Перевод: с английского на все языки

со всех языков на английский

locomotives

  • 101 Seguin, Marc

    [br]
    b. 20 April 1786 Annonay, Ardèche, France
    d. 24 February 1875 Annonay, Ardèche, France
    [br]
    French engineer, inventor of multi-tubular firetube boiler.
    [br]
    Seguin trained under Joseph Montgolfier, one of the inventors of the hot-air balloon, and became a pioneer of suspension bridges. In 1825 he was involved in an attempt to introduce steam navigation to the River Rhône using a tug fitted with a winding drum to wind itself upstream along a cable attached to a point on the bank, with a separate boat to transfer the cable from point to point. The attempt proved unsuccessful and was short-lived, but in 1825 Seguin had decided also to seek a government concession for a railway from Saint-Etienne to Lyons as a feeder of traffic to the river. He inspected the Stockton \& Darlington Railway and met George Stephenson; the concession was granted in 1826 to Seguin Frères \& Ed. Biot and two steam locomotives were built to their order by Robert Stephenson \& Co. The locomotives were shipped to France in the spring of 1828 for evaluation prior to construction of others there; each had two vertical cylinders, one each side between front and rear wheels, and a boiler with a single large-diameter furnace tube, with a watertube grate. Meanwhile, in 1827 Seguin, who was still attempting to produce a steamboat powerful enough to navigate the fast-flowing Rhône, had conceived the idea of increasing the heating surface of a boiler by causing the hot gases from combustion to pass through a series of tubes immersed in the water. He was soon considering application of this type of boiler to a locomotive. He applied for a patent for a multi-tubular boiler on 12 December 1827 and carried out numerous experiments with various means of producing a forced draught to overcome the perceived obstruction caused by the small tubes. By May 1829 the steam-navigation venture had collapsed, but Seguin had a locomotive under construction in the workshops of the Lyons-Sain t- Etienne Railway: he retained the cylinder layout of its Stephenson locomotives, but incorporated a boiler of his own design. The fire was beneath the barrel, surrounded by a water-jacket: a single large flue ran towards the front of the boiler, whence hot gases returned via many small tubes through the boiler barrel to a chimney above the firedoor. Draught was provided by axle-driven fans on the tender.
    Seguin was not aware of the contemporary construction of Rocket, with a multi-tubular boiler, by Robert Stephenson; Rocket had its first trial run on 5 September 1829, but the precise date on which Seguin's locomotive first ran appears to be unknown, although by 20 October many experiments had been carried out upon it. Seguin's concept of a multi-tubular locomotive boiler therefore considerably antedated that of Henry Booth, and his first locomotive was completed about the same date as Rocket. It was from Rocket's boiler, however, rather than from that of Seguin's locomotive, that the conventional locomotive boiler was descended.
    [br]
    Bibliography
    February 1828, French patent no. 3,744 (multi-tubular boiler).
    1839, De l'Influence des chemins de fer et de l'art de les tracer et de les construire, Paris.
    Further Reading
    F.Achard and L.Seguin, 1928, "Marc Seguin and the invention of the tubular boiler", Transactions of the Newcomen Society 7 (traces the chronology of Seguin's boilers).
    ——1928, "British railways of 1825 as seen by Marc Seguin", Transactions of the Newcomen Society 7.
    J.B.Snell, 1964, Early Railways, London: Weidenfeld \& Nicolson.
    J.-M.Combe and B.Escudié, 1991, Vapeurs sur le Rhône, Lyons: Presses Universitaires de Lyon.
    PJGR

    Biographical history of technology > Seguin, Marc

  • 102 Walschaert, Egide

    [br]
    b. 20 January 1820 Mechlin, Belgium
    d. 18 February 1901 Saint-Lilies, Brussels, Belgium
    [br]
    Belgian inventor of Walschaerrt valve gear for steam engines.
    [br]
    Walschaert was appointed Foreman of the Brussels Midi workshops of the Belgian State Railways in 1844, when they were opened, and remained in this position until 1885. He invented his valve gear the year he took up his appointment and was allowed to fit it to a 2–2–2 locomotive in 1848, the results being excellent. It was soon adopted in Belgium and to a lesser extent in France, but although it offered accessibility, light weight and mechanical efficiency, railways elsewhere were remarkably slow to take it up. It was first used in the British Isles in 1878, on a 0–4–4 tank locomotive built to the patent of Robert Fairlie, but was not used again there until 1890. By contrast, Fairlie had already used Walchaert's valve gear in 1873, on locomotives for New Zealand, and when New Zealand Railways started to build their own locomotives in 1889 they perpetuated it. The valve gear was only introduced to the USA following a visit by an executive of the Baldwin Locomotive Works to New Zealand ten years later. Subsequently it came to be used almost everywhere there were steam locomotives. Walschaert himself invented other improvements for steam engines, but none with lasting effect.
    [br]
    Further Reading
    P.Ransome-Wallis (ed.), 1959, The Concise Encyclopaedia, of World Railway Locomotives, London: Hutchinson (includes both a brief biography of Walschaert (p.
    502) and a technical description of his valve gear (p. 298)).
    E.L.Ahrons, 1927, The British Steam Railway Locomotive 1825–1925, London: The Locomotive Publishing Co., pp. 224 and 289 (describes the introduction of the valve gear to Britain).
    J.B.Snell, 1964, Early Railways, London: Weidenfeld \& Nicolson, 103.
    PJGR

    Biographical history of technology > Walschaert, Egide

  • 103 Winans, Ross

    [br]
    b. 17 October 1796 Sussex County, New Jersey, USA
    d. 11 April 1877 Baltimore, Maryland, USA
    [br]
    American inventor and locomotive builder.
    [br]
    Winans arrived in Baltimore in 1828 to sell horses to the Baltimore \& Ohio Railroad (B \& O), which was then under construction. To reduce friction in rail vehicles, he devised a system of axles which ran in oil-baths, with outside bearings. He demonstrated a hand-driven wagon with this system at the Rainhill Trials; the Liverpool \& Manchester Railway bought some wagons fitted with the system, but found them on test to be inferior to wagons with grease axle boxes. Back in Baltimore, Winans assisted Peter Cooper in building Tom Thumb. He took charge of the B \& O shops c.1834; he is said to have built the first eight-wheeled passenger coach and to have been the first to mount such a coach on two four-wheeled trucks or bogies. The arrangement soon became standard American practice, and, with partners, he built over 100 locomotives for the B \& O. In 1847 he pioneered the use of anthracite as locomotive fuel, and from 1848 he built his "Camel" locomotives with the driver's cab above the boiler.
    [br]
    Further Reading
    J.H.White Jr, 1979, A History of the American Locomotive-Its Development: 1830–1880, New York: Dover Publications Inc.
    P.Ransome-Wallis (ed.), 1959, The Concise Encyclopaedia of World Railway Locomotives, London: Hutchinson, p. 503 (biography).
    Dictionary of American Biography.
    H.Booth, 1980, Henry Booth, Ilfracombe: Arthur H.Stockwell, pp. 75 and 91–2 (for the Liverpool \& Manchester wagons).
    PJGR

    Biographical history of technology > Winans, Ross

  • 104 Worsdell, Thomas William

    [br]
    b. 14 January 1838 Liverpool, England
    d. 28 June 1916 Arnside, Westmorland, England
    [br]
    English locomotive engineer, pioneer of the use of two-cylinder compound locomotives in Britain.
    [br]
    T.W.Worsdell was the son of Nathaniel Worsdell. After varied training, which included some time in the drawing office of the London \& North Western Railway's Crewe Works, he moved to the Pennsylvania Railroad, USA, in 1865 and shortly became Master Mechanic in charge of its locomotive workshops in Altoona. In 1871, however, he accepted an invitation from F.W. Webb to return to Crewe as Works Manager: it was while he was there that Webb produced his first compound locomotive by rebuilding an earlier simple.
    In 1881 T.W.Worsdell was appointed Locomotive Superintendent of the Great Eastern Railway. Working with August von Borries, who was Chief Mechanical Engineer of the Hannover Division of the Prussian State Railways, he developed a two-cylinder compound derived from the work of J.T.A. Mallet. Von Borries produced his compound 2–4–0 in 1880, Worsdell followed with a 4–4–0 in 1884; the restricted British loading gauge necessitated substitution of inside cylinders for the outside cylinders used by von Borries, particularly the large low-pressure one. T.W.Worsdell's compounds were on the whole successful and many were built, particularly on the North Eastern Railway, to which he moved as Locomotive Superintendent in 1885. There, in 1888, he started to build, uniquely, two-cylinder compound "single driver" 4–2–2s: one of them was recorded as reaching 86 mph (138 km/h). He also equipped his locomotives with a large side-window cab, which gave enginemen more protection from the elements than was usual in Britain at that time and was no doubt appreciated in the harsh winter climate of northeast England. The idea for the cab probably originated from his American experience. When T.W.Worsdell retired from the North Eastern Railway in 1890 he was succeeded by his younger brother, Wilson Worsdell, who in 1899 introduced the first 4– 6–0s intended for passenger trains in England.
    [br]
    Further Reading
    C.Hamilton Ellis, 1958, Twenty Locomotive Men, Shepperton: Ian Allan, Ch. 15 (biography).
    E.L.Ahrons, 1927, The British Steam Railway Locomotive 1825–1925, London: The Locomotive Publishing Co., pp. 253–5 (describes his locomotives). C.Fryer, 1990, Experiments with Steam, Patrick Stephens, Ch. 7.
    PJGR

    Biographical history of technology > Worsdell, Thomas William

  • 105 Beyer, Charles Frederick

    [br]
    b. 14 May 1813 Plauen, Saxony, Germany
    d. 2 June 1876 Llantysilio, Denbighshire, Wales
    [br]
    German (naturalized British in 1852) engineer, founder of locomotive builders Beyer, Peacock \& Co.
    [br]
    Beyer came from a family of poor weavers, but showed talent as an artist and draftsman and was educated at Dresden Polytechnic School. He was sent to England in 1834 to report on improvements in cotton spinning machinery and settled in Manchester, working for the machinery manufacturers Sharp Roberts \& Co., initially as a draftsman. When the firm started to build locomotives he moved to this side of the business. The Institution of Mechanical Engineers was founded at his house in 1847. In 1853 Beyer entered into a partnership with Richard Peacock, Locomotive Engineer to the Manchester, Sheffield \& Lincolnshire Railway, and Henry Robertson to establish Beyer, Peacock \& Co. The company soon established a reputation for soundly designed, elegant locomotives: it exported worldwide, and survived until the 1960s.
    [br]
    Further Reading
    Obituary, 1877, Minutes of Proceedings of the Institution of Civil Engineers 47. R.L.Hills, 1967–8 "Some contributions to locomotive development by Beyer, Peacock \& Co.", Transactions of the Newcomen Society 40 (a good description of Beyer, Peacock \& Co's locomotive work).
    PJGR

    Biographical history of technology > Beyer, Charles Frederick

  • 106 Borsig, Johann Carl Friedrich August

    [br]
    b. 25 June 1804 Breslau, Germany (now Wroclaw, Poland)
    d. 7 July 1854 Berlin, Germany
    [br]
    German pioneer manufacturer of locomotives and rails.
    [br]
    Borsig established a small works at Berlin in 1837 that ten years later had expanded sufficiently to employ 1,200 people. In that year it produced sixty-seven locomotives. Borsig copied the long-boiler type then popular in Britain and which had been exported to Germany by British manufacturers: it became the standard goods engine in Germany for many years, and the name Borsig became one of the famous names of locomotive building. In 1847 Borsig established an iron-works near Berlin that from 1851 started to produce good-quality rails; German railways previously had to import these from Britain.
    [br]
    Further Reading
    J.Marshall, 1978, A Biographical Dictionary of Railway Engineers, Newton Abbot: David \& Charles.
    PJGR

    Biographical history of technology > Borsig, Johann Carl Friedrich August

  • 107 Joy, David

    [br]
    b. 3 March 1825 Leeds, England
    d. 14 March 1903 Hampstead, London, England
    [br]
    English mechanical engineer, designer of the locomotive Jenny Lind and of Joy's valve gear for steam engines.
    [br]
    By the mid-1840s Joy was Chief Draughtsman at E.B.Wilson's locomotive works at Leeds. During that period, attempts by engineers to design ever larger and more powerful locomotives were producing ungainly types, such as the long-boiler and the Cramp ton, which were to prove blind alleys in locomotive development. Joy rediscovered the proper route with his Jenny Lind 2–2–2, built in 1847. His locomotive had minimal overhang, with the firebox between the driving and trailing axles; the driving axle supported inside frames which stopped short at the firebox, allowing the latter to be wide, while leading and trailing wheels were held by outside plate frames which had a degree of elasticity. The boiler was low-pitched, the steam pressure high at 120 psi (8.4 kg/cm2). The result was a powerful locomotive which rode well and immediately became popular, a forerunner of many later designs. Joy subsequently had a varied career with successive railways and engineering firms. In the late 1850s he invented steam reversing gear for large, marine steam engines, a hydraulic organ blower and a pneumatic hammer. In 1879 he invented his radial valve gear for steam engines, which was adopted by F.W. Webb for the London \& North Western Railway's locomotives and was also much used in marine steam engines.
    [br]
    Bibliography
    1879, British patent no. 929 (valve gear).
    Further Reading
    Obituary, 1903, Engineering (20 March).
    Obituary, 1903, The Engineer (20 March).
    PJGR

    Biographical history of technology > Joy, David

  • 108 Krauss, Georg

    [br]
    b. 25 December 1826 Augsburg, Germany
    d. 5 November 1906 Munich, Germany
    [br]
    German locomotive engineer, founder of the locomotive builders Krauss \& Co.
    [br]
    Krauss entered the Maffei locomotive works, Munich, as a fitter and subsequently worked successively for the Bavarian State Railways and the Swiss North Eastern Railway, which he left in 1866 to found Locomotivfabrik Krauss in Munich. The firm became one of the most important locomotive builders in Germany. A second factory was established in Munich in 1872 and a third at Linz, Austria, in 1880: by the time of Krauss's death, these factories had built more than 5,500 locomotives. The second Munich factory was predominantly for small locomotives, and to increase the sales of these Krauss promoted the construction of many local railways in south Germany and Austria. The firm survived to amalgamate with Maffei and take the name Krauss-Maffei AG in 1940.
    [br]
    Further Reading
    J.Marshall, 1978, A Biographical Dictionary of Railway Engineers, Newton Abbot: David \& Charles.
    Biographical note, 1985–6, Transactions of the Newcomen Society 57:46.
    PJGR

    Biographical history of technology > Krauss, Georg

  • 109 Locke, Joseph

    [br]
    b. 9 August 1805 Attercliffe, Yorkshire, England
    d. 18 September 1860 Moffat, Scotland
    [br]
    English civil engineer who built many important early main-line railways.
    [br]
    Joseph Locke was the son of a colliery viewer who had known George Stephenson in Northumberland before moving to Yorkshire: Locke himself became a pupil of Stephenson in 1823. He worked with Robert Stephenson at Robert Stephenson \& Co.'s locomotive works and surveyed railways, including the Leeds \& Selby and the Canterbury \& Whitstable, for George Stephenson.
    When George Stephenson was appointed Chief Engineer for construction of the Liverpool \& Manchester Railway in 1826, the first resident engineer whom he appointed to work under him was Locke, who took a prominent part in promoting traction by locomotives rather than by fixed engines with cable haulage. The pupil eventually excelled the master and in 1835 Locke was appointed in place of Stephenson as Chief Engineer for construction of the Grand Junction Railway. He introduced double-headed rails carried in chairs on wooden sleepers, the prototype of the bullhead track that became standard on British railways for more than a century. By preparing the most detailed specifications, Locke was able to estimate the cost of the railway much more accurately than was usual at that time, and it was built at a cost close to the estimate; this made his name. He became Engineer to the London \& Southampton Railway and completed the Sheffield, Ashton-under-Lyme \& Manchester Railway, including the 3-mile (3.8 km) Woodhead Tunnel, which had been started by Charles Vignoles. He was subsequently responsible for many British main lines, including those of the companies that extended the West Coast Route northwards from Preston to Scotland. He was also Engineer to important early main lines in France, notably that from Paris to Rouen and its extension to Le Havre, and in Spain and Holland. In 1847 Locke was elected MP for Honiton.
    Locke appreciated early in his career that steam locomotives able to operate over gradients steeper than at first thought practicable would be developed. Overall his monument is not great individual works of engineering, such as the famous bridges of his close contemporaries Robert Stephenson and I.K. Brunel, but a series of lines built economically but soundly through rugged country without such works; for example, the line over Shap, Cumbria.
    [br]
    Principal Honours and Distinctions
    Officier de la Légion d'honneur, France. FRS. President, Institution of Civil Engineers 1858–9.
    Further Reading
    Obituary, 1861, Minutes of Proceedings of the Institution of Civil Engineers 20. L.T.C.Rolt, 1962, Great Engineers, London: G. Bell \& Sons, ch. 6.
    Industrial Heritage, 1991, Vol. 9(2):9.
    See also: Brassey, Thomas
    PJGR

    Biographical history of technology > Locke, Joseph

  • 110 Ramsbottom, John

    [br]
    b. 11 September 1814 Todmorden, Lancashire, England
    d. 20 May 1897 Alderley Edge, Cheshire, England
    [br]
    English railway engineer, inventor of the reversing rolling mill.
    [br]
    Ramsbottom's initial experience was gained at the locomotive manufacturers Sharp, Roberts \& Co. At the age of 28 he was Manager of the Longsight works of the Manchester \& Birmingham Railway, which, with other lines, became part of the London \& North Western Railway (L \& NWR) in 1846. Ramsbottom was appointed Locomotive Superintendent of its north-eastern division. Soon after 1850 came his first major invention, that of the split-ring piston, consisting of castiron rings fitted round the piston to ensure a steam-tight fit in the cylinder. This proved to be successful, with a worldwide application. In 1856 he introduced sight-feed lubrication and the form of safety valve that bears his name. In 1857 he became Locomotive Superintendent of the L \& NWR at Crewe, producing two notable classes of locomotives: 2–4–0s for passenger traffic; and 0–6–0s for goods. They were of straightforward design and robust construction, and ran successfully for many years. His most spectacular railway invention was the water trough between the rails which enabled locomotives to replenish their water tanks without stopping.
    As part of his policy of making Crewe works as independent as possible, Ramsbottom made several metallurgical innovations. He installed one of the earliest Bessemer converters for steelmaking. More important, in 1866 he coupled the engine part of a railway engine to a two-high rolling mill so that the rolls could be run in either direction, and quickly change direction, by means of the standard railway link reversing gear. This greatly speeded up the rolling of iron or steel into the required sections. He eventually retired in 1871.
    [br]
    Further Reading
    J.N.Weatwood, 1977, Locomotive Designers in the Age of Steam, London: Sidgwick \& Jackson, pp. 43–7.
    W.K.V.Gale, 1969, Iron and Steel, London: Longmans, p. 80 (provides brief details of his reversing mill).
    F.C.Hammerton, 1937, John Ramsbottom, the Father of the Modern Locomotive,
    London.
    LRD

    Biographical history of technology > Ramsbottom, John

  • 111 Stephenson, Robert

    [br]
    b. 16 October 1803 Willington Quay, Northumberland, England
    d. 12 October 1859 London, England
    [br]
    English engineer who built the locomotive Rocket and constructed many important early trunk railways.
    [br]
    Robert Stephenson's father was George Stephenson, who ensured that his son was educated to obtain the theoretical knowledge he lacked himself. In 1821 Robert Stephenson assisted his father in his survey of the Stockton \& Darlington Railway and in 1822 he assisted William James in the first survey of the Liverpool \& Manchester Railway. He then went to Edinburgh University for six months, and the following year Robert Stephenson \& Co. was named after him as Managing Partner when it was formed by himself, his father and others. The firm was to build stationary engines, locomotives and railway rolling stock; in its early years it also built paper-making machinery and did general engineering.
    In 1824, however, Robert Stephenson accepted, perhaps in reaction to an excess of parental control, an invitation by a group of London speculators called the Colombian Mining Association to lead an expedition to South America to use steam power to reopen gold and silver mines. He subsequently visited North America before returning to England in 1827 to rejoin his father as an equal and again take charge of Robert Stephenson \& Co. There he set about altering the design of steam locomotives to improve both their riding and their steam-generating capacity. Lancashire Witch, completed in July 1828, was the first locomotive mounted on steel springs and had twin furnace tubes through the boiler to produce a large heating surface. Later that year Robert Stephenson \& Co. supplied the Stockton \& Darlington Railway with a wagon, mounted for the first time on springs and with outside bearings. It was to be the prototype of the standard British railway wagon. Between April and September 1829 Robert Stephenson built, not without difficulty, a multi-tubular boiler, as suggested by Henry Booth to George Stephenson, and incorporated it into the locomotive Rocket which the three men entered in the Liverpool \& Manchester Railway's Rainhill Trials in October. Rocket, was outstandingly successful and demonstrated that the long-distance steam railway was practicable.
    Robert Stephenson continued to develop the locomotive. Northumbrian, built in 1830, had for the first time, a smokebox at the front of the boiler and also the firebox built integrally with the rear of the boiler. Then in Planet, built later the same year, he adopted a layout for the working parts used earlier by steam road-coach pioneer Goldsworthy Gurney, placing the cylinders, for the first time, in a nearly horizontal position beneath the smokebox, with the connecting rods driving a cranked axle. He had evolved the definitive form for the steam locomotive.
    Also in 1830, Robert Stephenson surveyed the London \& Birmingham Railway, which was authorized by Act of Parliament in 1833. Stephenson became Engineer for construction of the 112-mile (180 km) railway, probably at that date the greatest task ever undertaken in of civil engineering. In this he was greatly assisted by G.P.Bidder, who as a child prodigy had been known as "The Calculating Boy", and the two men were to be associated in many subsequent projects. On the London \& Birmingham Railway there were long and deep cuttings to be excavated and difficult tunnels to be bored, notoriously at Kilsby. The line was opened in 1838.
    In 1837 Stephenson provided facilities for W.F. Cooke to make an experimental electrictelegraph installation at London Euston. The directors of the London \& Birmingham Railway company, however, did not accept his recommendation that they should adopt the electric telegraph and it was left to I.K. Brunel to instigate the first permanent installation, alongside the Great Western Railway. After Cooke formed the Electric Telegraph Company, Stephenson became a shareholder and was Chairman during 1857–8.
    Earlier, in the 1830s, Robert Stephenson assisted his father in advising on railways in Belgium and came to be increasingly in demand as a consultant. In 1840, however, he was almost ruined financially as a result of the collapse of the Stanhope \& Tyne Rail Road; in return for acting as Engineer-in-Chief he had unwisely accepted shares, with unlimited liability, instead of a fee.
    During the late 1840s Stephenson's greatest achievements were the design and construction of four great bridges, as part of railways for which he was responsible. The High Level Bridge over the Tyne at Newcastle and the Royal Border Bridge over the Tweed at Berwick were the links needed to complete the East Coast Route from London to Scotland. For the Chester \& Holyhead Railway to cross the Menai Strait, a bridge with spans as long-as 460 ft (140 m) was needed: Stephenson designed them as wrought-iron tubes of rectangular cross-section, through which the trains would pass, and eventually joined the spans together into a tube 1,511 ft (460 m) long from shore to shore. Extensive testing was done beforehand by shipbuilder William Fairbairn to prove the method, and as a preliminary it was first used for a 400 ft (122 m) span bridge at Conway.
    In 1847 Robert Stephenson was elected MP for Whitby, a position he held until his death, and he was one of the exhibition commissioners for the Great Exhibition of 1851. In the early 1850s he was Engineer-in-Chief for the Norwegian Trunk Railway, the first railway in Norway, and he also built the Alexandria \& Cairo Railway, the first railway in Africa. This included two tubular bridges with the railway running on top of the tubes. The railway was extended to Suez in 1858 and for several years provided a link in the route from Britain to India, until superseded by the Suez Canal, which Stephenson had opposed in Parliament. The greatest of all his tubular bridges was the Victoria Bridge across the River St Lawrence at Montreal: after inspecting the site in 1852 he was appointed Engineer-in-Chief for the bridge, which was 1 1/2 miles (2 km) long and was designed in his London offices. Sadly he, like Brunel, died young from self-imposed overwork, before the bridge was completed in 1859.
    [br]
    Principal Honours and Distinctions
    FRS 1849. President, Institution of Mechanical Engineers 1849. President, Institution of Civil Engineers 1856. Order of St Olaf (Norway). Order of Leopold (Belgium). Like his father, Robert Stephenson refused a knighthood.
    Further Reading
    L.T.C.Rolt, 1960, George and Robert Stephenson, London: Longman (a good modern biography).
    J.C.Jeaffreson, 1864, The Life of Robert Stephenson, London: Longman (the standard nine-teenth-century biography).
    M.R.Bailey, 1979, "Robert Stephenson \& Co. 1823–1829", Transactions of the Newcomen Society 50 (provides details of the early products of that company).
    J.Kieve, 1973, The Electric Telegraph, Newton Abbot: David \& Charles.
    PJGR

    Biographical history of technology > Stephenson, Robert

  • 112 Vauclain, Samuel Matthews

    [br]
    b. 18 May 1856 Philadelphia, USA
    d. 4 February 1940 Rosemont, Pennsylvania, USA
    [br]
    American locomotive builder, inventor of the Vauclain compound system.
    [br]
    Vauclain entered the service of the Pennsylvania Railroad in 1872 as an apprentice in Altoona workshops and moved to the Baldwin Locomotive Works in 1883. He remained with the latter for fifty-seven years, becoming President in 1919 and Chairman of the Board in 1929.
    The first locomotive to his pattern of compound was built in 1889. There were four cylinders: on each side of the locomotive a high-pressure cylinder and a low-pressure cylinder were positioned one above the other, their pistons driving a common cross-head. They shared, also, a common piston valve. Large two-cylinder compound locomotives had been found to suffer from uneven distribution of power between the two sides of the locomotive: Vauclain's system overcame this problem while retaining the accessibility of a locomotive with two outside cylinders. It was used extensively in the USA and other parts of the world, but not in Britain. Among many other developments, in 1897 Vauclain was responsible for the construction of the first locomotives of the 2–8–2 wheel arrangement.
    [br]
    Bibliography
    1930, Steaming Up (autobiography).
    Further Reading
    Obituary, 1941, Transactions of the Newcomen Society 20:180.
    J.T.van Reimsdijk, 1970, The compound locomotive. Part 1:1876 to 1901', Transactions of the Newcomen Society 43:9 (describes Vauclain's system of compounding).
    PJGR

    Biographical history of technology > Vauclain, Samuel Matthews

  • 113 Abt, Roman

    [br]
    b. 17 July 1850 Bünzen, Switzerland
    d. 1 May 1933 Lucerne, Switzerland
    [br]
    Swiss locomotive engineer, inventor of the Abt rack rail system.
    [br]
    Abt trained under N. Riggenbach and worked for his short-lived International Company for Mountain Railways during the 1870s, and subsequently invented the Abt rack system as an improvement on Riggenbach's ladder rack, in which the rungs gave trouble by working loose. Abt's rack system, in what became its usual form, comprises two machined racks side by side with their teeth staggered so that a tooth in one rack is opposite a recess in the other, and at least one tooth is always engaged with a locomotive's driving pinions. This system was first used in 1884 on the mixed rack-and-adhesion Harz Railway in Germany, and then largely superseded Riggenbach's system for new rack railways built worldwide to an eventual total of seventy-two, including the Snowdon Mountain Railway in the UK that was built in the 1890s. In many cases Abt himself designed locomotives and rolling stock, and supervised their construction.
    [br]
    Bibliography
    1877–8, Abstract in Minutes of Proceedings of the Institution of Civil Engineers, Vol. 52 (part II) (abstract of a paper given by Abt in which he described eight Riggenbach system railways then operating; his own system was patented in 1882).
    Further Reading
    J.Marshall, 1978, A Biographical Dictionary of Railway Engineers, Newton Abbot: David \& Charles.
    O.J.Morris, 1951, Snowdon Mountain Railway, Ian Allan.
    PJGR

    Biographical history of technology > Abt, Roman

  • 114 Adams, William Bridges

    [br]
    b. 1797 Madeley, Staffordshire, England
    d. 23 July 1872 Broadstairs, Kent, England
    [br]
    English inventory particularly of road and rail vehicles and their equipment.
    [br]
    Ill health forced Adams to live abroad when he was a young man and when he returned to England in the early 1830s he became a partner in his father's firm of coachbuilders. Coaches during that period were steered by a centrally pivoted front axle, which meant that the front wheels had to swing beneath the body and were therefore made smaller than the rear wheels. Adams considered this design defective and invented equirotal coaches, built by his firm, in which the front and rear wheels were of equal diameter and the coach body was articulated midway along its length so that the front part pivoted. He also applied himself to improving vehicles for railways, which were developing rapidly then.
    In 1843 he opened his own engineering works, Fairfield Works in north London (he was not related to his contemporary William Adams, who was appointed Locomotive Superintendent to the North London Railway in 1854). In 1847 he and James Samuel, Engineer to the Eastern Counties Railway, built for that line a small steam inspection car, the Express, which was light enough to be lifted off the track. The following year Adams built a broad-gauge steam railcar, the Fairfield, for the Bristol \& Exeter Railway at the insistance of the line's Engineer, C.H.Gregory: self-propelled and passenger-carrying, this was the first railcar. Adams developed the concept further into a light locomotive that could haul two or three separate carriages, and light locomotives built both by his own firm and by other noted builders came into vogue for a decade or more.
    In 1847 Adams also built eight-wheeled coaches for the Eastern Counties Railway that were larger and more spacious than most others of the day: each in effect comprised two four-wheeled coaches articulated together, with wheels that were allowed limited side-play. He also realized the necessity for improvements to railway track, the weakest point of which was the joints between the rails, whose adjoining ends were normally held in common chairs. Adams invented the fishplated joint, first used by the Eastern Counties Railway in 1849 and subsequently used almost universally.
    Adams was a prolific inventor. Most important of his later inventions was the radial axle, which was first applied to the leading and trailing wheels of a 2–4–2 tank engine, the White Raven, built in 1863; Adams's radial axle was the forerunner of all later radial axles. However, the sprung tyres with which White Raven was also fitted (an elastic steel hoop was interposed between wheel centre and tyre) were not perpetuated. His inventiveness was not restricted to engineering: in matters of dress, his adoption, perhaps invention, of the turn-down collar at a time when men conventionally wore standup collars had lasting effect.
    [br]
    Bibliography
    Adams took out some thirty five British patents, including one for the fishplate in 1847. He wrote copiously, as journalist and author: his most important book was English Pleasure Carriages (1837), a detailed description of coachbuilding, together with ideas for railway vehicles and track. The 1971 reprint (Bath: Adams \& Dart) has a biographical introduction by Jack Simmons.
    Further Reading
    C.Hamilton Ellis, 1958, Twenty Locomotive Men, Shepperton: Ian Allan, Ch. 1. See also England, George.
    PJGR

    Biographical history of technology > Adams, William Bridges

  • 115 Behr, Fritz Bernhard

    [br]
    b. 9 October 1842 Berlin, Germany
    d. 25 February 1927
    [br]
    German (naturalized British in 1876) engineer, promoter of the Lartigue monorail system.
    [br]
    Behr trained as an engineer in Britain and had several railway engineering appointments before becoming associated with C.F.M.-T. Lartigue in promoting the Lartigue monorail system in the British Isles. In Lartigue's system, a single rail was supported on trestles; vehicles ran on the rail, their bodies suspended pannier-fashion, stabilized by horizontal rollers running against light guide rails fixed to the sides of the trestles. Behr became Managing Director of the Listowel \& Ballybunion Railway Company, which in 1888 opened its Lartigue system line between those two places in the south-west of Ireland. Three locomotives designed by J.T.A. Mallet were built for the line by Hunslet Engine Company, each with two horizontal boilers, one either side of the track. Coaches and wagons likewise were in two parts. Technically the railway was successful, but lack of traffic caused the company to go bankrupt in 1897: the railway continued to operate until 1924.
    Meanwhile Behr had been thinking in terms far more ambitious than a country branch line. Railway speeds of 150mph (240km/h) or more then lay far in the future: engineers were uncertain whether normal railway vehicles would even be stable at such speeds. Behr was convinced that a high-speed electric vehicle on a substantial Lartigue monorail track would be stable. In 1897 he demonstrated such a vehicle on a 3mile (4.8km) test track at the Brussels International Exhibition. By keeping the weight of the motors low, he was able to place the seats above rail level. Although the generating station provided by the Exhibition authorities never operated at full power, speeds over 75mph (120 km/h) were achieved.
    Behr then promoted the Manchester-Liverpool Express Railway, on which monorail trains of this type running at speeds up to 110mph (177km/h) were to link the two cities in twenty minutes. Despite strong opposition from established railway companies, an Act of Parliament authorizing it was made in 1901. The Act also contained provision for the Board of Trade to require experiments to prove the system's safety. In practice this meant that seven miles of line, and a complete generating station to enable trains to travel at full speed, must be built before it was known whether the Board would give its approval for the railway or not. Such a condition was too severe for the scheme to attract investors and it remained stillborn.
    [br]
    Further Reading
    H.Fayle, 1946, The Narrow Gauge Railways of Ireland, Greenlake Publications, Part 2, ch. 2 (describes the Listowel \& Ballybunion Railway and Behr's work there).
    D.G.Tucker, 1984, "F.B.Behr's development of the Lartigue monorail", Transactions of
    the Newcomen Society 55 (covers mainly the high speed lines).
    See also: Brennan, Louis
    PJGR

    Biographical history of technology > Behr, Fritz Bernhard

  • 116 Bodmer, Johann Georg

    [br]
    b. 9 December 1786 Zurich, Switzerland
    d. 30 May 1864 Zurich, Switzerland
    [br]
    Swiss mechanical engineer and inventor.
    [br]
    John George Bodmer (as he was known in England) showed signs of great inventive ability even as a child. Soon after completing his apprenticeship to a local millwright, he set up his own work-shop at Zussnacht. One of his first inventions, in 1805, was a shell which exploded on impact. Soon after this he went into partnership with Baron d'Eichthal to establish a cotton mill at St Blaise in the Black Forest. Bodmer designed the water-wheels and all the machinery. A few years later they established a factory for firearms and Bodmer designed special machine tools and developed a system of interchangeable manufacture comparable with American developments at that time. More inventions followed, including a detachable bayonet for breech-loading rifles and a rifled, breech-loading cannon for 12 lb (5.4 kg) shells.
    Bodmer was appointed by the Grand Duke of Baden to the posts of Director General of the Government Iron Works and Inspector of Artillery. He left St Blaise in 1816 and entered completely into the service of the Grand Duke, but before taking up his duties he visited Britain for the first time and made an intensive five-month tour of textile mills, iron works, workshops and similar establishments.
    In 1821 he returned to Switzerland and was engaged in setting up cotton mills and other engineering works. In 1824 he went back to England, where he obtained a patent for his improvements in cotton machinery and set up a mill near Bolton incorporating his ideas. His health failing, he was obliged to return to Switzerland in 1828, but he was soon busy with engineering works there and in France. In 1833 he went to England again, first to Bolton and four years later to Manchester in partnership with H.H.Birley. In the next ten years he patented many more inventions in the fields of textile machinery, steam engines and machine tools. These included a balanced steam engine, a mechanical stoker, steam engine valve gear, gear-cutting machines and a circular planer or vertical lathe, anticipating machines of this type later developed in America by E.P. Bullard. The metric system was used in his workshops and in gearing calculations he introduced the concept of diametral pitch, which then became known as "Manchester Pitch". The balanced engine was built in stationary form and in two locomotives, but although their running was remarkably smooth the additional complication prevented their wider use.
    After the death of H.H.Birley in 1846, Bodmer removed to London until 1848, when he went to Austria. About 1860 he returned to his native town of Zurich. He remained actively engaged in all kinds of inventions up to the end of his life. He obtained fourteen British patents, each of which describes many inventions; two of these patents were extended beyond the normal duration of fourteen years. Two others were obtained on his behalf, one by his brother James in 1813 for his cannon and one relating to railways by Charles Fox in 1847. Many of his inventions had little direct influence but anticipated much later developments. His ideas were sound and some of his engines and machine tools were in use for over sixty years. He was elected a Member of the Institution of Civil Engineers in 1835.
    [br]
    Bibliography
    1845, "The advantages of working stationary and marine engines with high-pressure steam, expansively and at great velocities; and of the compensating, or double crank system", Minutes of the Proceedings of the Institution of Civil Engineers 4:372–99.
    1846, "On the combustion of fuel in furnaces and steam-boilers, with a description of Bodmer's fire-grate", Minutes of the Proceedings of the Institution of Civil Engineers 5:362–8.
    Further Reading
    H.W.Dickinson, 1929–30, "Diary of John George Bodmer, 1816–17", Transactions of the Newcomen Society 10:102–14.
    D.Brownlie, 1925–6, John George Bodmer, his life and work, particularly in relation to the evolution of mechanical stoking', Transactions of the Newcomen Society 6:86–110.
    W.O.Henderson (ed.), 1968, Industrial Britain Under the Regency: The Diaries of Escher, Bodmer, May and de Gallois 1814–1818, London: Frank Cass (a more complete account of his visit to Britain).
    RTS

    Biographical history of technology > Bodmer, Johann Georg

  • 117 Cooper, Peter

    [br]
    b. 12 February 1791 New York, USA
    d. 4 April 1883 New York, USA
    [br]
    American entrepreneur and steam locomotive pioneer.
    [br]
    Cooper had minimal formal education, but following a childhood spent helping his small-businessman father, he had by his early twenties become a prosperous glue maker. In 1828, with partners, he set up an ironworks at Baltimore. The Baltimore \& Ohio Railroad, intended for horse haulage, was under construction and, to confound those sceptical of the powers of steam, Cooper built a steam locomotive, with vertical boiler and single vertical cylinder, that was so small that it was called Tom Thumb. Nevertheless, when on test in 1830, it proved a match for horse power and became one of the first locomotives to run on an American railway. Cooper did not, however, personally take this line of development further; rather, he built up a vast industrial empire and later in life became a noted philanthropist.
    [br]
    Further Reading
    J.F.Stover, 1961, American Railroads, Chicago: University of Chicago Press.
    Dictionary of American Biography.
    PJGR

    Biographical history of technology > Cooper, Peter

  • 118 Curr, John

    [br]
    b. 1756 Kyo, near Lanchester, or in Greenside, near Ryton-on-Tyne, Durham, England
    d. 27 January 1823 Sheffield, England
    [br]
    English coal-mine manager and engineer, inventor of flanged, cast-iron plate rails.
    [br]
    The son of a "coal viewer", Curr was brought up in the West Durham colliery district. In 1777 he went to the Duke of Norfolk's collieries at Sheffield, where in 1880 he was appointed Superintendent. There coal was conveyed underground in baskets on sledges: Curr replaced the wicker sledges with wheeled corves, i.e. small four-wheeled wooden wagons, running on "rail-roads" with cast-iron rails and hauled from the coal-face to the shaft bottom by horses. The rails employed hitherto had usually consisted of plates of iron, the flange being on the wheels of the wagon. Curr's new design involved flanges on the rails which guided the vehicles, the wheels of which were unflanged and could run on any hard surface. He appears to have left no precise record of the date that he did this, and surviving records have been interpreted as implying various dates between 1776 and 1787. In 1787 John Buddle paid tribute to the efficiency of the rails of Curr's type, which were first used for surface transport by Joseph Butler in 1788 at his iron furnace at Wingerworth near Chesterfield: their use was then promoted widely by Benjamin Outram, and they were adopted in many other English mines. They proved serviceable until the advent of locomotives demanded different rails.
    In 1788 Curr also developed a system for drawing a full corve up a mine shaft while lowering an empty one, with guides to separate them. At the surface the corves were automatically emptied by tipplers. Four years later he was awarded a patent for using double ropes for lifting heavier loads. As the weight of the rope itself became a considerable problem with the increasing depth of the shafts, Curr invented the flat hemp rope, patented in 1798, which consisted of several small round ropes stitched together and lapped upon itself in winding. It acted as a counterbalance and led to a reduction in the time and cost of hoisting: at the beginning of a run the loaded rope began to coil upon a small diameter, gradually increasing, while the unloaded rope began to coil off a large diameter, gradually decreasing.
    Curr's book The Coal Viewer (1797) is the earliest-known engineering work on railway track and it also contains the most elaborate description of a Newcomen pumping engine, at the highest state of its development. He became an acknowledged expert on construction of Newcomen-type atmospheric engines, and in 1792 he established a foundry to make parts for railways and engines.
    Because of the poor financial results of the Duke of Norfolk's collieries at the end of the century, Curr was dismissed in 1801 despite numerous inventions and improvements which he had introduced. After his dismissal, six more of his patents were concerned with rope-making: the one he gained in 1813 referred to the application of flat ropes to horse-gins and perpendicular drum-shafts of steam engines. Curr also introduced the use of inclined planes, where a descending train of full corves pulled up an empty one, and he was one of the pioneers employing fixed steam engines for hauling. He may have resided in France for some time before his death.
    [br]
    Bibliography
    1788. British patent no. 1,660 (guides in mine shafts).
    1789. An Account of tin Improved Method of Drawing Coals and Extracting Ores, etc., from Mines, Newcastle upon Tyne.
    1797. The Coal Viewer and Engine Builder's Practical Companion; reprinted with five plates and an introduction by Charles E.Lee, 1970, London: Frank Cass, and New York: Augustus M.Kelley.
    1798. British patent no. 2,270 (flat hemp ropes).
    Further Reading
    F.Bland, 1930–1, "John Curr, originator of iron tram roads", Transactions of the Newcomen Society 11:121–30.
    R.A.Mott, 1969, Tramroads of the eighteenth century and their originator: John Curr', Transactions of the Newcomen Society 42:1–23 (includes corrections to Fred Bland's earlier paper).
    Charles E.Lee, 1970, introduction to John Curr, The Coal Viewer and Engine Builder's Practical Companion, London: Frank Cass, pp. 1–4; orig. pub. 1797, Sheffield (contains the most comprehensive biographical information).
    R.Galloway, 1898, Annals of Coalmining, Vol. I, London; reprinted 1971, London (provides a detailed account of Curr's technological alterations).
    WK / PJGR

    Biographical history of technology > Curr, John

  • 119 Davidson, Robert

    [br]
    b. 18 April 1804 Aberdeen, Scotland
    d. 16 November 1894 Aberdeen, Scotland
    [br]
    Scottish chemist, pioneer of electric power and builder of the first electric railway locomotives.
    [br]
    Davidson, son of an Aberdeen merchant, attended Marischal College, Aberdeen, between 1819 and 1822: his studies included mathematics, mechanics and chemistry. He subsequently joined his father's grocery business, which from time to time received enquiries for yeast: to meet these, Davidson began to manufacture yeast for sale and from that start built up a successful chemical manufacturing business with the emphasis on yeast and dyes. About 1837 he started to experiment first with electric batteries and then with motors. He invented a form of electromagnetic engine in which soft iron bars arranged on the periphery of a wooden cylinder, parallel to its axis, around which the cylinder could rotate, were attracted by fixed electromagnets. These were energized in turn by current controlled by a simple commutaring device. Electric current was produced by his batteries. His activities were brought to the attention of Michael Faraday and to the scientific world in general by a letter from Professor Forbes of King's College, Aberdeen. Davidson declined to patent his inventions, believing that all should be able freely to draw advantage from them, and in order to afford an opportunity for all interested parties to inspect them an exhibition was held at 36 Union Street, Aberdeen, in October 1840 to demonstrate his "apparatus actuated by electro-magnetic power". It included: a model locomotive carriage, large enough to carry two people, that ran on a railway; a turning lathe with tools for visitors to use; and a small printing machine. In the spring of 1842 he put on a similar exhibition in Edinburgh, this time including a sawmill. Davidson sought support from railway companies for further experiments and the construction of an electromagnetic locomotive; the Edinburgh exhibition successfully attracted the attention of the proprietors of the Edinburgh 585\& Glasgow Railway (E \& GR), whose line had been opened in February 1842. Davidson built a full-size locomotive incorporating his principle, apparently at the expense of the railway company. The locomotive weighed 7 tons: each of its two axles carried a cylinder upon which were fastened three iron bars, and four electromagnets were arranged in pairs on each side of the cylinders. The motors he used were reluctance motors, the power source being zinc-iron batteries. It was named Galvani and was demonstrated on the E \& GR that autumn, when it achieved a speed of 4 mph (6.4 km/h) while hauling a load of 6 tons over a distance of 1 1/2 miles (2.4 km); it was the first electric locomotive. Nevertheless, further support from the railway company was not forthcoming, although to some railway workers the locomotive seems to have appeared promising enough: they destroyed it in Luddite reaction. Davidson staged a further exhibition in London in 1843 without result and then, the cost of battery chemicals being high, ceased further experiments of this type. He survived long enough to see the electric railway become truly practicable in the 1880s.
    [br]
    Bibliography
    1840, letter, Mechanics Magazine, 33:53–5 (comparing his machine with that of William Hannis Taylor (2 November 1839, British patent no. 8,255)).
    Further Reading
    1891, Electrical World, 17:454.
    J.H.R.Body, 1935, "A note on electro-magnetic engines", Transactions of the Newcomen Society 14:104 (describes Davidson's locomotive).
    F.J.G.Haut, 1956, "The early history of the electric locomotive", Transactions of the Newcomen Society 27 (describes Davidson's locomotive).
    A.F.Anderson, 1974, "Unusual electric machines", Electronics \& Power 14 (November) (biographical information).
    —1975, "Robert Davidson. Father of the electric locomotive", Proceedings of the Meeting on the History of Electrical Engineering Institution of Electrical Engineers, 8/1–8/17 (the most comprehensive account of Davidson's work).
    A.C.Davidson, 1976, "Ingenious Aberdonian", Scots Magazine (January) (details of his life).
    PJGR / GW

    Biographical history of technology > Davidson, Robert

  • 120 Inoue Masaru

    [br]
    b. 1 August 1843 Hagi, Choshu, Japan
    d. 2 August 1910 London, England
    [br]
    Japanese "Father of Japanese Railways".
    [br]
    In the early 1860s, most travel in Japan was still by foot and the Japanese were forbidden by their government to travel abroad. Inoue was one of a small group of students who left Japan illegally in 1863 for London. There he studied English, mathematics and science, and afterwards mineralogy and railways. Inoue returned to Japan in 1868, when the new Meiji Government reopened the country to the outside world after some 200 years of isolation. Part of its policy, despite opposition, was to build railways; at Inoue's suggestion, the gauge of 3 ft 6 in. (1.07 m) was adopted. Initially capital, engineers, skilled labour and materials ranging from locomotives to pencils and stationery were all imported from Britain; Edmund Morel was the first Chief Engineer. In 1871 Inoue was appointed Director of the Government Railway Bureau and he became the driving force behind railway development in Japan for more than two decades. The first line, from Tokyo to Yokohama, was opened in 1872, to be followed by others, some of them at first isolated. The number of foreigners employed, most of them British, peaked at 120 in 1877 and then rapidly declined as the Japanese learned to take over their tasks. In 1878, at Inoue's instance, construction of a line entirely by Japanese commenced for the first time, with British engineers as consultants only. It was ten years before Japanese Railways' total route was 70 miles (113 km) long; over the next ten years, this increased to 1,000 miles (1,600 km) and the system continued to grow rapidly. During 1892–3, a locomotive was built in Japan for the first time, under the guidance of Locomotive Superintendent R.F.Trevithick, grandson of the pioneer Richard Trevithick: it was a compound 2–4–2 tank engine, with many parts imported from Britain. Locomotive building in Japan then blossomed so rapidly that imports were discontinued, with rare exceptions, from 1911. Meanwhile Inoue had retired in 1893; he was on a visit to England at the time of his death.
    [br]
    Principal Honours and Distinctions
    Viscount 1887.
    Bibliography
    1909, "Japanese communications: railroads", in Count Shigenobu Okuma (ed.), Fifty Years of New Japan (English version ed. M.B.Huish), Smith, Elder, Ch. 18.
    Further Reading
    T.Richards and K.C.Rudd, 1991 Japanese Railways in the Meiji Period 1868–1912, Uxbridge: Brunel University (one of the few readily available accounts in English of the origins of Japanese Railways).
    PJGR

    Biographical history of technology > Inoue Masaru

См. также в других словарях:

  • Locomotives a vapeur francaises — Locomotives à vapeur françaises Sommaire 1 Locomotives des anciennes compagnies 1.1 Compagnie des chemins de fer de l Est 1.2 Kaiserliche Generaldirektion der Eisenbahnen in Elsass Lothringen (Réseau ferro …   Wikipédia en Français

  • Locomotives À Vapeur Françaises — Sommaire 1 Locomotives des anciennes compagnies 1.1 Compagnie des chemins de fer de l Est 1.2 Kaiserliche Generaldirektion der Eisenbahnen in Elsass Lothringen (Réseau ferro …   Wikipédia en Français

  • Locomotives of New Zealand — currently in operation owned by KiwiRail consist of 172 diesel electric locomotives, 22 electric locomotives, 59 electric multiple units, 3 railcars, and 103 shunting locomotives. There are also 29 diesel multiple units in Auckland, owned by the… …   Wikipedia

  • Locomotives of the Lancashire and Yorkshire Railway — Locomotives of the Lancashire and Yorkshire Railway. The L YR Locomotive Works were originally at Miles Platting, Manchester, from 1889 being at Horwich. Constituent companies The L YR came into being in 1847 when the Manchester and Leeds Railway …   Wikipedia

  • Locomotives Recreation Club — were an Australian rules football club which competed in the Queensland Football League from 1905 to 1909. They wore blue and black club colours.Locomotives won back to back premierships in 1907 and 1908 but after failing to win a game in 1909… …   Wikipedia

  • Locomotives of the Great Western Railway — The Great Western Railway had an uninterrupted life of over a century to develop its locomotive designs as it was barely affected by the Grouping of 1923. As a result its locomotive history is a long and interesting one. BackgroundNumbering and… …   Wikipedia

  • Locomotives à vapeur françaises — Sommaire 1 Locomotives des anciennes compagnies 1.1 Compagnie des chemins de fer de l Est 1.2 Kaiserliche Generaldirektion der Eisenbahnen in Elsass Lothringen (Réseau ferroviaire impérial d Alsace Lo …   Wikipédia en Français

  • Locomotives of the London, Midland and Scottish Railway — The London, Midland and Scottish Railway had the largest stock of steam locomotives of any of the Big Four pre Nationalisation railway companies. Despite early troubles arising from factions within the new company, the LMS went on to build some… …   Wikipedia

  • Locomotives of the Midland Railway — The Midland Railway s locomotives (which it always referred to as engines), followed its small engine policy. The policy was later adopted by the London, Midland and Scottish Railway, and contrasted with the London and North Western Railway s… …   Wikipedia

  • Locomotives à turbine à gaz — Locomotive à turbine à gaz Les locomotives à turbine à gaz ont été mises au point dans plusieurs pays au XXe siècle. Elles utilisent une turbine à gaz similaire à celle que l on rencontre dans les avions ou les hélicoptères pour entraîner un …   Wikipédia en Français

  • Locomotives à vapeur — Locomotive à vapeur Consolidation n°4193 du réseau du Nord Les premières locomotives (au XIXe siècle) étaient propulsées par une machine à vapeur, ce qui leur a valu le nom de locomotives à vapeur. Ce type de traction des trains est resté… …   Wikipédia en Français

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»