Перевод: со всех языков на все языки

со всех языков на все языки

lighting+dynamo

  • 21 Volk, Magnus

    [br]
    b. 19 October 1851 Brighton, England
    d. 20 May 1937 Brighton, England
    [br]
    English pioneer in the use of electric power; built the first electric railway in the British Isles to operate a regular service.
    [br]
    Volk was the son of a German immigrant clockmaker and continued the business with his mother after his father died in 1869, although when he married in 1879 his profession was described as "electrician". He installed Brighton's first telephone the same year and in 1880 he installed electric lighting in his own house, using a Siemens Brothers dynamo (see Siemens, Dr Ernst Werner von) driven by a Crossley gas engine. This was probably one of the first half-dozen such installations in Britain. Magnus Volk \& Co. became noted electrical manufacturers and contractors, and, inter alia, installed electric light in Brighton Pavilion in place of gas.
    By 1883 Volk had moved house. He had kept the dynamo and gas engine used to light his previous house, and he also had available an electric motor from a cancelled order. After approaching the town clerk of Brighton, he was given permission for a limited period to build and operate a 2 ft (61 cm) gauge electric railway along the foreshore. Using the electrical equipment he already had, Volk built the line, a quarter of a mile (400 m) long, in eight weeks. The car was built by a local coachbuilder, with the motor under the seat; electric current at 50 volts was drawn from one running rail and returned through the other.
    The railway was opened on 4 August 1883. It operated regularly for several months and then, permission to run it having been renewed, it was rebuilt for the 1884 season to 2 ft 9 in. (84 cm) gauge, with improved equipment. Despite storm damage from time to time, Volk's Electric Railway, extended in length, has become an enduring feature of Brighton's sea front. In 1887 Volk made an electric dogcart, and an electric van which he built for the Sultan of Turkey was probably the first motor vehicle built in Britain for export. In 1896 he opened the Brighton \& Rottingdean Seashore Electric Tramroad, with very wide-gauge track laid between the high-and low-tide lines, and a long-legged, multi-wheel car to run upon it, through the water if necessary. This lasted only until 1901, however. Volk subsequently became an early enthusiast for aircraft.
    [br]
    Further Reading
    C.Volk, 1971, Magnus Volk of Brighton, Chichester: Phillimore (his life and career as described by his son).
    C.E.Lee, 1979, "The birth of electric traction", Railway Magazine (May).
    PJGR

    Biographical history of technology > Volk, Magnus

  • 22 Mavor, Henry Alexander

    [br]
    b. 1858 Stranraer, Scotland
    d. 16 July 1915 Mauchline, Ayrshire, Scotland
    [br]
    Scottish engineer who pioneered the use of electricity for lighting, power and the propulsion of ships.
    [br]
    Mavor came from a distinguished Scottish family with connections in medicine, industry and the arts. On completion of his education at Glasgow University, he joined R.J.Crompton \& Co.; then in 1883, along with William C.Muir, he established the Glasgow firm which later became well known as Mavor and Coulson. It pioneered the supply of electricity to public undertakings and equipped the first two generating stations in Scotland. Mavor and his fellow directors appreciated the potential demand by industry in Glasgow for electricity. Two industries were especially well served; first, the coal-mines, where electric lighting and power transformed efficiency and safety beyond recognition; and second, marine engineering. Here Mavor recognized the importance of the variable-speed motor in working with marine propellers which have a tighter range of efficient working speeds. In 1911 he built a 50 ft (15 m) motor launch, appropriately named Electric Arc, at Dumbarton and fitted it with an alternating-current motor driven by a petrol engine and dynamo. Within two years British shipyards were building electrically powered ships, and by the beginning of the First World War the United States Navy had a 20,000-ton collier with this new form of propulsion.
    [br]
    Principal Honours and Distinctions
    Vice-President, Institution of Engineers and Shipbuilders in Scotland 1894–6.
    Bibliography
    Mavor published several papers on electric power supply, distribution and the use of electricity for marine purposes in the Transactions of the Institution of Engineers and Shipbuilders in Scotland between the years 1890 and 1912.
    Further Reading
    Mavor and Coulson Ltd, 1911, Electric Propulsion of Ships, Glasgow.
    FMW

    Biographical history of technology > Mavor, Henry Alexander

  • 23 amorçage

    amɔʀsaʒ
    nom masculin (d'obus, de pompe) priming; (de discussions, négociations) initiating
    * * *
    amorçage nm (d'obus, de pompe) priming; (de poisson, ligne) baiting; ( d'arc à souder) lighting; (de discussions, négociations) initiating; l'amorçage de la reprise économique paraît difficile getting economic recovery underway seems difficult.
    [amɔrsaʒ] nom masculin
    1. ARMEMENT & TECHNOLOGIE priming
    ÉLECTRICITÉ [d'une dynamo] energizing
    [d'un arc électrique] striking

    Dictionnaire Français-Anglais > amorçage

  • 24 flat

    1 adj
    CONST llano, plano
    2 n
    ACOUST bemol m
    AGRIC cajonera f
    CINEMAT bastidor m
    MECH cara plana f, filo normal al eje m, parte plana f
    OCEAN bajío m
    PRINT plantilla de montaje f
    WATER TRANSP bajío m

    English-Spanish technical dictionary > flat

  • 25 Parsons, Sir Charles Algernon

    [br]
    b. 13 June 1854 London, England
    d. 11 February 1931 on board Duchess of Richmond, Kingston, Jamaica
    [br]
    English eingineer, inventor of the steam turbine and developer of the high-speed electric generator.
    [br]
    The youngest son of the Earl of Rosse, he came from a family well known in scientific circles, the six boys growing up in an intellectual atmosphere at Birr Castle, the ancestral home in Ireland, where a forge and large workshop were available to them. Charles, like his brothers, did not go to school but was educated by private tutors of the character of Sir Robert Ball, this type of education being interspersed with overseas holiday trips to France, Holland, Belgium and Spain in the family yacht. In 1871, at the age of 17, he went to Trinity College, Dublin, and after two years he went on to St John's College, Cambridge. This was before the Engineering School had opened, and Parsons studied mechanics and mathematics.
    In 1877 he was apprenticed to W.G.Armstrong \& Co. of Elswick, where he stayed for four years, developing an epicycloidal engine that he had designed while at Cambridge. He then moved to Kitson \& Co. of Leeds, where he went half shares in a small experimental shop working on rocket propulsion for torpedoes.
    In 1887 he married Katherine Bethell, who contracted rheumatic fever from early-morning outdoor vigils with her husband to watch his torpedo experiments while on their honeymoon! He then moved to a partnership in Clarke, Chapman \& Co. at Gateshead. There he joined the electrical department, initially working on the development of a small, steam-driven marine lighting set. This involved the development of either a low-speed dynamo, for direct coupling to a reciprocating engine, or a high-speed engine, and it was this requirement that started Parsons on the track of the steam turbine. This entailed many problems such as the running of shafts at speeds of up to 40,000 rpm and the design of a DC generator for 18,000 rpm. He took out patents for both the turbine and the generator on 23 April 1884. In 1888 he dissolved his partnership with Clarke, Chapman \& Co. to set up his own firm in Newcastle, leaving his patents with the company's owners. This denied him the use of the axial-flow turbine, so Parsons then designed a radial-flow layout; he later bought back his patents from Clarke, Chapman \& Co. His original patent had included the use of the steam turbine as a means of marine propulsion, and Parsons now set about realizing this possibility. He experimented with 2 ft (61 cm) and 6 ft (183 cm) long models, towed with a fishing line or, later, driven by a twisted rubber cord, through a single-reduction set of spiral gearing.
    The first trials of the Turbinia took place in 1894 but were disappointing due to cavitation, a little-understood phenomenon at the time. He used an axial-flow turbine of 2,000 shp running at 2,000 rpm. His work resulted in a far greater understanding of the phenomenon of cavitation than had hitherto existed. Land turbines of up to 350 kW (470 hp) had meanwhile been built. Experiments with the Turbinia culminated in a demonstration which took place at the great Naval Review of 1897 at Spithead, held to celebrate Queen Victoria's Diamond Jubilee. Here, the little Turbinia darted in and out of the lines of heavy warships and destroyers, attaining the unheard of speed of 34.5 knots. The following year the Admiralty placed their first order for a turbine-driven ship, and passenger vessels started operation soon after, the first in 1901. By 1906 the Admiralty had moved over to use turbines exclusively. These early turbines had almost all been direct-coupled to the ship's propeller shaft. For optimum performance of both turbine and propeller, Parsons realized that some form of reduction gearing was necessary, which would have to be extremely accurate because of the speeds involved. Parsons's Creep Mechanism of 1912 ensured that any errors in the master wheel would be distributed evenly around the wheel being cut.
    Parsons was also involved in optical work and had a controlling interest in the firm of Ross Ltd of London and, later, in Sir Howard Grubb \& Sons. He he was an enlightened employer, originating share schemes and other benefits for his employees.
    [br]
    Principal Honours and Distinctions
    Knighted. Order of Merit 1927.
    Further Reading
    A.T.Bowden, 1966, "Charles Parsons: Purveyor of power", in E.G.Semler (ed.), The Great Masters. Engineering Heritage, Vol. II, London: Institution of Mechanical Engineers/Heinemann.
    IMcN

    Biographical history of technology > Parsons, Sir Charles Algernon

  • 26 Thomson, Elihu

    SUBJECT AREA: Electricity
    [br]
    b. 29 March 1853 Manchester, England
    d. 13 March 1937 Swampscott, Massachusetts, USA
    [br]
    English (naturalized) American electrical engineer and inventor.
    [br]
    Thomson accompanied his parents to Philadelphia in 1858; he received his education at the Central High School there, and afterwards remained as a teacher of chemistry. At this time he constructed several dynamos after studying their design, and was invited by the Franklin Institute to give lectures on the subject. After observing an arc-lighting system operating commercially in Paris in 1878, he collaborated with Edwin J. Houston, a senior colleague at the Central High School, in working out the details of such a system. An automatic regulating device was designed which, by altering the position of the brushes on the dynamo commutator, maintained a constant current irrespective of the number of lamps in use. To overcome the problem of commutation at the high voltages necessary to operate up to forty arc lamps in a series circuit, Thomson contrived a centrifugal blower which suppressed sparking. The resulting system was efficient and reliable with low operating costs. Thomson's invention of the motor meter in 1882 was the first of many such instruments for the measurement of electrical energy. In 1886 he invented electric resistance welding using low-voltage alternating current derived from a transformer of his own design. Thomson's work is recorded in his technical papers and in the 700plus patents granted for his inventions.
    The American Electric Company, founded to exploit the Thomson patents, later became the Thomson-Houston Company, which was destined to be a leader in the electrical manufacturing industry. They entered the field of electric power in 1887, supplying railway equipment and becoming a major innovator of electric railways. Thomson-Houston and Edison General Electric were consolidated to form General Electric in 1892. Thomson remained associated with this company throughout his career.
    [br]
    Principal Honours and Distinctions
    Chevalier and Officier de la Légion d'honneur 1889. American Academy of Arts and Sciences Rumford Medal 1901. American Institute of Electrical Engineers Edison Medal 1909. Royal Society Hughes Medal 1916. Institution of Electrical Engineers Kelvin Medal 1923, Faraday Medal 1927.
    Bibliography
    1934, "Some highlights of electrical history", Electrical Engineering 53:758–67 (autobiography).
    Further Reading
    D.O.Woodbury, 1944, Beloved Scientist, New York (a full biography). H.C.Passer, 1953, The Electrical Manufacturers: 1875–1900, Cambridge, Mass, (describes Thomson's industrial contribution).
    K.T.Compton, 1940, Biographical Memoirs of Elihu Thomson, Washington, DCovides an abridged list of Thomson's papers and patents).
    GW

    Biographical history of technology > Thomson, Elihu

См. также в других словарях:

  • Bicycle lighting — has two purposes: seeing and being seen. There are many types of bicycle lights available, each with its own advantages and disadvantages. There is no one best solution for any rider, and many riders mix and match different technologies to… …   Wikipedia

  • Utility frequency — The waveform of 230 volt, 50 Hz compared with 110 V, 60 Hz. The utility frequency, (power) line frequency (American English) or mains frequency (British English) is the frequency at which alternating current (ac, also AC) is transmitted from a… …   Wikipedia

  • List of bicycle parts — This is a list of bicycle parts.*Axle *Ball bearing *Bar ends extensions at the end of straight handlebars to allow for multiple hand possitions. *Basket cargo carrier *Bottle cage a holder for a water bottle *Bottom bracket The bearing system… …   Wikipedia

  • Frequences des courants industriels — Fréquences des courants industriels Les fréquences des courants industriels sont partagées par de larges portions de réseaux électriques interconnectés à courant alternatif, chaque fréquence est celle du courant électrique qui est transporté de l …   Wikipédia en Français

  • Fréquence électrique — Fréquences des courants industriels Les fréquences des courants industriels sont partagées par de larges portions de réseaux électriques interconnectés à courant alternatif, chaque fréquence est celle du courant électrique qui est transporté de l …   Wikipédia en Français

  • Fréquences Des Courants Industriels — Les fréquences des courants industriels sont partagées par de larges portions de réseaux électriques interconnectés à courant alternatif, chaque fréquence est celle du courant électrique qui est transporté de l unité de production jusqu à l… …   Wikipédia en Français

  • Fréquences des courants alternatifs — Fréquences des courants industriels Les fréquences des courants industriels sont partagées par de larges portions de réseaux électriques interconnectés à courant alternatif, chaque fréquence est celle du courant électrique qui est transporté de l …   Wikipédia en Français

  • Fréquences des courants industriels — Les fréquences des courants industriels sont partagées par de larges portions de réseaux électriques interconnectés à courant alternatif, chaque fréquence est celle du courant électrique qui est transporté de l unité de production jusqu à l… …   Wikipédia en Français

  • Tank Mark VIII — Mark VIII Liberty Place of origin …   Wikipedia

  • Buffum — The Buffum was an American automobile manufactured from 1901 until 1906. A product of Abington, Massachusetts, it is chiefly remembered for its flat eight model, which appeared in 1904. Herbert Buffum, founder of the company, also produced a… …   Wikipedia

  • генератор освещения — — [Я.Н.Лугинский, М.С.Фези Жилинская, Ю.С.Кабиров. Англо русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.] Тематики электротехника, основные понятия EN lighting dynamo …   Справочник технического переводчика

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»