1940s, building on the work of H. Nyquist and R.V.L. Hartley, Shannon proved that there was an upper limit to the amount of information that could be transmitted through a communications channel in a unit of time, which could be approached but never reached because real transmissions are subject to interference (noise). This was the beginning of information theory, which has been used by others in attempts to quantify many sciences and technologies, as well as subjects in the humanities, but with mixed results. Before 1970, when integrated circuits were developed, Shannon's theory was not the preferred circuit-and-transmission design tool it has since become.
    Shannon was also a pioneer in the field of artificial intelligence, claiming that computing machines could be used to manipulate symbols as well as do calculations. His 1953 paper on computers and automata proposed that digital computers were capable of tasks then thought exclusively the province of living organisms. In 1956 he left Bell Laboratories to join the MIT faculty as Professor of Communications Science.
    On the lighter side, Shannon has built many devices that play games, and in particular has made a scientific study of juggling.
    [br]
    Principal Honours and Distinctions
    National Medal of Science. Institute of Electrical and Electronics Engineers Medal of Honor, Kyoto Prize.
    Bibliography
    His seminal paper (on what has subsequently become known as information theory) was entitled "The mathematical theory of communications", first published in Bell System Technical Journal in 1948; it is also available in a monograph (written with Warren Weaver) published by the University of Illinois Press in 1949, and in Key Papers in the Development of Information Theory, ed. David Slepian, IEEE Press, 1974, 1988. For readers who want all of Shannon's works, see N.J.A.Sloane and A.D.Wyner, 1992, The
    Collected Papers of Claude E.Shannon.
    HO

    Biographical history of technology > Shannon, Claude Elwood

  • 111 Ayre, Sir Amos Lowrey

    SUBJECT AREA: Ports and shipping
    [br]
    b. 23 July 1885 South Shields, England
    d. 13 January 1952 London, England
    [br]
    English shipbuilder and pioneer of the inter-war "economy" freighters; Chairman of the Shipbuilding Conference.
    [br]
    Amos Ayre grew up on the Tyne with the stimulus of shipbuilding and seafaring around him. After an apprenticeship as a ship draughtsman and distinction in his studies, he held responsible posts in the shipyards of Belfast and later Dublin. His first dramatic move came in 1909 when he accepted the post of Manager of the new Employment Exchange at Govan, then just outside Glasgow. During the First World War he was in charge of fleet coaling operations on the River Forth, and later was promoted Admiralty District Director for shipyard labour in Scotland.
    Before the conclusion of hostilities, with his brother Wilfrid (later Sir Wilfrid Ayre) he founded the Burntisland Shipbuilding Company in Fife. Setting up on a green field site allowed the brothers to show innovation in design, production and marketing. Such was their success that the new yard was busy throughout the Depression, building standard ships which incorporated low operating costs with simplicity of construction.
    Through public service culminating in the 1929 Safety of Life at Sea Conference, Amos Ayre became recognized not only as an eminent naval architect, but also as a skilled negotiator. In 1936 he was invited to become Chairman of the Shipbuilding Conference and thereby virtual leader of the industry. As war approached he planned with meticulous care the rearrangement of national shipbuilding capacity, enabling Britain to produce standard hulls ranging from the legendary TID tugs to the standard freighters built in Sunderland or Port Glasgow. In 1939 he became Director of Merchant Shipbuilding, a position he held until 1944, when with typical foresight he asked to be released to plan for shipbuilding's return to normality.
    [br]
    Principal Honours and Distinctions
    Knighted 1937. KBE 1943. Officer of the Order of Orange-Nassau.
    Bibliography
    1919, "The theory and design of British shipbuilding", The Syren and Shipping, London.
    Further Reading
    Wilfrid Ayre, 1968, A Shipbuilders Yesterdays, Fife (published privately). James Reid, 1964, James Lithgow, Master of Work, London.
    Maurice E.Denny, 1955, "The man and his work" (First Amos Ayre Lecture), Transactions of the Institution of Naval Architects vol. 97.
    FMW

    Biographical history of technology > Ayre, Sir Amos Lowrey

  • 112 Bain, Alexander

    [br]
    b. October 1810 Watten, Scotland
    d. 2 January 1877 Kirkintilloch, Scotland
    [br]
    Scottish inventor and entrepreneur who laid the foundations of electrical horology and designed an electromagnetic means of transmitting images (facsimile).
    [br]
    Alexander Bain was born into a crofting family in a remote part of Scotland. He was apprenticed to a watchmaker in Wick and during that time he was strongly influenced by a lecture on "Heat, sound and electricity" that he heard in nearby Thurso. This lecture induced him to take up a position in Clerkenwell in London, working as a journeyman clockmaker, where he was able to further his knowledge of electricity by attending lectures at the Adelaide Gallery and the Polytechnic Institution. His thoughts naturally turned to the application of electricity to clockmaking, and despite a bitter dispute with Charles Wheatstone over priority he was granted the first British patent for an electric clock. This patent, taken out on 11 January 1841, described a mechanism for an electric clock, in which an oscillating component of the clock operated a mechanical switch that initiated an electromagnetic pulse to maintain the regular, periodic motion. This principle was used in his master clock, produced in 1845. On 12 December of the same year, he patented a means of using electricity to control the operation of steam railway engines via a steam-valve. His earliest patent was particularly far-sighted and anticipated most of the developments in electrical horology that occurred during the nineteenth century. He proposed the use of electricity not only to drive clocks but also to distribute time over a distance by correcting the hands of mechanical clocks, synchronizing pendulums and using slave dials (here he was anticipated by Steinheil). However, he was less successful in putting these ideas into practice, and his electric clocks proved to be unreliable. Early electric clocks had two weaknesses: the battery; and the switching mechanism that fed the current to the electromagnets. Bain's earth battery, patented in 1843, overcame the first defect by providing a reasonably constant current to drive his clocks, but unlike Hipp he failed to produce a reliable switch.
    The application of Bain's numerous patents for electric telegraphy was more successful, and he derived most of his income from these. They included a patent of 12 December 1843 for a form of fax machine, a chemical telegraph that could be used for the transmission of text and of images (facsimile). At the receiver, signals were passed through a moving band of paper impregnated with a solution of ammonium nitrate and potassium ferrocyanide. For text, Morse code signals were used, and because the system could respond to signals faster than those generated by hand, perforated paper tape was used to transmit the messages; in a trial between Paris and Lille, 282 words were transmitted in less than one minute. In 1865 the Abbé Caselli, a French engineer, introduced a commercial fax service between Paris and Lyons, based on Bain's device. Bain also used the idea of perforated tape to operate musical wind instruments automatically. Bain squandered a great deal of money on litigation, initially with Wheatstone and then with Morse in the USA. Although his inventions were acknowledged, Bain appears to have received no honours, but when towards the end of his life he fell upon hard times, influential persons in 1873 secured for him a Civil List Pension of £80 per annum and the Royal Society gave him £150.
    [br]
    Bibliography
    1841, British patent no. 8,783; 1843, British patent no. 9,745; 1845, British patent no.
    10,838; 1847, British patent no. 11,584; 1852, British patent no. 14,146 (all for electric clocks).
    1852, A Short History of the Electric Clocks with Explanation of Their Principles and
    Mechanism and Instruction for Their Management and Regulation, London; reprinted 1973, introd. W.Hackmann, London: Turner \& Devereux (as the title implies, this pamphlet was probably intended for the purchasers of his clocks).
    Further Reading
    The best account of Bain's life and work is in papers by C.A.Aked in Antiquarian Horology: "Electricity, magnetism and clocks" (1971) 7: 398–415; "Alexander Bain, the father of electrical horology" (1974) 9:51–63; "An early electric turret clock" (1975) 7:428–42. These papers were reprinted together (1976) in A Conspectus of Electrical Timekeeping, Monograph No. 12, Antiquarian Horological Society: Tilehurst.
    J.Finlaison, 1834, An Account of Some Remarkable Applications of the Electric Fluid to the Useful Arts by Alexander Bain, London (a contemporary account between Wheatstone and Bain over the invention of the electric clock).
    J.Munro, 1891, Heroes of the Telegraph, Religious Tract Society.
    J.Malster \& M.J.Bowden, 1976, "Facsimile. A Review", Radio \&Electronic Engineer 46:55.
    D.J.Weaver, 1982, Electrical Clocks and Watches, Newnes.
    T.Hunkin, 1993, "Just give me the fax", New Scientist (13 February):33–7 (provides details of Bain's and later fax devices).
    DV / KF

    Biographical history of technology > Bain, Alexander

  • 113 Barlow, Peter

    SUBJECT AREA: Ports and shipping
    [br]
    b. 13 October 1776 Norwich, England
    d. 1 March 1862 Kent, England
    [br]
    English mathematician, physicist and optician.
    [br]
    Barlow had little formal academic education, but by his own efforts rectified this deficiency. His contributions to various periodicals ensured that he became recognized as a man of considerable scientific understanding. In 1801, through competitive examination, he became Assistant Mathematics Master at the Royal Military Academy, Woolwich, and some years later was promoted to Professor. He resigned from this post in 1847, but retained full salary in recognition of his many public services.
    He is remembered for several notable achievements, and for some experiments designed to overcome problems such as the deviation of compasses in iron ships. Here, he proposed the use of small iron plates designed to overcome other attractions: these were used by both the British and Russian navies. Optical experiments commenced around 1827 and in later years he carried out tests to optimize the size and shape of many parts used in the railways that were spreading throughout Britain and elsewhere at that time.
    In 1814 he published mathematical tables of squares, cubes, square roots, cube roots and reciprocals of all integers from 1 to 10,000. This volume was of great value in ship design and other engineering processes where heavy numerical effort is required; it was reprinted many times, the last being in 1965 when it had been all but superseded by the calculator and the computer. In the preface to the original edition, Barlow wrote, "the only motive which prompted me to engage in this unprofitable task was the utility that I conceived might result from my labour… if I have succeeded in facilitating abstruse arithmetical calculations, then I have obtained the object in view."
    [br]
    Principal Honours and Distinctions
    FRS 1823; Copley Medal (for discoveries in magnetism) 1825. Honorary Member, Institution of Civil Engineers 1820.
    Bibliography
    1811, An Elementary Investigation of the Theory of Numbers.
    1814, Barlow's Tables (these have continued to be published until recently, one edition being in 1965 (London: Spon); later editions have taken the integers up to 12,500).
    1817, Essay on the Strength of Timber and Other Materials.
    Further Reading
    Dictionary of National Biography.
    FMW

    Biographical history of technology > Barlow, Peter

  • 114 Belidor, Bernard Forest de

    SUBJECT AREA: Weapons and armour
    [br]
    b. 1698 Catalonia, Spain
    d. 8 September 1761 Paris, France
    [br]
    French engineer and founder of the science of modern ballistics.
    [br]
    Belidor was the son of a French army officer, who died when he was six months old, and was thereafter brought up by a brother officer. He soon demonstrated a scientific bent, and gravitated to Paris, where he became involved in the determination of the Paris meridian. He was then appointed Professor at the artillery school at La Fère, where he began to pursue the science of ballistics in earnest. He was able to disprove the popular theory that range was directly proportional to the powder charge, and also argued that the explosive power of a charge was greatest at the end of the explosion; he advocated spherical chambers in order to take advantage of this. His ideas made him unpopular with the "establishment", especially the Master of the King's artillery, and he was forced to leave France for a time, becoming a consultant to authorities in Bohemia and Bavaria. However, he was reinstated, and in 1758 he was appointed Royal Inspector of Artillery, a post that he held until his death.
    Belidor also made a name for himself in hydraulics and influenced design in this field for more than a century after his death. In addition, he was the first to make practical application of integral calculus.
    [br]
    Bibliography
    Belidor was the author of several books, of which the most significant were: 1739, La Science des ingénieurs, Paris (reprinted several times, the last edition being as late as 1830).
    1731, Le Bombardier françois, Paris: L'lmprimerie royale.
    1737, Architecture hydraulique, 2 vols, Paris.
    Further Reading
    R.S.Kirby and P.G.Laurson, 1932, The Early History of Modern Civil Engineering, New Haven: Yale University Press (describes his work in the field of hydraulics).
    D.Chandler, 1976, The An of Warfare in the Age of Marlborough, London: Batsford (mentions the ballistics aspect).
    CM

    Biographical history of technology > Belidor, Bernard Forest de

  • 115 Bell, Alexander Graham

    SUBJECT AREA: Telecommunications
    [br]
    b. 3 March 1847 Edinburgh, Scotland
    d. 3 August 1922 Beinn Bhreagh, Baddeck, Cape Breton Island, Nova Scotia, Canada
    [br]
    Scottish/American inventor of the telephone.
    [br]
    Bell's grandfather was a professor of elocution in London and his father an authority on the physiology of the voice and on elocution; Bell was to follow in their footsteps. He was educated in Edinburgh, leaving school at 13. In 1863 he went to Elgin, Morayshire, as a pupil teacher in elocution, with a year's break to study at Edinburgh University; it was in 1865, while still in Elgin, that he first conceived the idea of the electrical transmission of speech. He went as a master to Somersetshire College, Bath (now in Avon), and in 1867 he moved to London to assist his father, who had taken up the grandfather's work in elocution. In the same year, he matriculated at London University, studying anatomy and physiology, and also began teaching the deaf. He continued to pursue the studies that were to lead to the invention of the telephone. At this time he read Helmholtz's The Sensations of Tone, an important work on the theory of sound that was to exert a considerable influence on him.
    In 1870 he accompanied his parents when they emigrated to Canada. His work for the deaf gained fame in both Canada and the USA, and in 1873 he was apponted professor of vocal physiology and the mechanics of speech at Boston University, Massachusetts. There, he continued to work on his theory that sound wave vibrations could be converted into a fluctuating electric current, be sent along a wire and then be converted back into sound waves by means of a receiver. He approached the problem from the background of the theory of sound and voice production rather than from that of electrical science, and by 1875 he had succeeded in constructing a rough model. On 7 March 1876 Bell spoke the famous command to his assistant, "Mr Watson, come here, I want you": this was the first time a human voice had been transmitted along a wire. Only three days earlier, Bell's first patent for the telephone had been granted. Almost simultaneously, but quite independently, Elisha Gray had achieved a similar result. After a period of litigation, the US Supreme Court awarded Bell priority, although Gray's device was technically superior.
    In 1877, three years after becoming a naturalized US citizen, Bell married the deaf daughter of his first backer. In August of that year, they travelled to Europe to combine a honeymoon with promotion of the telephone. Bell's patent was possibly the most valuable ever issued, for it gave birth to what later became the world's largest private service organization, the Bell Telephone Company.
    Bell had other scientific and technological interests: he made improvements in telegraphy and in Edison's gramophone, and he also developed a keen interest in aeronautics, working on Curtiss's flying machine. Bell founded the celebrated periodical Science.
    [br]
    Principal Honours and Distinctions
    Legion of Honour; Hughes Medal, Royal Society, 1913.
    Further Reading
    Obituary, 7 August 1922, The Times. Dictionary of American Biography.
    R.Burlingame, 1964, Out of Silence into Sound, London: Macmillan.
    LRD

    Biographical history of technology > Bell, Alexander Graham

  • 116 Bentham, Sir Samuel

    SUBJECT AREA: Ports and shipping
    [br]
    b. 11 January 1757 England
    d. 31 May 1831 London, England
    [br]
    English naval architect and engineer.
    [br]
    He was the son of Jeremiah Bentham, a lawyer. His mother died when he was an infant and his early education was at Westminster. At the age of 14 he was apprenticed to a master shipwright at Woolwich and later at Chatham Dockyard, where he made some small improvements in the fittings of ships. In 1778 he completed his apprenticeship and sailed on the Bienfaisant on a summer cruise of the Channel Fleet where he suggested and supervised several improvements to the steering gear and gun fittings.
    Unable to find suitable employment at home, he sailed for Russia to study naval architecture and shipbuilding, arriving at St Petersburg in 1780, whence he travelled throughout Russia as far as the frontier of China, examining mines and methods of working metals. He settled in Kritchev in 1782 and there established a small shipyard with a motley work-force. In 1784 he was appointed to command a battalion. He set up a yard on the "Panopticon" principle, with all workshops radiating from his own central office. He increased the armament of his ships greatly by strengthening the hulls and fitting guns without recoil, which resulted in a great victory over the Turks at Liman in 1788. For this he was awarded the Cross of St George and promoted to Brigadier- General. Soon after, he was appointed to a command in Siberia, where he was responsible for opening up the resources of the country greatly by developing river navigation.
    In 1791 he returned to England, where he was at first involved in the development of the Panopticon for his brother as well as with several other patents. In 1795 he was asked to look into the mechanization of the naval dockyards, and for the next eighteen years he was involved in improving methods of naval construction and machinery. He was responsible for the invention of the steam dredger, the caisson method of enclosing the entrances to docks, and the development of non-recoil cannonades of large calibre.
    His intervention in the maladministration of the naval dockyards resulted in an enquiry that brought about the clearing-away of much corruption, making him very unpopular. As a result he was sent to St Petersburg to arrange for the building of a number of ships for the British navy, in which the Russians had no intention of co-operating. On his return to England after two years he was told that his office of Inspector-General of Navy Works had been abolished and he was appointed to the Navy Board; he had several disagreements with John Rennie and in 1812 was told that this office, too, had been abolished. He went to live in France, where he stayed for thirteen years, returning in 1827 to arrange for the publication of some of his papers.
    There is some doubt about his use of his title: there is no record of his having received a knighthood in England, but it was assumed that he was authorized to use the title, granted to him in Russia, after his presentation to the Tsar in 1809.
    [br]
    Further Reading
    Mary Sophia Bentham, Life of Brigadier-General Sir Samuel Bentham, K.S.G., Formerly Inspector of Naval Works (written by his wife, who died before completing it; completed by their daughter).
    IMcN

    Biographical history of technology > Bentham, Sir Samuel

  • 117 Biles, Sir John Harvard

    SUBJECT AREA: Ports and shipping
    [br]
    b. 1854 Portsmouth, England
    d. 27 October 1933 Scotland (?)
    [br]
    English naval architect, academic and successful consultant in the years when British shipbuilding was at its peak.
    [br]
    At the conclusion of his apprenticeship at the Royal Dockyard, Portsmouth, Biles entered the Royal School of Naval Architecture, South Kensington, London; as it was absorbed by the Royal Naval College, he graduated from Greenwich to the Naval Construction Branch, first at Pembroke and later at the Admiralty. From the outset of his professional career it was apparent that he had the intellectual qualities that would enable him to oversee the greatest changes in ship design of all time. He was one of the earliest proponents of the revolutionary work of the hydrodynamicist William Froude.
    In 1880 Biles turned to the merchant sector, taking the post of Naval Architect to J. \& G. Thomson (later John Brown \& Co.). Using Froude's Law of Comparisons he was able to design the record-breaking City of Paris of 1887, the ship that started the fabled succession of fast and safe Clyde bank-built North Atlantic liners. For a short spell, before returning to Scotland, Biles worked in Southampton. In 1891 Biles accepted the Chair of Naval Architecture at the University of Glasgow. Working from the campus at Gilmorehill, he was to make the University (the oldest school of engineering in the English-speaking world) renowned in naval architecture. His workload was legendary, but despite this he was admired as an excellent lecturer with cheerful ways which inspired devotion to the Department and the University. During the thirty years of his incumbency of the Chair, he served on most of the important government and international shipping committees, including those that recommended the design of HMS Dreadnought, the ordering of the Cunarders Lusitania and Mauretania and the lifesaving improvements following the Titanic disaster. An enquiry into the strength of destroyer hulls followed the loss of HMS Cobra and Viper, and he published the report on advanced experimental work carried out on HMS Wolf by his undergraduates.
    In 1906 he became Consultant Naval Architect to the India Office, having already set up his own consultancy organization, which exists today as Sir J.H.Biles and Partners. His writing was prolific, with over twenty-five papers to professional institutions, sundry articles and a two-volume textbook.
    [br]
    Principal Honours and Distinctions
    Knighted 1913. Knight Commander of the Indian Empire 1922. Master of the Worshipful Company of Shipwrights 1904.
    Bibliography
    1905, "The strength of ships with special reference to experiments and calculations made upon HMS Wolf", Transactions of the Institution of Naval Architects.
    1911, The Design and Construction of Ships, London: Griffin.
    Further Reading
    C.A.Oakley, 1973, History of a Facuity, Glasgow University.
    FMW

    Biographical history of technology > Biles, Sir John Harvard

  • 118 Bode, Hendrik Wade

    [br]
    b. 24 December 1905 Madison, Wisconsin, USA
    d. 21 June 1982 Cambridge, Massachusetts, USA
    [br]
    American engineer who developed an extensive theoretical understanding of the behaviour of electronic circuits.
    [br]
    Bode received his bachelor's and master's degrees from Ohio State University in 1924 and 1926, respectively, and his PhD from Columbia University, New York, in 1935. In 1926 he joined the Bell Telephone Laboratories, where he made many theoretical contributions to the understanding of the behaviour of electronic circuits and, in particular, in conjunction with Harry Nyquist, of the conditions under which amplifier circuits become unstable.
    During the Second World War he worked on the design of gun control systems and afterwards was a member of a team that worked with Douglas Aircraft to develop the Nike anti-aircraft missile. A member of the Bell Laboratories Mathematical Research Group from 1929, he became its Director in 1952, and then Director of Physical Sciences. Finally he became Vice-President of the Laboratories, with responsibility for systems engineering, and a director of Bellcomm, a Bell company involved in the Moon-landing programme. When he retired from Bell in 1967, he became Professor of Systems Engineering at Harvard University.
    [br]
    Principal Honours and Distinctions
    Presidential Certificate of Merit 1946. Institute of Electrical and Electronics Engineers Edison Medal 1969.
    Bibliography
    1940, "Relation between attenuation and phase in feedback amplifier design", Bell System Technical Journal 19:421.
    1945, Network Analysis and Feedback Amplifier Design, New York: Van Nostrand.
    1950, with C.E.Shannon, "A simplified derivation of linear least squares smoothing and prediction theory", Proceedings of the Institute of Radio Engineers 38:417.
    1961, "Feedback. The history of an idea", Proceedings of the Symposium on Active Networks and Feedback Systems, Brooklyn Polytechnic.
    1971, Synergy: Technical Integration and Technical Innovation in the Bell System Bell Laboratories, Bell Telephone Laboratories (provides background on his activities at Bell).
    Further Reading
    P.C.Mahon, 1975, Mission Communications, Bell Telephone Laboratories. See also Black, Harold Stephen; Shannon, Claude Elwood.
    KF

    Biographical history of technology > Bode, Hendrik Wade

  • 119 Buckle, William

    [br]
    b. 29 July 1794 Alnwick, Northumberland, England
    d. 30 September 1863 London, England
    [br]
    English mechanical engineer who introduced the first large screw-cutting lathe to Boulton, Watt \& Co.
    [br]
    William Buckle was the son of Thomas Buckle (1759–1849), a millwright who later assisted the 9th Earl of Dundonald (1749–1831) in his various inventions, principally machines for the manufacture of rope. Soon after the birth of William, the family moved from Alnwick to Hull, Yorkshire, where he received his education. The family again moved c.1808 to London, and William was apprenticed to Messrs Woolf \& Edwards, millwrights and engineers of Lambeth. During his apprenticeship he attended evening classes at a mechanical drawing school in Finsbury, which was then the only place of its kind in London.
    After completing his apprenticeship, he was sent by Messrs Humphrys to Memel in Prussia to establish steamboats on the rivers and lakes there under the patronage of the Prince of Hardenburg. After about four years he returned to Britain and was employed by Boulton, Watt \& Co. to install the engines in the first steam mail packet for the service between Dublin and Holyhead. He was responsible for the engines of the steamship Lightning when it was used on the visit of George IV to Ireland.
    About 1824 Buckle was engaged by Boulton, Watt \& Co. as Manager of the Soho Foundry, where he is credited with introducing the first large screw-cutting lathe. At Soho about 700 or 800 men were employed on a wide variety of engineering manufacture, including coining machinery for mints in many parts of the world, with some in 1826 for the Mint at the Soho Manufactory. In 1851, following the recommendations of a Royal Commission, the Royal Mint in London was reorganized and Buckle was asked to take the post of Assistant Coiner, the senior executive officer under the Deputy Master. This he accepted, retaining the post until the end of his life.
    At Soho, Buckle helped to establish a literary and scientific institution to provide evening classes for the apprentices and took part in the teaching. He was an original member of the Institution of Mechanical Engineers, which was founded in Birmingham in January 1847, and a member of their Council from then until 1855. He contributed a number of papers in the early years, including a memoir of William Murdock whom he had known at Soho; he resigned from the Institution in 1856 after his move to London. He was an honorary member of the London Association of Foreman Engineers.
    [br]
    Bibliography
    1850, "Inventions and life of William Murdock", Proceedings of the Institution of Mechanical Engineers 2 (October): 16–26.
    RTS

    Biographical history of technology > Buckle, William

  • 120 Burrell, William

    SUBJECT AREA: Ports and shipping
    [br]
    b. c.1570 England
    d. 1630 near Huntingdon, England
    [br]
    English shipbuilder and Chief Shipwright to the East India Company.
    [br]
    Born into comfortable circumstances, Burrell chose ship construction as his career. Ability aided by financial influence helped professional advancement, and by his early thirties he possessed a shipyard at Ratcliffe on the River Thames. Ship design was then unscientific, shrouded in mystique, and it required patience and perseverance to penetrate the conventions of the craft.
    From the 1600s Burrell had been investing in the East India Company. In 1607 the Company decided to build ships in their own right, and Burrell was appointed as the first Master Shipwright, a post he held for nearly twenty years. The first ship, Trade's Increase, of 1,000-tons burthen, was the largest ship built in England until the eighteenth century, but following a mishap at launch and the ship's subsequent loss on its maiden voyage, the Company reassessed its policy and built smaller ships. Burrell's foresight can be gauged by his involvement in two private commercial undertakings in Ireland; one to create oak forests for shipbuilding, and the other to set up a small ironworks. In 1618 a Royal Commission was appointed to enquire into the poor condition of the Navy, and with the help of Burrell it was ruled that the main problems were neglect and corruption. With his name being known and his good record of production, the Royal Navy ordered no fewer than ten warships from Burrell in the four-year period from 1619 to 1623. With experience in the military and commercial sectors, Burrell can be regarded as an all-round and expert shipbuilder of the Stuart period. He used intuition at a time when there were no scientific rules and little reliable empiric guidance on ship design.
    [br]
    Principal Honours and Distinctions
    First Warden of the Shipwrights' Company after its new Charter of 1612.
    Further Reading
    A.P.McGowan, 1978, "William Burrell (c. 1570–1630). A forgotten Stuart shipwright", Ingrid and other Studies (National Maritime Museum Monograph No. 36). W.Abell, 1948, The Shipwright's Trade, Cambridge.
    FMW

    Biographical history of technology > Burrell, William

См. также в других словарях:

  • subject — I adj. (cannot stand alone) subject to (subject to change) II n. topic, theme 1) to bring up, broach; pursue; tackle a subject 2) to address, cover, deal with, discuss, take up, treat a subject 3) to dwell on; exhaust; go into a subject 4) to… …   Combinatory dictionary

  • Master Tara Singh — Malhotra (24 June, 1885, Rawalpindi, Punjab 22 November, 1967, Chandigarh) was a prominent Sikh political and religious leader in the first half of the 20th century. He was instrumental in organizing the Shiromani Gurdwara Prabhandak Committee,… …   Wikipedia

  • Master of Orion — Developer(s) Simtex Publisher(s) MicroProse Platform(s) …   Wikipedia

  • master — mas·ter 1 n 1: an individual or entity (as a corporation) having control or authority over another: as a: the owner of a slave b: employer compare servant c …   Law dictionary

  • Master Blaster (Jammin') — Single by Stevie Wonder from the album Hotter than July …   Wikipedia

  • Master and Servant Act — Master and Servant Acts or Masters and Servants Acts were laws designed to regulate relations between employers and employees during the 18th and 19th centuries. An 1823 United Kingdom Act described its purpose as the better regulations of… …   Wikipedia

  • Master — Mas ter (m[.a]s t[ e]r), n. [OE. maistre, maister, OF. maistre, mestre, F. ma[^i]tre, fr. L. magister, orig. a double comparative from the root of magnus great, akin to Gr. me gas. Cf. {Maestro}, {Magister}, {Magistrate}, {Magnitude}, {Major},… …   The Collaborative International Dictionary of English

  • Master in chancery — Master Mas ter (m[.a]s t[ e]r), n. [OE. maistre, maister, OF. maistre, mestre, F. ma[^i]tre, fr. L. magister, orig. a double comparative from the root of magnus great, akin to Gr. me gas. Cf. {Maestro}, {Magister}, {Magistrate}, {Magnitude},… …   The Collaborative International Dictionary of English

  • Master joint — Master Mas ter (m[.a]s t[ e]r), n. [OE. maistre, maister, OF. maistre, mestre, F. ma[^i]tre, fr. L. magister, orig. a double comparative from the root of magnus great, akin to Gr. me gas. Cf. {Maestro}, {Magister}, {Magistrate}, {Magnitude},… …   The Collaborative International Dictionary of English

  • Master key — Master Mas ter (m[.a]s t[ e]r), n. [OE. maistre, maister, OF. maistre, mestre, F. ma[^i]tre, fr. L. magister, orig. a double comparative from the root of magnus great, akin to Gr. me gas. Cf. {Maestro}, {Magister}, {Magistrate}, {Magnitude},… …   The Collaborative International Dictionary of English

  • Master lode — Master Mas ter (m[.a]s t[ e]r), n. [OE. maistre, maister, OF. maistre, mestre, F. ma[^i]tre, fr. L. magister, orig. a double comparative from the root of magnus great, akin to Gr. me gas. Cf. {Maestro}, {Magister}, {Magistrate}, {Magnitude},… …   The Collaborative International Dictionary of English

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»