Перевод: со всех языков на все языки

со всех языков на все языки

looms

  • 41 tape looms

    пасмантериен стан за ленти

    English-Bulgarian polytechnical dictionary > tape looms

  • 42 terry looms

    тъкачен стан за хавлиени тъкани

    English-Bulgarian polytechnical dictionary > terry looms

  • 43 alley between the backs of looms

    Англо-русский словарь текстильной промышленности > alley between the backs of looms

  • 44 alleys between the backs of looms

    Англо-русский словарь текстильной промышленности > alleys between the backs of looms

  • 45 alley between the backs of looms

    Англо-русский текстильный словар > alley between the backs of looms

  • 46 alley between the backs of looms

    Англо-русский текстильный словар > alley between the backs of looms

  • 47 alleys between the backs of the looms

    English-Russian dictionary on textile and sewing industry > alleys between the backs of the looms

  • 48 driving of looms

    English-Russian dictionary on textile and sewing industry > driving of looms

  • 49 work load in looms

    фронт обслуживания ткацких станков; число обслуживаемых ткацких станков

    English-Russian dictionary on textile and sewing industry > work load in looms

  • 50 set of looms

    English-Russian dictionary on textile and sewing industry > set of looms

  • 51 tyčí

    Czech-English dictionary > tyčí

  • 52 zeichnet sich ab

    Deutsch-Englisches Wörterbuch > zeichnet sich ab

  • 53 зона обслуживания ткацких станков

    Русско-английский текстильный словарь > зона обслуживания ткацких станков

  • 54 Bigelow, Erastus Brigham

    SUBJECT AREA: Textiles
    [br]
    b. 2 April 1814 West Boyleston, Massachusetts, USA
    d. 6 December 1879 USA
    [br]
    American inventor of power looms for making lace and many types of carpets.
    [br]
    Bigelow was born in West Boyleston, Massachusetts, where his father struggled as a farmer, wheelwright, and chairmaker. Before he was 20, Bigelow had many different jobs, among them farm labourer, clerk, violin player and cotton-mill employee. In 1830, he went to Leicester Academy, Massachusetts, but he could not afford to go on to Harvard. He sought work in Boston, New York and elsewhere, making various inventions.
    The most important of his early inventions was the power loom of 1837 for making coach lace. This loom contained all the essential features of his carpet looms, which he developed and patented two years later. He formed the Clinton Company for manufacturing carpets at Leicester, Massachusetts, but the factory became so large that its name was adopted for the town. The next twenty years saw various mechanical discoveries, while his range of looms was extended to cover Brussels, Wilton, tapestry and velvet carpets. Bigelow has been justly described as the originator of every fundamental device in these machines, which were amongst the largest textile machines of their time. The automatic insertion and withdrawal of strong wires with looped ends was the means employed to raise the looped pile of the Brussels carpets, while thinner wires with a knife blade at the end raised and then severed the loops to create the rich Wilton pile. At the Great Exhibition in 1851, it was declared that his looms made better carpets than any from hand looms. He also developed other looms for special materials.
    He became a noted American economist, writing two books about tariff problems, advocating that the United States should not abandon its protectionist policies. In 1860 he was narrowly defeated in a Congress election. The following year he was a member of the committee that established the Massachusetts Institute of Technology.
    [br]
    Further Reading
    National Cyclopedia of American Biography III (the standard account of his life). F.H.Sawyer, 1927, Clinton Item (provides a broad background to his life).
    C.Singer (ed.), 1958, A History of Technology, Vol. V, Oxford: Clarendon Press (describes Bigelow's inventions).
    RLH

    Biographical history of technology > Bigelow, Erastus Brigham

  • 55 Pääbo, Max

    SUBJECT AREA: Textiles
    [br]
    b. Estonia fl. 1950s Sweden
    [br]
    Estonian inventor of one of the most successful looms, in which the weft is sent across the warp by a jet of air.
    [br]
    The earliest patent for using a jet of air to propel a shuttle across a loom was granted to J.C. Brooks in 1914. A different method was tried by E.H.Ballou in 1929, but the really important patent was taken out by Max Pääbo, a refugee from Estonia. He exhibited his machine in Sweden in 1951, weaving cotton cloth 80 cm (31 1/2 in.) wide at a speed of 350 picks per minute, but it was not widely publicized until 1954. One shown in Manchester in 1958 ran at 410 picks per minute while weaving 90 cm (35 1/2 in.) cloth. His looms were called "Maxbo" after him. They had no shuttle; instead a jet of air drove a measured amount of weft drawn from a supply package across the warp threads. Efficient control of the airstream was the main reason for its success; not only was weaving much quicker, but it was also much quieter than traditional methods, and as the warp was nearly vertical the looms took up little space. Manufacture of these looms in Sweden ceased in 1962, but development continued in other countries.
    [br]
    Further Reading
    J.J.Vincent, 1980, Shuttle less Looms, Manchester (a good account of the development of modern looms).
    RLH

    Biographical history of technology > Pääbo, Max

  • 56 Cartwright, Revd Edmund

    [br]
    b. 24 April 1743 Marnham, Nottingham, England
    d. 30 October 1823 Hastings, Sussex, England
    [br]
    English inventor of the power loom, a combing machine and machines for making ropes, bread and bricks as well as agricultural improvements.
    [br]
    Edmund Cartwright, the fourth son of William Cartwright, was educated at Wakefield Grammar School, and went to University College, Oxford, at the age of 14. By special act of convocation in 1764, he was elected Fellow of Magdalen College. He married Alice Whitaker in 1772 and soon after was given the ecclesiastical living of Brampton in Derbyshire. In 1779 he was presented with the living of Goadby, Marwood, Leicestershire, where he wrote poems, reviewed new works, and began agricultural experiments. A visit to Matlock in the summer of 1784 introduced him to the inventions of Richard Arkwright and he asked why weaving could not be mechanized in a similar manner to spinning. This began a remarkable career of inventions.
    Cartwright returned home and built a loom which required two strong men to operate it. This was the first attempt in England to develop a power loom. It had a vertical warp, the reed fell with the weight of at least half a hundredweight and, to quote Gartwright's own words, "the springs which threw the shuttle were strong enough to throw a Congreive [sic] rocket" (Strickland 19.71:8—for background to the "rocket" comparison, see Congreve, Sir William). Nevertheless, it had the same three basics of weaving that still remain today in modern power looms: shedding or dividing the warp; picking or projecting the shuttle with the weft; and beating that pick of weft into place with a reed. This loom he proudly patented in 1785, and then he went to look at hand looms and was surprised to see how simply they operated. Further improvements to his own loom, covered by two more patents in 1786 and 1787, produced a machine with the more conventional horizontal layout that showed promise; however, the Manchester merchants whom he visited were not interested. He patented more improvements in 1788 as a result of the experience gained in 1786 through establishing a factory at Doncaster with power looms worked by a bull that were the ancestors of modern ones. Twenty-four looms driven by steam-power were installed in Manchester in 1791, but the mill was burned down and no one repeated the experiment. The Doncaster mill was sold in 1793, Cartwright having lost £30,000, However, in 1809 Parliament voted him £10,000 because his looms were then coming into general use.
    In 1789 he began working on a wool-combing machine which he patented in 1790, with further improvements in 1792. This seems to have been the earliest instance of mechanized combing. It used a circular revolving comb from which the long fibres or "top" were. carried off into a can, and a smaller cylinder-comb for teasing out short fibres or "noils", which were taken off by hand. Its output equalled that of twenty hand combers, but it was only relatively successful. It was employed in various Leicestershire and Yorkshire mills, but infringements were frequent and costly to resist. The patent was prolonged for fourteen years after 1801, but even then Cartwright did not make any profit. His 1792 patent also included a machine to make ropes with the outstanding and basic invention of the "cordelier" which he communicated to his friends, including Robert Fulton, but again it brought little financial benefit. As a result of these problems and the lack of remuneration for his inventions, Cartwright moved to London in 1796 and for a time lived in a house built with geometrical bricks of his own design.
    Other inventions followed fast, including a tread-wheel for cranes, metallic packing for pistons in steam-engines, and bread-making and brick-making machines, to mention but a few. He had already returned to agricultural improvements and he put forward suggestions in 1793 for a reaping machine. In 1801 he received a prize from the Board of Agriculture for an essay on husbandry, which was followed in 1803 by a silver medal for the invention of a three-furrow plough and in 1805 by a gold medal for his essay on manures. From 1801 to 1807 he ran an experimental farm on the Duke of Bedford's estates at Woburn.
    From 1786 until his death he was a prebendary of Lincoln. In about 1810 he bought a small farm at Hollanden near Sevenoaks, Kent, where he continued his inventions, both agricultural and general. Inventing to the last, he died at Hastings and was buried in Battle church.
    [br]
    Principal Honours and Distinctions
    Board of Agriculture Prize 1801 (for an essay on agriculture). Society of Arts, Silver Medal 1803 (for his three-furrow plough); Gold Medal 1805 (for an essay on agricultural improvements).
    Bibliography
    1785. British patent no. 1,270 (power loom).
    1786. British patent no. 1,565 (improved power loom). 1787. British patent no. 1,616 (improved power loom).
    1788. British patent no. 1,676 (improved power loom). 1790, British patent no. 1,747 (wool-combing machine).
    1790, British patent no. 1,787 (wool-combing machine).
    1792, British patent no. 1,876 (improved wool-combing machine and rope-making machine with cordelier).
    Further Reading
    M.Strickland, 1843, A Memoir of the Life, Writings and Mechanical Inventions of Edmund Cartwright, D.D., F.R.S., London (remains the fullest biography of Cartwright).
    Dictionary of National Biography (a good summary of Cartwright's life). For discussions of Cartwright's weaving inventions, see: A.Barlow, 1878, The History and Principles of Weaving by Hand and by Power, London; R.L. Hills, 1970, Power in the Industrial Revolution, Manchester. F.Nasmith, 1925–6, "Fathers of machine cotton manufacture", Transactions of the
    Newcomen Society 6.
    H.W.Dickinson, 1942–3, "A condensed history of rope-making", Transactions of the Newcomen Society 23.
    W.English, 1969, The Textile Industry, London (covers both his power loom and his wool -combing machine).
    RLH

    Biographical history of technology > Cartwright, Revd Edmund

  • 57 Svaty, Vladimir

    SUBJECT AREA: Textiles
    [br]
    fl. 1950 Czechoslovakia
    [br]
    Czech inventor of a loom across which the weft was projected by a jet of water.
    [br]
    Since the 1930s people have been experimenting with ways of inserting the weft during weaving without using a massive shuttle. This would save wasting the energy that a shuttle requires to accelerate it through the warp and which is only to be lost when the shuttle is stopped in its box. Around 1950, the Czech engineer Vladimir Svaty had been working on air-jet looms, in which the weft was wafted across the loom by a jet of air. He then switched his interest to waterjet looms, and in 1955, at the Brussels exhibition, the first water-jet loom was displayed to a surprised world. In 1959 the Czechs had installed 150 of these looms at Semily in Czechoslovakia, weaving cloth 41 in. (104 cm) wide at 350 picks per minute. Water-jet looms are suitable only for certain types of synthetic fibres which are not affected by the wet. They are compact, quiet, mechanically simple and free from weft vibration. They find their most appropriate use in weaving simple fabrics from water-insensitive, continuous-filament yarn, which they can produce economically and with the highest quality.
    [br]
    Further Reading
    J.J.Vincent, 1980, Shuttleless Looms, Manchester (written with inside knowledge of the problems; the author tried to develop a shuttleless loom himself).
    RLH

    Biographical history of technology > Svaty, Vladimir

  • 58 Gartside

    SUBJECT AREA: Textiles
    [br]
    fl. 1760s England
    [br]
    English manufacturer who set up what was probably the first power-driven weaving shed.
    [br]
    A loom on which more than one ribbon could be woven at once may have been invented by Anton Möller at Danzig in 1586. It arrived in England from the Low Countries and was being used in London by 1616 and in Lancashire by 1680. Means were being devised in Switzerland c.1730 for driving these looms by power, but this was prohibited because it was feared that these looms would deprive other weavers of work. In England, a patent was taken out by John Kay of Bury and John Stell of Keighley in 1745 for improvements to these looms and it is probably that Gartside received permission to use this invention. In Manchester, Gartside set up a mill with swivel looms driven by a water-wheel; this was probably prior to 1758, because a man was brought up at the Lancaster Assizes in March of that year for threatening to burn down "the Engine House of Mr. Gartside in Manchester, Merchant". He set up his factory near Garrett Hall on the south side of Manchester and it may still have been running in 1764. However, the enterprise failed because it was necessary for each loom to be attended by one person in order to prevent any mishap occurring, and therefore it was more economic to use hand-frames, which the operatives could control more easily.
    [br]
    Further Reading
    J.Aikin, 1795, A Description of the Country from Thirty to Forty Miles Round Manchester, London (provides the best account of Gartside's factory).
    Both R.L.Hills, 1970, Power in the Industrial Revolution, Manchester; and A.P.Wadsworth and J. de L.Mann, 1931, The Cotton Trade and Industrial Lancashire, Manchester, make use of Aikin's material as they describe the development of weaving.
    A.Barlow, 1878, The History and Principles of Weaving by Hand and by Power, London (covers the development of narrow fabric weaving).
    RLH

    Biographical history of technology > Gartside

  • 59 Johnson, Thomas

    SUBJECT AREA: Textiles
    [br]
    fl. 1800s England
    d. after 1846
    [br]
    English developer of the sizing and beaming machine, and improver of the hand loom.
    [br]
    Thomas Johnson was an assistant to William Radcliffe c.1802 in his developments of the sizing machine and hand looms. Johnson is described by Edward Baines (1835) as "an ingenious but dissipated young man to whom he [Radcliffe] explained what he wanted, and whose fertile invention suggested a great variety of expedients, so that he obtained the name of the “conjuror” among his fellow-workmen". Johnson's genius, and Radcliffe's judgement and perseverance, at length produced the dressing-machine that was soon applied to power looms and made their use economic. Cotton warps had to be dressed with a starch paste to prevent them from fraying as they were being woven. Up to this time, the paste had had to be applied as the warp was unwound from the back of the loom, which meant that only short lengths could be treated and then left to dry, holding up the weaver. Radcliffe carried out the dressing and beaming in a separate machine so that weaving could proceed without interruption. Work on the dressing-machine was carried out in 1802 and patents were taken out in 1803 and 1804. These were made out in Johnson's name because Radcliffe was afraid that if his own name were used other people, particularly foreigners, would discover his secrets. Two more patents were taken out for improvements to hand looms. The first of these was a take-up motion for the woven cloth that automatically wound the cloth onto a roller as the weaver operated the loom. This was later incorporated by H.Horrocks into his own power loom design.
    Radcliffe and Johnson also developed the "dandy-loom", which was a more compact form of hand loom and later became adapted for weaving by power. Johnson was the inventor of the first circular or revolving temples, which kept the woven cloth at the right width. In the patent specifications there is a patent in 1805 by Thomas Johnson and James Kay for an improved power loom and another in 1807 for a vertical type of power loom. Johnson could have been involved with further patents in the 1830s and 1840s for vertical power looms and dressing-machines, which would put his death after 1846.
    [br]
    Bibliography
    1802, British patent no. 2,684 (dressing-machine).
    1803, British patent no. 2,771 (dressing-machine).
    1805, with James Kay, British patent no. 2,876 (power-loom). 1807, British patent no. 6,570 (vertical powerloom).
    Further Reading
    There is no general account of Johnson's life, but references to his work with Radcliffe may be found in A.Barlow, 1878, The History and Principles of Weaving by Hand and by Power, London; and in E.Baines, 1835, History of the Cotton Manufacture in Great Britain, London.
    D.J.Jeremy, 1981, Transatlantic Industrial Revolution. The Diffusion of Textile Technologies Between Britain and America, 1790–1830s, Oxford (for the impact of the dressing-machine in America).
    RLH

    Biographical history of technology > Johnson, Thomas

  • 60 Radcliffe, William

    SUBJECT AREA: Textiles
    [br]
    b. 1761 Mellor, Cheshire, England
    d. 1842 Mellor, Cheshire, England
    [br]
    English inventor of the sizing machine.
    [br]
    Radcliffe was brought up in the textile industry and learned carding and spinning as a child. When he was old enough, he became a weaver. It was a time when there were not enough weavers to work up all the yarn being spun on the recently invented spinning machines, so some yarn was exported. Radcliffe regarded this as a sin; meetings were held to prohibit the export, and Radcliffe promised to use his best endeavours to discover means to work up the yarn in England. He owned a mill at Mellor and by 1801 was employing over 1,000 hand-loom weavers. He wanted to improve their efficiency so they could compete against power looms, which were beginning to be introduced at that time.
    His first step was to divide up as much as possible the different weaving processes, not unlike the plan adopted by Arkwright in spinning. In order to strengthen the warp yarns made of cotton and to reduce their tendency to fray during weaving, it was customary to apply an adhesive substance such as starch paste. This was brushed on as the warp was unwound from the back beam during weaving, so only short lengths could be treated before being dried. Instead of dressing the warp in the loom as was hitherto done, Radcliffe had it dressed in a separate machine, relieving the weaver of the trouble and saving the time wasted by the method previously used. Radcliffe employed a young man names Thomas Johnson, who proved to be a clever mechanic. Radcliffe patented his inventions in Johnson's name to avoid other people, especially foreigners, finding out his ideas. He took out his first patent, for a dressing machine, in March 1803 and a second the following year. The combined result of the two patents was the introduction of a beaming machine and a dressing machine which, in addition to applying the paste to the yarns and then drying them, wound them onto a beam ready for the loom. These machines enabled the weaver to work a loom with fewer stoppages; however, Radcliffe did not anticipate that his method of sizing would soon be applied to power looms as well and lead to the commercial success of powered weaving. Other manufacturers quickly adopted Radcliffe's system, and Radcliffe himself soon had to introduce power looms in his own business.
    Radcliffe improved the hand looms themselves when, with the help of Johnson, he devised a cloth taking-up motion that wound the woven cloth onto a roller automatically as the weaver operated the loom. Radcliffe and Johnson also developed the "dandy loom", which was a more compact form of hand loom and was also later adapted for weaving by power. Radcliffe was among the witnesses before the Parliamentary Committee which in 1808 awarded Edmund Cartwright a grant for his invention of the power loom. Later Radcliffe was unsuccessfully to petition Parliament for a similar reward for his contributions to the introduction of power weaving. His business affairs ultimately failed partly through his own obstinacy and his continued opposition to the export of cotton yarn. He lived to be 81 years old and was buried in Mellor churchyard.
    [br]
    Bibliography
    1811, Exportation of Cotton Yarn and Real Cause of the Distress that has Fallen upon the Cotton Trade for a Series of Years Past, Stockport.
    1828, Origin of the New System of Manufacture, Commonly Called "Power-Loom Weaving", Stockport (this should be read, even though it is mostly covers Radcliffe's political aims).
    Further Reading
    A.Barlow, 1870, The History and Principles of Weaving by Hand and by Power, London (provides an outline of Radcliffe's life and work).
    W.English, 1969, The Textile Industry, London (a general background of his inventions). R.L.Hills, 1970, Power in the Industrial Revolution, Manchester (a general background).
    D.J.Jeremy, 1981, Transatlantic Industrial Revolution. The Diffusion of Textile Technologies Between Britain and America, 1790–1830s, Oxford (discusses the spread of the sizing machine in America).
    RLH

    Biographical history of technology > Radcliffe, William

См. также в других словарях:

  • Looms — Mark Looms Spielerinformationen Voller Name Mark Looms Geburtstag 24. März 1981 Geburtsort Almelo, Niederlande Position Verteidiger Vereine in der Jugend …   Deutsch Wikipedia

  • looms — luːm n. apparatus on which fabrics are woven, weaving machine v. appear as a large and indistinct form; appear as larger than life; impend, be about to occur; weave fabric on a loom …   English contemporary dictionary

  • Mark Looms — Personal information Full name …   Wikipedia

  • Mark Looms —  Mark Looms Spielerinformationen Voller Name Mark Looms Geburtstag 24. März 1981 Geburtsort Almelo, Niederlande Position Verteidiger …   Deutsch Wikipedia

  • December Looms — Studio album by John Mann Released 2007 Genre folk rock Label indep …   Wikipedia

  • Blood, Looms, and Blooms — Infobox Album Name = Blood, Looms and Blooms Type = studio Artist = Leila Released = 2008 Recorded = Genre = IDM, Indietronica Length = Label = Warp Records Producer = Leila Reviews = * Cokemachineglow 82% [http://www.cokemachineglow.com/record… …   Wikipedia

  • Blood, Looms and Blooms — Blood, Looms, and Blooms est le troisième album de Leila, sorti chez Warp Records en juillet 2008. Sommaire 1 Liste des morceaux 2 Fiche 3 Liens externes et sources …   Wikipédia en Français

  • Mark Looms — Pas d image ? Cliquez ici. Situation actuelle Club actuel …   Wikipédia en Français

  • textile — /teks tuyl, til/, n. 1. any cloth or goods produced by weaving, knitting, or felting. 2. a material, as a fiber or yarn, used in or suitable for weaving: Glass can be used as a textile. adj. 3. woven or capable of being woven: textile fabrics. 4 …   Universalium

  • Loom — For other uses, see Loom (disambiguation). Draper power loom in Lowell, Massachusetts …   Wikipedia

  • Weaving — Weaver (occupation) redirects here. This article is about textile weaving. For other uses, see Weaving (disambiguation). Warp and weft in plain weaving Weaving is a method of fabric production in which two distinct sets of yarns or threads are… …   Wikipedia

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»