Перевод: со всех языков на английский

с английского на все языки

machine-tool+manufacture

  • 1 станкостроение

    Русско-английский технический словарь > станкостроение

  • 2 станкостроение

    Русско-английский научно-технический словарь Масловского > станкостроение

  • 3 станкостроение

    Универсальный русско-английский словарь > станкостроение

  • 4 Zeugmaschinenbau

    m < masch> ■ machine tool manufacture

    German-english technical dictionary > Zeugmaschinenbau

  • 5 станкостроение

    1. engineering tools

    станки; станкостроениеengineering tools

    2. machine-tool manufacture

    Русско-английский большой базовый словарь > станкостроение

  • 6 Brown, Joseph Rogers

    [br]
    b. 26 January 1810 Warren, Rhode Island, USA
    d. 23 July 1876 Isles of Shoals, New Hampshire, USA
    [br]
    American machine-tool builder and co-founder of Brown \& Sharpe.
    [br]
    Joseph Rogers Brown was the eldest son of David Brown, who was modestly established as a maker of and dealer in clocks and watches. Joseph assisted his father during school vacations and at the age of 17 left to obtain training as a machinist. In 1829 he joined his father in the manufacture of tower clocks at Pawtucket, Rhode Island, and two years later went into business for himself in Pawtucket making lathes and small tools. In 1833 he rejoined his father in Providence, Rhode Island, as a partner in the manufacture of docks, watches and surveying and mathematical instruments. David Brown retired in 1841.
    J.R.Brown invented and built in 1850 a linear dividing engine which was the first automatic machine for graduating rules in the United States. In 1851 he brought out the vernier calliper, the first application of a vernier scale in a workshop measuring tool. Lucian Sharpe was taken into partnership in 1853 and the firm became J.R.Brown \& Sharpe; in 1868 the firm was incorporated as the Brown \& Sharpe Manufacturing Company.
    In 1855 Brown invented a precision gear-cutting machine to make clock gears. The firm obtained in 1861 a contract to make Wilcox \& Gibbs sewing machines and gave up the manufacture of clocks. At about this time F.W. Howe of the Providence Tool Company arranged for Brown \& Sharpe to make a turret lathe required for the manufacture of muskets. This was basically Howe's design, but Brown added a few features, and it was the first machine tool built for sale by the Brown \& Sharpe Company. It was followed in 1862 by the universal milling machine invented by Brown initially for making twist drills. Particularly for cutting gear teeth, Brown invented in 1864 a formed milling cutter which could be sharpened without changing its profile. In 1867 the need for an instrument for checking the thickness of sheet material became apparent, and in August of that year J.R.Brown and L.Sharpe visited the Paris Exhibition and saw a micrometer calliper invented by Jean Laurent Palmer in 1848. They recognized its possibilities and with a few developments marketed it as a convenient, hand-held measuring instrument. Grinding lathes were made by Brown \& Sharpe in the early 1860s, and from 1868 a universal grinding machine was developed, with the first one being completed in 1876. The patent for this machine was granted after Brown's sudden death while on holiday.
    [br]
    Further Reading
    J.W.Roe, 1916, English and American Tool Builders, New Haven: Yale University Press; repub. 1926, New York and 1987, Bradley, Ill.: Lindsay Publications Inc. (further details of Brown \& Sharpe Company and their products).
    R.S.Woodbury, 1958, History of the Gear-Cutting Machine, Cambridge, Mass.: MIT Press ——, 1959, History of the Grinding Machine, Cambridge, Mass.: MIT Press.
    ——, 1960, History of the Milling Machine, Cambridge, Mass.: MIT Press.
    RTS

    Biographical history of technology > Brown, Joseph Rogers

  • 7 Howe, Frederick Webster

    [br]
    b. 28 August 1822 Danvers, Massachusetts, USA
    d. 25 April 1891 Providence, Rhode Island, USA
    [br]
    American mechanical engineer, machine-tool designer and inventor.
    [br]
    Frederick W.Howe attended local schools until the age of 16 and then entered the machine shop of Gay \& Silver at North Chelmsford, Massachusetts, as an apprentice and remained with that firm for nine years. He then joined Robbins, Kendall \& Lawrence of Windsor, Vermont, as Assistant to Richard S. Lawrence in designing machine tools. A year later (1848) he was made Plant Superintendent. During his time with this firm, Howe designed a profiling machine which was used in all gun shops in the United States: a barrel-drilling and rifling machine, and the first commercially successful milling machine. Robbins \& Lawrence took to the Great Exhibition of 1851 in London, England, a set of rifles built on the interchangeable system. The interest this created resulted in a visit of some members of the British Royal Small Arms Commission to America and subsequently in an order for 150 machine tools, jigs and fixtures from Robbins \& Lawrence, to be installed at the small-arms factory at Enfield. From 1853 to 1856 Howe was in charge of the design and building of these machines. In 1856 he established his own armoury at Newark, New Jersey, but transferred after two years to Middletown, Connecticut, where he continued the manufacture of small arms until the outbreak of the Civil War. He then became Superintendent of the armoury of the Providence Tool Company at Providence, Rhode Island, and served in that capacity until the end of the war. In 1865 he went to Bridgeport, Connecticut, to assist Elias Howe with the manufacture of his sewing machine. After the death of Elias Howe, Frederick Howe returned to Providence to join the Brown \& Sharpe Manufacturing Company. As Superintendent of that establishment he worked with Joseph R. Brown in the development of many of the firm's products, including machinery for the Wilcox \& Gibbs sewing machine then being made by Brown \& Sharpe. From 1876 Howe was in business on his own account as a consulting mechanical engineer and in his later years he was engaged in the development of shoe machinery and in designing a one-finger typewriter, which, however, was never completed. He was granted several patents, mainly in the fields of machine tools and firearms. As a designer, Howe was said to have been a perfectionist, making frequent improvements; when completed, his designs were always sound.
    [br]
    Further Reading
    J.W.Roe, 1916, English and American Tool Builders, New Haven; repub. 1926, New York, and 1987, Bradley, 111. (provides biographical details).
    R.S.Woodbury, 1960, History of the Milling Machine, Cambridge, Mass, (describes Howe's contribution to the development of the milling machine).
    RTS

    Biographical history of technology > Howe, Frederick Webster

  • 8 Herbert, Sir Alfred Edward

    [br]
    b. 5 September 1866 Leicester, England
    d. 26 May 1957 Kings Somborne, Hampshire, England
    [br]
    English mechanical engineer and machine-tool manufacturer.
    [br]
    Alfred Herbert was educated at Stoneygate School, Leicester, and served an apprenticeship with Joseph Jessop \& Sons, also of Leicester, from 1881 to 1886. In 1887 he was engaged as Manager of a small engineering firm in Coventry, and before the end of that year he purchased the business in partnership with William Hubbard. They commenced the manufacture of machine-tools especially for the cycle industry. Hubbard withdrew from the partnership in 1890 and Herbert continued on his own account, the firm being established as a limited liability company, Alfred Herbert Ltd, in 1894. A steady expansion of the business continued, especially after the introduction of their capstan lathe, and by 1914 it was the largest manufacturer of machine-tools in Britain. In addition to making machine-tools of all types for the home and export market, the firm acted as an agent for the import of specialist machine-tools from abroad. During the First World War Alfred Herbert was in 1915 appointed head of machine-tool production at the War Office and when the Ministry of Munitions was set up he was transferred to that Ministry as Controller of Machine Tools. He was President of the Machine Tools Trades Association from 1919 to 1934. He was elected a member of the Institution of Mechanical Engineers in 1892 and in 1921 was a founder member of the Institution of Production Engineers. Almost to the end of his long life he continued to take an active part in the direction of his company. He expressed his views on current events affecting industry in the technical press and in his firm's house journal.
    [br]
    Principal Honours and Distinctions
    KBE 1917. Officier de la Légion d'honneur 1917. Order of St Stanislas of Russia 1918. Order of Leopold of Belgium 1918. Freeman of the City of Coventry 1933. President, Institution of Production Engineers 1927–9. Honorary Member, Institution of Mechanical Engineers 1941.
    Bibliography
    1948, Shots at the Truth, Coventry (a selection of his speeches and writings).
    Further Reading
    D.J.Jeremy (ed.), 1984–6, Dictionary of Business Biography, Vol. 3, London, pp. 174–7 (a useful account).
    Obituary, 1957, Engineering, 183:680.
    RTS

    Biographical history of technology > Herbert, Sir Alfred Edward

  • 9 Murray, Matthew

    [br]
    b. 1765 near Newcastle upon Tyne, England
    d. 20 February 1826 Holbeck, Leeds, England
    [br]
    English mechanical engineer and steam engine, locomotive and machine-tool pioneer.
    [br]
    Matthew Murray was apprenticed at the age of 14 to a blacksmith who probably also did millwrighting work. He then worked as a journeyman mechanic at Stockton-on-Tees, where he had experience with machinery for a flax mill at Darlington. Trade in the Stockton area became slack in 1788 and Murray sought work in Leeds, where he was employed by John Marshall, who owned a flax mill at Adel, located about 5 miles (8 km) from Leeds. He soon became Marshall's chief mechanic, and when in 1790 a new mill was built in the Holbeck district of Leeds by Marshall and his partner Benyon, Murray was responsible for the installation of the machinery. At about this time he took out two patents relating to improvements in textile machinery.
    In 1795 he left Marshall's employment and, in partnership with David Wood (1761– 1820), established a general engineering and millwrighting business at Mill Green, Holbeck. In the following year the firm moved to a larger site at Water Lane, Holbeck, and additional capital was provided by two new partners, James Fenton (1754–1834) and William Lister (1796–1811). Lister was a sleeping partner and the firm was known as Fenton, Murray \& Wood and was organized so that Fenton kept the accounts, Wood was the administrator and took charge of the workshops, while Murray provided the technical expertise. The factory was extended in 1802 by the construction of a fitting shop of circular form, after which the establishment became known as the "Round Foundry".
    In addition to textile machinery, the firm soon began the manufacture of machine tools and steam-engines. In this field it became a serious rival to Boulton \& Watt, who privately acknowledged Murray's superior craftsmanship, particularly in foundry work, and resorted to some industrial espionage to discover details of his techniques. Murray obtained patents for improvements in steam engines in 1799, 1801 and 1802. These included automatic regulation of draught, a mechanical stoker and his short-D slide valve. The patent of 1801 was successfully opposed by Boulton \& Watt. An important contribution of Murray to the development of the steam engine was the use of a bedplate so that the engine became a compact, self-contained unit instead of separate components built into an en-gine-house.
    Murray was one of the first, if not the very first, to build machine tools for sale. However, this was not the case with the planing machine, which he is said to have invented to produce flat surfaces for his slide valves. Rather than being patented, this machine was kept secret, although it was apparently in use before 1814.
    In 1812 Murray was engaged by John Blenkinsop (1783–1831) to build locomotives for his rack railway from Middleton Colliery to Leeds (about 3 1/2 miles or 5.6 km). Murray was responsible for their design and they were fitted with two double-acting cylinders and cranks at right angles, an important step in the development of the steam locomotive. About six of these locomotives were built for the Middleton and other colliery railways and some were in use for over twenty years. Murray also supplied engines for many early steamboats. In addition, he built some hydraulic machinery and in 1814 patented a hydraulic press for baling cloth.
    Murray's son-in-law, Richard Jackson, later became a partner in the firm, which was then styled Fenton, Murray \& Jackson. The firm went out of business in 1843.
    [br]
    Principal Honours and Distinctions
    Society of Arts Gold Medal 1809 (for machine for hackling flax).
    Further Reading
    L.T.C.Rolt, 1962, Great Engineers, London (contains a good short biography).
    E.Kilburn Scott (ed.), 1928, Matthew Murray, Pioneer Engineer, Leeds (a collection of essays and source material).
    Year 1831, London.
    L.T.C.Rolt, 1965, Tools for the Job, London; repub. 1986 (provides information on Murray's machine-tool work).
    Some of Murray's correspondence with Simon Goodrich of the Admiralty has been published in Transactions of the Newcomen Society 3 (1922–3); 6(1925–6); 18(1937– 8); and 32 (1959–60).
    RTS

    Biographical history of technology > Murray, Matthew

  • 10 Pratt, Francis Ashbury

    [br]
    b. 15 February 1827 Woodstock, Vermont, USA
    d. 10 February 1902 Hartford, Connecticut, USA
    [br]
    American mechanical engineer and machine-tool manufacturer.
    [br]
    Francis A.Pratt served an apprenticeship as a machinist with Warren Aldrich, and on completing it in 1848 he entered the Gloucester Machine Works as a journeyman machinist. From 1852 to 1854 he worked at the Colt Armory in Hartford, Connecticut, where he met his future partner, Amos Whitney. He then became Superintendent of the Phoenix Iron Works, also at Hartford and run by George S.Lincoln \& Company. While there he designed the well-known "Lincoln" miller, which was first produced in 1855. This was a development of the milling machine built by Robbins \& Lawrence and designed by F.W. Howe, and incorporated a screw drive for the table instead of the rack and pinion used in the earlier machine.
    Whitney also moved to the Phoenix Iron Works, and in 1860 the two men started in a small way doing machine work on their own account. In 1862 they took a third partner, Monroe Stannard, and enlarged their workshop. The business continued to expand, but Pratt and Whitney remained at the Phoenix Iron Works until 1864 and in the following year they built their first new factory. The Pratt \& Whitney Company was incorporated in 1869 with a capital of $350,000, F.A.Pratt being elected President. The firm specialized in making machine tools and tools particularly for the armament industry. In the 1870s Pratt made no less than ten trips to Europe gaining orders for equipping armouries in many different countries. Pratt \& Whitney was one of the leading firms developing the system of interchangeable manufacture which led to the need to establish national standards of measurement. The Rogers-Bond Comparator, developed with the backing of Pratt \& Whitney, played an important part in the establishment of these standards, which formed the basis of the gauges of many various types made by the firm. Pratt remained President of the company until 1898, after which he served as their Consulting Engineer for a short time before retiring from professional life. He was granted a number of patents relating to machine tools. He was a founder member of the American Society of Mechanical Engineers in 1880 and was elected a vice-president in 1881. He was an alderman of the city of Hartford.
    [br]
    Principal Honours and Distinctions
    Vice-President, American Society of Mechanical Engineers 1881.
    Further Reading
    J.W.Roe, 1916, English and American Tool Builders, New Haven; reprinted 1926, New York, and 1987, Bradley, 111. (describes the origin and development of the Pratt \& Whitney Company).
    RTS

    Biographical history of technology > Pratt, Francis Ashbury

  • 11 Maudslay, Henry

    [br]
    b. 22 August 1771 Woolwich, Kent, England
    d. 15 February 1831 Lambeth, London, England
    [br]
    English precision toolmaker and engineer.
    [br]
    Henry Maudslay was the third son of an ex-soldier and storekeeper at Woolwich Arsenal. At the age of 12 he was employed at the Arsenal filling cartridges; two years later he was transferred to the woodworking department, adjacent to the smithy, to which he moved when 15 years old. He was a rapid learner, and three years later Joseph Bramah took him on for the construction of special tools required for the mass-production of his locks. Maudslay was thus employed for the next eight years. He became Bramah's foreman, married his housekeeper, Sarah Tindale, and, unable to better himself, decided to leave and set up on his own. He soon outgrew his first premises in Wells Street and moved to Margaret Street, off Oxford Street, where some examples of his workmanship were displayed in the window. These caught the attention of a visiting Frenchman, de Bacquancourt; he was a friend of Marc Isambard Brunel, who was then in the early stages of designing the block-making machinery later installed at Portsmouth dockyard.
    Brunel wanted first a set of working models, as he did not think that the Lords of the Admiralty would be capable of understanding engineering drawings; Maudslay made these for him within the next two years. Sir Samuel Bentham, Inspector-General of Naval Works, agreed that Brunel's system was superior to the one that he had gone some way in developing; the Admiralty approved, and an order was placed for the complete plant. The manufacture of the machinery occupied Maudslay for the next six years; he was assisted by a draughtsman whom he took on from Portsmouth dockyard, Joshua Field (1786–1863), who became his partner in Maudslay, Son and Field. There were as many as eighty employees at Margaret Street until, in 1810, larger premises became necessary and a new works was built at Lambeth Marsh where, eventually, there were up to two hundred workers. The new factory was flanked by two houses, one of which was occupied by Maudslay, the other by Field. The firm became noted for its production of marine steam-engines, notably Maudslay's table engine which was first introduced in 1807.
    Maudslay was a consummate craftsman who was never happier than when working at his bench or at a machine tool; he was also one of the first engineers to appreciate the virtues of standardization. Evidence of this appreciation is to be found in his work in the development of the Bramah lock and then on the machine tools for the manufacture of ship's blocks to Marc Brunel's designs; possibly his most important contribution was the invention in 1797 of the metal lathe. He made a number of surface plates of the finest quality. The most celebrated of his numerous measuring devices was a micrometer-based machine which he termed his "Lord Chancellor" because, in the machine shop, it represented the "final court of appeal", measuring to one-thousandth of an inch.
    [br]
    Further Reading
    1934–5, "Maudslay, Sons \& Field as general engineers", Transactions of the Newcomen Society 15, London.
    1963, Engineering Heritage, Vol. 1, London: Institution of Mechanical Engineers. L.T.C.Rolt, 1965, Tools for the Job, London: Batsford.
    W.Steeds, 1969, A History of Machine Tools 1700–1910, Oxford: Oxford University Press.
    IMcN

    Biographical history of technology > Maudslay, Henry

  • 12 Heald, James Nichols

    [br]
    b. 21 September 1864 Barre, Massachusetts, USA
    d. 7 May 1931 Worcester, Massachusetts, USA
    [br]
    American mechanical engineer and machine-tool manufacturer who concentrated on grinding machines.
    [br]
    James N.Heald was the son of Leander S.Heald and was educated at the Worcester Polytechnic Institute, graduating with the degree of Bachelor of Science in 1884. He then joined the firm that had been established by his grandfather, Stephen Heald, in 1826; this was a machine shop and foundry then known as S.Heald \& Son. When his grandfather died in 1888, James Heald took over the management of the business, which then became known as L.S.Heald \& Son. He concentrated on the manufacture of grinding machines and in 1903 bought out his father's interest and organized the Heald Machine Company. James Heald then began the development of a series of grinding machines designed to meet the needs of the expanding automobile industry. Special machines were produced for grinding piston rings making use of the recently invented magnetic chuck, and for cylinder bores he introduced the planetary grinder. Heald was a member of the National Machine Tool Builders' Association and served as its Treasurer and on its Board of Directors. He was elected a member of the American Society of Mechanical Engineers in 1917 and was also a member of the Society of Automotive Engineers.
    [br]
    Further Reading
    Robert S.Woodbury, 1959, History of the Grinding Machine, Cambridge, Mass (describes his grinding machines).
    L.T.C.Rolt, 1965, Tools for the Job, London; repub. 1986 (describes his grinding machines).
    RTS

    Biographical history of technology > Heald, James Nichols

  • 13 Whitney, Amos

    [br]
    b. 8 October 1832 Biddeford, Maine, USA
    d. 5 August 1920 Poland Springs, Maine, USA
    [br]
    American mechanical engineer and machine-tool manufacturer.
    [br]
    Amos Whitney was a member of the same distinguished family as Eli Whitney. His father was a locksmith and machinist and he was apprenticed at the age of 14 to the Essex Machine Company of Lawrence, Massachusetts. In 1850 both he and his father were working at the Colt Armory in Hartford, Connecticut, where he first met his future partner, F.A. Pratt. They both subsequently moved to the Phoenix Iron Works, also at Hartford, and in 1860 they started in a small way doing machine work on their own account. In 1862 they took a third partner, Monroe Stannard, and enlarged their workshop. The business continued to expand, but Pratt and Whitney remained at the Phoenix Iron Works until 1864 and in the following year they built their first new factory. The Pratt \& Whitney Company was incorporated in 1869 with a capital of $350,000, Amos Whitney being appointed General Superintendent. The firm specialized in making machine tools and tools particularly for the armament industry. Pratt \& Whitney was one of the leading firms developing the system of interchangeable manufacture which led to the need to establish national standards of measurement. The Rogers-Bond Comparator, developed with the backing of Pratt \& Whitney, played an important part in the establishment of these standards, which formed the basis of the gauges of many various types made by the firm.
    Amos Whitney was made Vice-President of Pratt \& Whitney Company in 1893 and was President from 1898 until 1901, when the company was acquired by the Niles- Bement-Pond Company: he then remained as one of the directors. He was elected a Member of the American Society of Mechanical Engineers in 1913.
    [br]
    Further Reading
    J.W.Roe, 1916, English and American Tool Builders, New Haven; reprinted 1926, New York, and 1987, Bradley, Ill. (describes the origin and development of the Pratt \& Whitney Company).
    RTS

    Biographical history of technology > Whitney, Amos

  • 14 Fox, James

    [br]
    b. c.1760
    d. 1835 Derby, England
    [br]
    English machine-tool builder.
    [br]
    Very little is known about the life of James Fox, but according to Samuel Smiles (1863) he was as a young man a butler in the service of the Reverend Thomas Gisborne of Foxhall Lodge, Staffordshire. His mechanical abilities were evident from his spare-time activities in the handling of tools and so impressed his employer that he supplied the capital to enable Fox to set up a business in Derby for the manufacture of machinery for the textile and lacemaking industries. To construct this machinery, Fox had to build his own machine tools and later, in the early nineteenth century, made them for sale, some being exported to France, Germany and Poland. He was renowned for his lathes, some of which were quite large; one built in 1830 has been preserved and is 22 ft (6.7 m) long with a swing of 27 in. (69 cm). He was responsible for many improve-ments in the design of the lathe and he also built some of the earliest planing machines (the first, it has been claimed, as early as 1814) and a gear-cutting machine, although this was apparently for cutting wooden patterns for cast gears. The business was continued by his sons Joseph and James (who died in 1859 aged 69) and into the 1860s by the sons of Joseph.
    [br]
    Further Reading
    S.Smiles, 1863, Industrial Biography, London, reprinted 1967, Newton Abbot (makes brief mention of Fox).
    His lathes are described in: R.S.Woodbury, 1961, History of the Lathe to 1850, Cleveland, Ohio; L.T.C.Rolt, 1965, Tools for the Job, London; repub. 1986; W.Steeds, 1969, A History of Machine Tools 1700–1910, Oxford.
    RTS

    Biographical history of technology > Fox, James

  • 15 Renold, Hans

    [br]
    b. 31 July 1852 Aarau, Switzerland
    d. 2 May 1943 Grange-over-Sands, Lancashire, England
    [br]
    Swiss (naturalized British 1881) mechanical engineer, inventor and pioneer of the precision chain industry.
    [br]
    Hans Renold was educated at the cantonal school of his native town and at the Polytechnic in Zurich. He worked in two or three small workshops during the polytechnic vacations and served an apprenticeship of eighteen months in an engineering works at Neuchâtel, Switzerland. After a short period of military service he found employment as a draughtsman in an engineering firm at Saint-Denis, near Paris, from 1871 to 1873. In 1873 Renold moved first to London and then to Manchester as a draughtsman and inspector with a firm of machinery exporters. From 1877 to 1879 he was a partner in his own firm of machine exporters. In 1879 he purchased a small firm in Salford making chain for the textile industry. At about this time J.K.Starley introduced the "safety" bicycle, which, however, lacked a satisfactory drive chain. Renold met this need with the invention of the bush roller chain, which he patented in 1880. The new chain formed the basis of the precision chain industry: the business expanded and new premises were acquired in Brook Street, Manchester, in 1881. In the same year Renold became a naturalized British subject.
    Continued expansion of the business necessitated the opening of a new factory in Brook Street in 1889. The factory was extended in 1895, but by 1906 more accommodation was needed and a site of 11 ½ acres was acquired in the Manchester suburb of Burnage: the move to the new building was finally completed in 1914. Over the years, further developments in the techniques of chain manufacture were made, including the invention in 1895 of the inverted tooth or silent chain. Renold made his first visit to America in 1891 to study machine-tool developments and designed for his own works special machine tools, including centreless grinding machines for dealing with wire rods up to 10 ft (3 m) in length.
    The business was established as a private limited company in 1903 and merged with the Coventry Chain Company Ltd in 1930. Good industrial relations were always of concern to Renold and he established a 48-hour week as early as 1896, in which year a works canteen was opened. Joint consultation with shop stewards date2 from 1917. Renold was elected a Member of the Institution of Mechanical Engineers in 1902 and in 1917 he was made a magistrate of the City of Manchester.
    [br]
    Principal Honours and Distinctions
    Honorary DSc University of Manchester 1940.
    Further Reading
    Basil H.Tripp, 1956, Renold Chains: A History of the Company and the Rise of the Precision Chain Industry 1879–1955, London.
    J.J.Guest, 1915, Grinding Machinery, London, pp. 289, 380 (describes grinding machines developed by Renold).
    RTS

    Biographical history of technology > Renold, Hans

  • 16 Austin, Herbert, Baron Austin

    [br]
    b. 8 November 1866 Little Missenden, Buckinghamshire, England
    d. 23 May 1941 Lickey Grange, near Bromsgrove, Herefordshire, England
    [br]
    English manufacturer of cars.
    [br]
    The son of Stephen (or Steven) Austin, a farmer of Wentworth, Yorkshire, he was educated at Rotherham Grammar School and then went to Australia with an uncle in 1884. There he became apprenticed as an engineer at the Langlands Foundry in Melbourne. He moved to the Wolseley Sheep Shearing Company, and soon after became its Manager; in 1893 he returned to England, where he became Production Manager to the English branch of the same company in Birmingham. The difficulties of travel in Australia gave him an idea of the advantages of motor-driven vehicles, and in 1895 he produced the first Wolseley car. In 1901 he was appointed to the Wolseley board, and from 1911 he was Chairman.
    His first car was a three-wheeler. An improved model was soon available, and in 1901 the Wolseley company took over the machine tool and motor side of Vickers Sons and Maxim and traded under the name of the Wolseley Tool and Motor Car Company. Herbert Austin was the General Manager. In 1905 he decided to start his own company and formed the Austin Motor Company Ltd, with works at Longbridge, near Birmingham. With a workforce of 270, the firm produced 120 cars in 1906; by 1914 a staff of 2,000 were producing 1,000 cars a year. The First World War saw production facilities turned over to the production of aeroplanes, guns and ammunition.
    Peacetime brought a return to car manufacture, and 1922 saw the introduction of the 7 hp "Baby Austin", a car for the masses. Many other models followed. By 1937 the original Longbridge factory had grown to 220 acres, and the staff had increased to over 16,000, while the number of cars produced had grown to 78,000 per year.
    Herbert Austin was a philanthropist who endowed many hospitals and not a few universities; he was created a Baron in 1936.
    [br]
    Principal Honours and Distinctions
    Baron 1936.
    Further Reading
    1941, Austin Magazine (June).
    IMcN

    Biographical history of technology > Austin, Herbert, Baron Austin

  • 17 Benz, Karl

    [br]
    b. 25 November 1844 Pfaffenrot, Black Forest, Germany
    d. 4 April 1929 Ladenburg, near Mannheim, Germany
    [br]
    German inventor of one of the first motor cars.
    [br]
    The son of a railway mechanic, it is said that as a child one of his hobbies was the repair of Black Forest clocks. He trained as a mechanical engineer at the Karlsruhe Lyzeum and Polytechnikum under Ferdinand Redtenbacher (d. 1863), who pointed out to him the need for a more portable power source than the steam engine. He went to Maschinenbau Gesellschaft Karlsruhe for workshop experience and then joined Schweizer \& Cie, Mannheim, for two years. In 1868 he went to the Benkiser Brothers at Pforzheim. In 1871 he set up a small machine-tool works at Mannheim, but in 1877, in financial difficulties, he turned to the idea of an entirely new product based on the internal-combustion engine. At this time, N.A. Otto held the patent for the four-stroke internal-combustion engine, so Benz had to put his hopes on a two-stroke design. He avoided the trouble with Dugald Clerk's engine and designed one in which the fuel would not ignite in the pump and in which the cylinder was swept with fresh air between each two firing strokes. His first car had a sparking plug and coil ignition. By 1879 he had developed the engine to a stage where it would run satisfactorily with little attention. On 31 December 1879, with his wife Bertha working the treadle of her sewing machine to charge the batteries, he demonstrated his engine in street trials in Mannheim. In the summer of 1888, unknown to her husband, Bertha drove one of his cars the 80 km (50 miles) to Pforzheim and back with her two sons, aged 13 and 15. She and the elder boy pushed the car up hills while the younger one steered. They bought petrol from an apothecary in Wiesloch and had a brake block repaired in Bauschlott by the village cobbler. Karl Benz's comments on her return from this venture are not recorded! Financial problems prevented immediate commercial production of the automobile, but in 1882 Benz set up the Gasmotorenfabrik Mannheim. After trouble with some of his partners, he left in 1883 and formed a new company, Benz \& Cie, Rheinische Gasmotorenfabrik. Otto's patent was revoked in 1886 and in that year Benz patented a motor car with a gas engine drive. He manufactured a 0.8hp car, the engine running at 250 rpm with a horizontal flywheel, exhibited at the Paris Fair in 1889. He was not successful in finding anyone in France who would undertake manufacture. This first car was a three-wheeler, and soon after he produced a four-wheeled car, but he quarrelled with his co-directors, and although he left the board in 1902 he rejoined it soon after.
    [br]
    Further Reading
    St J.Nixon, 1936, The Invention of the Automobile. E.Diesel et al., 1960, From Engines to Autos. E.Johnson, 1986, The Dawn of Motoring.
    IMcN

    Biographical history of technology > Benz, Karl

  • 18 обрабатывающая промышленность

    2) Engineering: process industry
    3) Railway term: fabricating industry
    4) Economy: manufacturing sector (как сектор), secondary industry, secondary production, secondary sector
    6) Mechanics: machine-tool industry

    Универсальный русско-английский словарь > обрабатывающая промышленность

  • 19 верстатобудування

    Українсько-англійський словник > верстатобудування

  • 20 производство

    Русско-английский словарь по общей лексике > производство

См. также в других словарях:

  • machine tool — machine tooled, adj. a power operated machine, as a lathe, used for general cutting and shaping of metal and other substances. [1860 65] * * * Stationary, power driven machine used to cut, shape, or form materials such as metal and wood. Machine… …   Universalium

  • Machine tool — Machine Ma*chine (m[.a]*sh[=e]n ), n. [F., fr. L. machina machine, engine, device, trick, Gr. ?, from ? means, expedient. Cf. {Mechanic}.] 1. In general, any combination of bodies so connected that their relative motions are constrained, and by… …   The Collaborative International Dictionary of English

  • Churchill Machine Tool Company — The Churchill Machine Tool Company Limited Type Machine Tool Manufacturer Industry Engineering Fate Taken over, liquidated …   Wikipedia

  • Machine — Ma*chine (m[.a]*sh[=e]n ), n. [F., fr. L. machina machine, engine, device, trick, Gr. ?, from ? means, expedient. Cf. {Mechanic}.] 1. In general, any combination of bodies so connected that their relative motions are constrained, and by means of… …   The Collaborative International Dictionary of English

  • Machine gun — Machine Ma*chine (m[.a]*sh[=e]n ), n. [F., fr. L. machina machine, engine, device, trick, Gr. ?, from ? means, expedient. Cf. {Mechanic}.] 1. In general, any combination of bodies so connected that their relative motions are constrained, and by… …   The Collaborative International Dictionary of English

  • Machine screw — Machine Ma*chine (m[.a]*sh[=e]n ), n. [F., fr. L. machina machine, engine, device, trick, Gr. ?, from ? means, expedient. Cf. {Mechanic}.] 1. In general, any combination of bodies so connected that their relative motions are constrained, and by… …   The Collaborative International Dictionary of English

  • Machine shop — Machine Ma*chine (m[.a]*sh[=e]n ), n. [F., fr. L. machina machine, engine, device, trick, Gr. ?, from ? means, expedient. Cf. {Mechanic}.] 1. In general, any combination of bodies so connected that their relative motions are constrained, and by… …   The Collaborative International Dictionary of English

  • Machine twist — Machine Ma*chine (m[.a]*sh[=e]n ), n. [F., fr. L. machina machine, engine, device, trick, Gr. ?, from ? means, expedient. Cf. {Mechanic}.] 1. In general, any combination of bodies so connected that their relative motions are constrained, and by… …   The Collaborative International Dictionary of English

  • Machine work — Machine Ma*chine (m[.a]*sh[=e]n ), n. [F., fr. L. machina machine, engine, device, trick, Gr. ?, from ? means, expedient. Cf. {Mechanic}.] 1. In general, any combination of bodies so connected that their relative motions are constrained, and by… …   The Collaborative International Dictionary of English

  • tool — tooler, n. toolless, adj. /toohl/, n. 1. an implement, esp. one held in the hand, as a hammer, saw, or file, for performing or facilitating mechanical operations. 2. any instrument of manual operation. 3. the cutting or machining part of a lathe …   Universalium

  • Tool and die maker — Not to be confused with tap and die. Tool and die makers are workers in the manufacturing industry who make jigs, fixtures, dies, molds, machine tools, cutting tools (such as milling cutters and form tools), gauges, and other tools used in… …   Wikipedia

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»