-
21 при решении системы линейных уравнений детерминанты появляются естественным образом
Универсальный русско-английский словарь > при решении системы линейных уравнений детерминанты появляются естественным образом
-
22 решение в рамках линейной теории упругости
Makarov: linear elasticity solutionУниверсальный русско-английский словарь > решение в рамках линейной теории упругости
-
23 точное решение линейного уравнения состояния
Programming: explicit solution to the linear state equationУниверсальный русско-английский словарь > точное решение линейного уравнения состояния
-
24 ли
•Whether or not a linear system is stable is determined completely by the roots of the characteristic equation.
•These analyses will show whether ( or not) the solution is being adequately stripped.
•This depends on whether ( or not) frequency doubling the laser output is important for the application.
Русско-английский научно-технический словарь переводчика > ли
-
25 уравнение
с. equationуравнение вида … — an equation of the form …
-
26 slack variables
Finthe amount of each resource which will be unused if a specific linear programming solution is implemented -
27 Forrester, Jay Wright
SUBJECT AREA: Electronics and information technology[br]b. 14 July 1918 Anselmo, Nebraska, USA[br]American electrical engineer and management expert who invented the magnetic-core random access memory used in most early digital computers.[br]Born on a cattle ranch, Forrester obtained a BSc in electrical engineering at the University of Nebraska in 1939 and his MSc at the Massachusetts Institute of Technology (MIT) in Cambridge, Massachusetts, where he remained to teach and carry out research. Becoming interested in computing, he established the Digital Computer Laboratory at MIT in 1945 and became involved in the construction of Whirlwind I, an early general-purpose computer completed in March 1951 and used for flight-simulation by the US Army Air Force. Finding the linear memories then available for storing data a major limiting factor in the speed at which computers were able to operate, he developed a three-dimensional store based on the binary switching of the state of small magnetic cores that could be addressed and switched by a matrix of wires carrying pulses of current. The machine used parallel synchronous fixed-point computing, with fifteen binary digits and a plus sign, i.e. 16 bits in all, and contained 5,000 vacuum tubes, eleven semiconductors and a 2 MHz clock for the arithmetic logic unit. It occupied a two-storey building and consumed 150kW of electricity. From his experience with the development and use of computers, he came to realize their great potential for the simulation and modelling of real situations and hence for the solution of a variety of management problems, using data communications and the technique now known as interactive graphics. His later career was therefore in this field, first at the MIT Lincoln Laboratory in Lexington, Massachusetts (1951) and subsequently (from 1956) as Professor at the Sloan School of Management at the Massachusetts Institute of Technology.[br]Principal Honours and DistinctionsNational Academy of Engineering 1967. George Washington University Inventor of the Year 1968. Danish Academy of Science Valdemar Poulsen Gold Medal 1969. Systems, Man and Cybernetics Society Award for Outstanding Accomplishments 1972. Computer Society Pioneer Award 1972. Institution of Electrical Engineers Medal of Honour 1972. National Inventors Hall of Fame 1979. Magnetics Society Information Storage Award 1988. Honorary DEng Nebraska 1954, Newark College of Engineering 1971, Notre Dame University 1974. Honorary DSc Boston 1969, Union College 1973. Honorary DPolSci Mannheim University, Germany. Honorary DHumLett, State University of New York 1988.Bibliography1951, "Data storage in three dimensions using magnetic cores", Journal of Applied Physics 20: 44 (his first description of the core store).Publications on management include: 1961, Industrial Dynamics, Cambridge, Mass.: MIT Press; 1968, Principles of Systems, 1971, Urban Dynamics, 1980, with A.A.Legasto \& J.M.Lyneis, System Dynamics, North Holland. 1975, Collected Papers, Cambridge, Mass.: MIT.Further ReadingK.C.Redmond \& T.M.Smith, Project Whirlwind, the History of a Pioneer Computer (provides details of the Whirlwind computer).H.H.Goldstine, 1993, The Computer from Pascal to von Neumann, Princeton University Press (for more general background to the development of computers).Serrell et al., 1962, "Evolution of computing machines", Proceedings of the Institute ofRadio Engineers 1,047.M.R.Williams, 1975, History of Computing Technology, London: Prentice-Hall.See also: Burks, Arthur Walter; Goldstine, Herman H.; Wilkes, Maurice Vincent; Williams, Sir Frederic CallandKF
- 1
- 2
См. также в других словарях:
Linear programming — (LP, or linear optimization) is a mathematical method for determining a way to achieve the best outcome (such as maximum profit or lowest cost) in a given mathematical model for some list of requirements represented as linear relationships.… … Wikipedia
Linear least squares — is an important computational problem, that arises primarily in applications when it is desired to fit a linear mathematical model to measurements obtained from experiments. The goals of linear least squares are to extract predictions from the… … Wikipedia
Linear least squares/Proposed — Linear least squares is an important computational problem, that arises primarily in applications when it is desired to fit a linear mathematical model to observations obtained from experiments. Mathematically, it can be stated as the problem of… … Wikipedia
Linear prediction — is a mathematical operation where future values of a discrete time signal are estimated as a linear function of previous samples.In digital signal processing, linear prediction is often called linear predictive coding (LPC) and can thus be viewed … Wikipedia
Linear low-density polyethylene — (LLDPE) is a substantially linear polymer (polyethylene), with significant numbers of short branches, commonly made by copolymerization of ethylene with longer chain olefins. Linear low density polyethylene differs structurally from conventional… … Wikipedia
Linear discriminant analysis — (LDA) and the related Fisher s linear discriminant are methods used in statistics, pattern recognition and machine learning to find a linear combination of features which characterize or separate two or more classes of objects or events. The… … Wikipedia
Linear partial information — (LPI) is a method of making decisions based on insufficient or fuzzy information. LPI was introduced in 1970 by Polish Swiss mathematician Edward Kofler (1911 2007) to simplify decision processes. Comparing to other methods the LPI fuzziness is… … Wikipedia
Linear production game — ( LP Game ) is a N person game in which the value of a coalition can be obtained by solving a Linear Programming problem. It is widely used in the context of resource allocation and payoff distribution. Mathematically, there are m types of… … Wikipedia
Linear programming relaxation — In mathematics, the linear programming relaxation of a 0 1 integer program is the problem that arises by replacing the constraint that each variable must be 0 or 1 by a weaker constraint, that each variable belong to the interval [0,1] .That is,… … Wikipedia
Linear least squares (mathematics) — This article is about the mathematics that underlie curve fitting using linear least squares. For statistical regression analysis using least squares, see linear regression. For linear regression on a single variable, see simple linear regression … Wikipedia
Linear differential equation — In mathematics, a linear differential equation is a differential equation of the form: Ly = f ,where the differential operator L is a linear operator, y is the unknown function, and the right hand side fnof; is a given function (called the source … Wikipedia