Перевод: со всех языков на английский

с английского на все языки

it's+north+of+london

  • 101 Gooch, Sir Daniel

    [br]
    b. 24 August 1816 Bedlington, Northumberland, England
    d. 15 October 1889 Clewer Park, Berkshire, England
    [br]
    English engineer, first locomotive superintendent of the Great Western Railway and pioneer of transatlantic electric telegraphy.
    [br]
    Gooch gained experience as a pupil with several successive engineering firms, including Vulcan Foundry and Robert Stephenson \& Co. In 1837 he was engaged by I.K. Brunel, who was then building the Great Western Railway (GWR) to the broad gauge of 7 ft 1/4 in. (2.14 m), to take charge of the railway's locomotive department. He was just 21 years old. The initial locomotive stock comprised several locomotives built to such extreme specifications laid down by Brunel that they were virtually unworkable, and two 2–2–2 locomotives, North Star and Morning Star, which had been built by Robert Stephenson \& Co. but left on the builder's hands. These latter were reliable and were perpetuated. An enlarged version, the "Fire Fly" class, was designed by Gooch and built in quantity: Gooch was an early proponent of standardization. His highly successful 4–2–2 Iron Duke of 1847 became the prototype of GWR express locomotives for the next forty-five years, until the railway's last broad-gauge sections were narrowed. Meanwhile Gooch had been largely responsible for establishing Swindon Works, opened in 1843. In 1862 he designed 2–4–0 condensing tank locomotives to work the first urban underground railway, the Metropolitan Railway in London. Gooch retired in 1864 but was then instrumental in arranging for Brunel's immense steamship Great Eastern to be used to lay the first transatlantic electric telegraph cable: he was on board when the cable was successfully laid in 1866. He had been elected Member of Parliament for Cricklade (which constituency included Swindon) in 1865, and the same year he had accepted an invitation to become Chairman of the Great Western Railway Company, which was in financial difficulties; he rescued it from near bankruptcy and remained Chairman until shortly before his death. The greatest engineering work undertaken during his chairmanship was the boring of the Severn Tunnel.
    [br]
    Principal Honours and Distinctions
    Knighted 1866 (on completion of transatlantic telegraph).
    Bibliography
    1972, Sir Daniel Gooch, Memoirs and Diary, ed. R.B.Wilson, with introd. and notes, Newton Abbot: David \& Charles.
    Further Reading
    A.Platt, 1987, The Life and Times of Daniel Gooch, Gloucester: Alan Sutton (puts Gooch's career into context).
    C.Hamilton Ellis, 1958, Twenty Locomotive Men, Ian Allan (contains a good short biography).
    J.Kieve, 1973, The Electric Telegraph, Newton Abbot: David \& Charles, pp. 112–5.
    PJGR

    Biographical history of technology > Gooch, Sir Daniel

  • 102 Harris, Alanson

    [br]
    b. 1816 Ingersoll, Ontario, Canada
    d. 1894 Canada
    [br]
    Canadian manufacturer of agricultural machinery and co-founder of the Massey Harris Company (later Massey Ferguson).
    [br]
    Alanson Harris was the first often children born to the wife of a circuit rider and preacher. His father's wanderings left Alanson at an early age in charge of the running of the family farm on the Grand River in Canada; also, his father's preference was for tinkering with machines rather than for farming. However, when he was 13 Alanson had to go out to work in order to bring badly needed cash to augment the family income. He worked at a sawmill in the small village of Boston, becoming Boss Sawyer and then Foreman after ten years. In 1839 the family moved to Mount Pleasant, and the following year Alanson married Mary Morgan, the daughter of a well-to-do pioneer Welsh farmer. He entered into a brief partnership with his father to build a sawmill at Whiteman's Creek, but within a few months his father returned to preaching and Alanson became the sole proprietor. After a successful early period Alanson recognized the signs of decline in the timber market, and in 1857 he sold the mill, moved to Beamsville, Niagara, and bought a small factory from which he produced the flop-over hay rake invented by his father. In 1863 he took his eldest son into partnership; the latter returned from a visit to the United States with the sole rights to produce the Kirby mower and reaper. The Crimean War created a market for corn, which gave a great boost to North American farming and, in its turn, to machinery production. This was reinforced by the tariff agreements between the United States and Canada. By the 1880s Harris and Massey between them accounted for two thirds of the harvesting machines sold in Canada, and they also supplied machines abroad. By the end of the decade the mutual benefits of joining forces were apparent and by 1891 an agreement was reached, with Alanson Harris and A.H.Massey on the first board.
    [br]
    Further Reading
    G.Quick and W.Buchele, 1978, The Grain Harvesters, American Society of Agricultural Engineers (refers to Harris and Massey Harris Company in its account of the development of harvest machinery).
    M.Denison, 1949, Harvest Triumphant: The Story of Massey Harris, London (gives a more detailed account of Massey Harris Company).
    AP

    Biographical history of technology > Harris, Alanson

  • 103 Holland, John Philip

    SUBJECT AREA: Ports and shipping
    [br]
    b. 29 February 1840 Liscanor, Co. Clare, Ireland
    d. 12 August 1915 Newark, New Jersey, USA
    [br]
    Irish/American inventor of the successful modern submarine
    [br]
    Holland was educated first in his native town and later in Limerick, a seaport bustling with coastal trade ships. His first job was that of schoolteacher, and as such he worked in various parts of Ireland until he was about 32 years old. A combination of his burning patriotic zeal for Ireland and his interest in undersea technology (then in its infancy) made him consider designs for underwater warships for use against the British Royal Navy in the fight for Irish independence. He studied all known works on the subject and commenced drawing plans, but he was unable to make real headway owing to a lack of finance.
    In 1873 he travelled to the United States, ultimately settling in New Jersey and continuing in the profession of teaching. His work on submarine design continued, but in 1875 he suffered a grave setback when the United States Navy turned down his designs. Help came from an unexpected source, the Irish Republican Brotherhood, or Fenian Society, which had been founded in Dublin and New York in 1858. Financial help enabled Holland to build a 4 m (13 ft) one-person craft, which was tested in 1878, and then a larger boat of 19 tonnes' displacement that was tested with a crew of three to depths of 20 m (65 ft) in New York's harbour in 1883. Known as the Fenian Ram, it embodied most of the principles of modern submarines, including weight compensation. The Fenians commandeered this boat, but they were unable to operate it satisfactorily and it was relegated to history.
    Holland continued work, at times independently and sometimes with others, and continuously advocated submarines to the United States Navy. In 1895 he was successful in winning a contract for US$150,000 to build the US Submarine Plunger at Baltimore. With too much outside interference, this proved an unsatisfactory venture. However, with only US$5,000 of his capital left, Holland started again and in 1898 he launched the Holland at Elizabeth, New Jersey. This 16 m (52 ft) vessel was successful, and in 1900 it was purchased by the United States Government.
    Six more boats were ordered by the Americans, and then some by the Russians and the Japanese. The British Royal Navy ordered five, which were built by Vickers Son and Maxim (now VSEL) at Barrow-in-Furness in the years up to 1903, commencing their long run of submarine building. They were licensed by another well-known name, the Electric Boat Company, which had formerly been the J.P.Holland Torpedo Boat Company.
    Holland now had some wealth and was well known. He continued to work, trying his hand at aeronautical research, and in 1904 he invented a respirator for use in submarine rescue work. It is pleasing to record that one of his ships can be seen to this day at the Royal Navy Submarine Museum, Gosport: HM Submarine Holland No. 1, which was lost under tow in 1913 but salvaged and restored in the 1980s.
    [br]
    Principal Honours and Distinctions
    Order of the Rising Sun, Japan, 1910.
    Bibliography
    1900, "The submarine boat and its future", North American Review (December). Holland wrote several other articles of a similar nature.
    Further Reading
    R.K.Morris, 1966 John P.Holland 1841–1914, Inventor of the Modern Submarine, Annapolis, MD: US Naval Institute.
    F.W.Lipscomb, 1975, The British Submarine, London: Conway Maritime Press. A.N.Harrison, 1979, The Development of HM Submarines from Holland No. 1 (1901) to
    Porpoise (1930), Bath: MoD Ships Department (internal publication).
    FMW

    Biographical history of technology > Holland, John Philip

  • 104 Howe, Frederick Webster

    [br]
    b. 28 August 1822 Danvers, Massachusetts, USA
    d. 25 April 1891 Providence, Rhode Island, USA
    [br]
    American mechanical engineer, machine-tool designer and inventor.
    [br]
    Frederick W.Howe attended local schools until the age of 16 and then entered the machine shop of Gay \& Silver at North Chelmsford, Massachusetts, as an apprentice and remained with that firm for nine years. He then joined Robbins, Kendall \& Lawrence of Windsor, Vermont, as Assistant to Richard S. Lawrence in designing machine tools. A year later (1848) he was made Plant Superintendent. During his time with this firm, Howe designed a profiling machine which was used in all gun shops in the United States: a barrel-drilling and rifling machine, and the first commercially successful milling machine. Robbins \& Lawrence took to the Great Exhibition of 1851 in London, England, a set of rifles built on the interchangeable system. The interest this created resulted in a visit of some members of the British Royal Small Arms Commission to America and subsequently in an order for 150 machine tools, jigs and fixtures from Robbins \& Lawrence, to be installed at the small-arms factory at Enfield. From 1853 to 1856 Howe was in charge of the design and building of these machines. In 1856 he established his own armoury at Newark, New Jersey, but transferred after two years to Middletown, Connecticut, where he continued the manufacture of small arms until the outbreak of the Civil War. He then became Superintendent of the armoury of the Providence Tool Company at Providence, Rhode Island, and served in that capacity until the end of the war. In 1865 he went to Bridgeport, Connecticut, to assist Elias Howe with the manufacture of his sewing machine. After the death of Elias Howe, Frederick Howe returned to Providence to join the Brown \& Sharpe Manufacturing Company. As Superintendent of that establishment he worked with Joseph R. Brown in the development of many of the firm's products, including machinery for the Wilcox \& Gibbs sewing machine then being made by Brown \& Sharpe. From 1876 Howe was in business on his own account as a consulting mechanical engineer and in his later years he was engaged in the development of shoe machinery and in designing a one-finger typewriter, which, however, was never completed. He was granted several patents, mainly in the fields of machine tools and firearms. As a designer, Howe was said to have been a perfectionist, making frequent improvements; when completed, his designs were always sound.
    [br]
    Further Reading
    J.W.Roe, 1916, English and American Tool Builders, New Haven; repub. 1926, New York, and 1987, Bradley, 111. (provides biographical details).
    R.S.Woodbury, 1960, History of the Milling Machine, Cambridge, Mass, (describes Howe's contribution to the development of the milling machine).
    RTS

    Biographical history of technology > Howe, Frederick Webster

  • 105 Johnson, Samuel Waite

    [br]
    b. 14 October 1831 Bramley, Leeds, England
    d. 14 January 1912 Nottingham, England
    [br]
    English locomotive engineer, designer of Midland Railway's successful compound locomotives.
    [br]
    After an apprenticeship with E.B.Wilson, Leeds, Johnson worked successively for the Great Northern, Manchester Sheffield \& Lincolnshire, Edinburgh \& Glasgow and Great Eastern Railways before being appointed Locomotive Superintendent of the Midland Railway in 1873. There he remained for the rest of his working life, becoming notable for well-designed, well-finished locomotives. Of these, the most famous were his 4–2–2 express locomotives, introduced in 1887. The use of a single pair of driving-wheels was made possible at this late date by application of steam sanding gear (invented in 1886 by F. Holt) to enable them to haul heavy trains without slipping. In 1901, almost at the end of his career, he produced the first Midland compound 4–4–0, with a single internal high-pressure cylinder and two external low-pressure ones. The system had been devised by W.M.Smith, working on the North Eastern Railway under Wilson Worsdell. These locomotives were successful enough to be developed and built in quantity by Johnson's successors and were adopted as a standard locomotive by the London Midland \& Scottish Railway after the grouping of 1923.
    [br]
    Principal Honours and Distinctions
    President, Institution of Mechanical Engineers 1898.
    Further Reading
    C.Hamilton Ellis, 1958, Twenty Locomotive Men, Ian Allan, Ch. 11 (describes Johnson's career).
    E.L.Ahrons, 1927, The British Steam Railway Locomotive 1825–1925, The Locomotive Publishing Co. (describes Johnson's locomotives).
    PJGR

    Biographical history of technology > Johnson, Samuel Waite

  • 106 King, James Foster

    SUBJECT AREA: Ports and shipping
    [br]
    b. 9 May 1862 Erskine, Scotland
    d. 11 August 1947 Glasgow, Scotland
    [br]
    Scottish naval architect and classification society manager who made a significant contribution to the safety of shipping.
    [br]
    King was educated at the High School of Glasgow, and then served an apprenticeship with the Port Glasgow shipyard of Russell \& Co. This was followed by experience in drawing offices in Port Glasgow, Hull and finally in Belfast, where he was responsible for the separate White Star Line drawing office of Harland \& Wolff Ltd, which was then producing the plans for the Atlantic passenger liners Majestic and Teutonic. Following certain unpopular government shipping enactments in 1890, a protest from shipbuilders and shipowners in Ireland, Liverpool and the West of Scotland led to the founding of a new classification society to compete against Lloyd's Register of Shipping. It became known as the British Corporation Register and had headquarters in Glasgow. King was recruited to the staff and by 1903 had become Chief Surveyor, a position he held until his retirement thirty-seven years later. By then the Register was a world leader, with hundreds of thousands of tons of shipping on its books; it acted as consultant to many governments and international agencies. Throughout his working life, King did everything in his power to quantify the risks and problems of ship operation: his contribution to the Load Lines Convention of 1929 was typical, and few major enactments in shipping were designed without his approval. During the inter-war period the performance of the British Corporation outshone that of all rivals, for which King deserved full credit. His especial understanding was for steel structures, and in this respect he ensured that the British Corporation enabled owners to build ships of strengths equal to any others despite using up to 10 per cent less steel within the structure. In 1949 Lloyd's Register of Shipping and the British Corporation merged to form the largest and most influential ship classification society in the world.
    [br]
    Principal Honours and Distinctions
    CBE 1920. Honorary Member, Institution of Engineers and Shipbuilders in Scotland 1941; North East Coast Institution of Engineers and Shipbuilders (Newcastle) 1943; British Corporation 1940. Honorary Vice-President, Institution of Naval Architects.
    Further Reading
    G.Blake, 1960, Lloyd's Register of Shipping 1760–1960, London: Lloyd's Register. F.M.Walker, 1984, Song of the Clyde. A History of Clyde Shipbuiding, Cambridge: PSL. 1947, The British Corporation Register of Shipping and Aircraft 1890–1947, An
    Illustrated Record, 1947, Glasgow.
    1946, The British Corporation Register. The War Years in Retrospect, 1956, Glasgow.
    FMW

    Biographical history of technology > King, James Foster

  • 107 Lee, Edmund

    [br]
    d. mid-1763 Brock Mill, Wigan, England
    [br]
    English inventor of the fantail, used to turn windmills automatically to face the wind.
    [br]
    On 9 December 1745 Edmund Lee was granted letters patent for his invention of the windmill fantail. In the preamble to Lee's patent he is described as a smith of Brock Mill, near Wigan, where he ran a millwright's business. Brock Mill is known to have been a substantial water-powered iron forge by the River Douglas to the north of Wigan. The drawing accompanying the patent shows a tower mill with its tail pole reaching the ground, and this is connected to a frame or carriage supporting a seven-bladed wind wheel. This tail projected some distance from the back of the tower, and when the wind caught it and turned it the cap was turned to face the wind by means of the gears which linked the cap to the fantail. The next logical step from Lee's invention was to place the fantail at a high level on the cap or at the foot of the ladder of a post mill. There is also an inferred connection between the Lee fantail and the annular sail of the wind engine or of a windmill such as that at Haverhill in Suffolk.
    [br]
    Further Reading
    Stephen Buckland, 1987, Lee's Patent Windmill, London KM

    Biographical history of technology > Lee, Edmund

  • 108 Lippman, Gabriel

    [br]
    b. 16 August 1845 Hallerick, Luxembourg
    d. 14 July 1921 at sea, in the North Atlantic
    [br]
    French physicist who developed interference colour photography.
    [br]
    Born of French parents, Lippman's work began with a distinguished career in classics, philosophy, mathematics and physics at the Ecole Normale in Luxembourg. After further studies in physics at Heidelberg University, he returned to France and the Sorbonne, where he was in 1886 appointed Director of Physics. He was a leading pioneer in France of research into electricity, optics, heat and other branches of physics.
    In 1886 he conceived the idea of recording the existence of standing waves in light when it is reflected back on itself, by photographing the colours so produced. This required the production of a photographic emulsion that was effectively grainless: the individual silver halide crystals had to be smaller than the shortest wavelength of light to be recorded. Lippman succeeded in this and in 1891 demonstrated his process. A glass plate was coated with a grainless emulsion and held in a special plate-holder, glass towards the lens. The back of the holder was filled with mercury, which provided a perfect reflector when in contact with the emulsion. The standing waves produced during the exposure formed laminae in the emulsion, with the number of laminae being determined by the wavelength of the incoming light at each point on the image. When the processed plate was viewed under the correct lighting conditions, a theoretically exact reproduction of the colours of the original subject could be seen. However, the Lippman process remained a beautiful scientific demonstration only, since the ultra-fine-grain emulsion was very slow, requiring exposure times of over 10,000 times that of conventional negative material. Any method of increasing the speed of the emulsion also increased the grain size and destroyed the conditions required for the process to work.
    [br]
    Principal Honours and Distinctions
    Royal Photographic Society Progress Medal 1897. Nobel Prize (for his work in interference colour photography) 1908.
    Further Reading
    J.S.Friedman, 1944, History of Colour Photography, Boston.
    Brian Coe, 1978, Colour Photography: The First Hundred Years, London. Gert Koshofer, 1981, Farbfotografie, Vol. I, Munich.
    BC

    Biographical history of technology > Lippman, Gabriel

  • 109 MacNeill, Sir John Benjamin

    [br]
    b. 1793 (?) Mount Pleasant, near Dundalk, Louth, Ireland
    d. 2 March 1880
    [br]
    Irish railway engineer and educator.
    [br]
    Sir John MacNeill became a pupil of Thomas Telford and served under him as Superintendent of the Southern Division of the Holyhead Road from London to Shrewsbury. In this capacity he invented a "Road Indicator" or dynamometer. Like other Telford followers, he viewed the advent of railways with some antipathy, but after the death of Telford in 1834 he quickly became involved in railway construction and in 1837 he was retained by the Irish Railway Commissioners to build railways in the north of Ireland (Vignoles received the commission for the south). Much of his subsequent career was devoted to schemes for Irish railways, both those envisaged by the Commissioners and other private lines with more immediately commercial objectives. He was knighted in 1844 on the completion of the Dublin \& Drogheda Railway along the east coast of Ireland. In 1845 MacNeill lodged plans for over 800 miles (1,300 km) of Irish railways. Not all of these were built, many falling victim to Irish poverty in the years after the Famine, but he maintained a large staff and became financially embarrassed. His other schemes included the Grangemouth Docks in Scotland, the Liverpool \& Bury Railway, and the Belfast Waterworks, the latter completed in 1843 and subsequently extended by Bateman.
    MacNeill was an engineer of originality, being the person who introduced iron-lattice bridges into Britain, employing the theoretical and experimental work of Fairbairn and Eaton Hodgkinson (the Boyne Bridge at Drogheda had two such spans of 250ft (76m) each). He also devised the Irish railway gauge of 5 ft 2 in. (1.57 m). Consulted by the Board of Trinity College, Dublin, regarding a School of Engineering in 1842, he was made an Honorary LLD of the University and appointed the first Professor of Civil Engineering, but he relinquished the chair to his assistant, Samuel Downing, in 1846. MacNeill was a large and genial man, but not, we are told, "of methodical and business habit": he relied heavily on his subordinates. Blindness obliged him to retire from practice several years before his death. He was an early member of the Institution of Civil Engineers, joining in 1827, and was elected a Fellow of the Royal Society in 1838.
    [br]
    Principal Honours and Distinctions
    FRS 1838.
    Further Reading
    Dictionary of National Biography. Proceedings of the Institution of Civil Engineers
    73:361–71.
    AB

    Biographical history of technology > MacNeill, Sir John Benjamin

  • 110 Meek, Marshall

    SUBJECT AREA: Ports and shipping
    [br]
    b. 22 April 1925 Auchtermuchty, Fife, Scotland
    [br]
    Scottish naval architect and leading twentieth-century exponent of advanced maritime technology.
    [br]
    After early education at Cupar in Fife, Meek commenced training as a naval architect, taking the then popular sandwich apprenticeship of alternate half years at the University of Glasgow (with a Caird Scholarship) and at a shipyard, in his case the Caledon of Dundee. On leaving Dundee he worked for five years with the British Ship Research Association before joining Alfred Holt \& Co., owners of the Blue Funnel Line. During his twenty-five years at Liverpool, he rose to Chief Naval Architect and Director and was responsible for bringing the cargo-liner concept to its ultimate in design. When the company had become Ocean Fleets, it joined with other British shipowners and looked to Meek for the first purpose-built containership fleet in the world. This required new ship designs, massive worldwide investment in port facilities and marketing to win public acceptance of freight containers, thereby revolutionizing dry-cargo shipping. Under the houseflag of OCL (now POCL), this pioneer service set the highest standards of service and safety and continues to operate on almost every ocean.
    In 1979 Meek returned to the shipbuilding industry when he became Head of Technology at British Shipbuilders. Closely involved in contemporary problems of fuel economy and reduced staffing, he held the post for five years before his appointment as Managing Director of the National Maritime Institute. He was deeply involved in the merger with the British Ship Research Association to form British Maritime Technology (BMT), an organization of which he became Deputy Chairman.
    Marshall Meek has held many public offices, and is one of the few to have been President of two of the United Kingdom's maritime institutions. He has contributed over forty papers to learned societies, has acted as Visiting Professor to Strathclyde University and University College London, and serves on advisory committees to the Ministry of Defence, the Department of Transport and Lloyd's Register of Shipping. While in Liverpool he served as a Justice of the Peace.
    [br]
    Principal Honours and Distinctions
    CBE 1989. Fellow of the Royal Academy of Engineering 1990. President, Royal Institution of Naval Architects 1990–3; North East Coast Institution of Engineers and Shipbuilders 1984–6. Royal Designer for Industry (RDI) 1986. Royal Institution of Naval Architects Silver Medal (on two occasions).
    Bibliography
    1970, "The first OCL containerships", Transactions of the Royal Institution of Naval Architects.
    FMW

    Biographical history of technology > Meek, Marshall

  • 111 Morrison, William Murray

    [br]
    b. 7 October 1873 Birchwood, Inverness-shire, Scotland
    d. 21 May 1948 London, England
    [br]
    Scottish pioneer in the development of the British aluminium industry and Highlands hydroelectric energy.
    [br]
    After studying at the West of Scotland Technical College in Glasgow, in January 1895 Morrison was appointed Engineer to the newly formed British Aluminium Company Limited (BAC); it was with this organization that he spent his entire career. The company secured the patent rights to the Héroult and Bayer processes. It constructed a 200 tonne per year electrolytic plant at Foyers on the shore of Loch Ness, together with an adjacent 5000 kW hydroelectric scheme, and it built an alumina factory at Larne Harbour in north-eastern Ireland. Morrison was soon Manager at Foyers, and he became the company's Joint Technical Adviser. In 1910 he was made General Manager, and later he was appointed Managing Director. Morrison successfully brought about improvements in all parts of the production process; between 1915 and 1930 he increased the size of individual electrolytic cells by a factor of five, from 8,000 to 40,000 amperes. Soon after 1901, BAC built a second works for electrolytic reduction, at Kinlochleven in Argyllshire, where the primary design originated from Morrison. In the 1920s a third plant was erected at Fort William, in the lee of Ben Nevis, with hydroelectric generators providing some 75 MW. Alumina factories were constructed at Burntisland on the Firth of Forth and, in the 1930s, at Newport in Monmouthshire. Rolling mills were developed at Milton in Staffordshire, Warrington, and Falkirk in Stirlingshire, this last coming into use in the 1940s, by which time the company had a primary-metal output of more than 30,000 tonnes a year. Morrison was closely involved in all of these developments. He retired in 1946 as Deputy Chairman of BAC.
    [br]
    Principal Honours and Distinctions
    Commander of the Order of St Olav of Norway 1933 (BAC had manufacturing interests in Norway). Knighted 1943. Vice-Chairman, British Non-Ferrous Metals Research Association, Faraday Society, Institute of Metals. Institute of Metals Platinum Medal 1942.
    Bibliography
    1939, "Aluminium and highland water power", Journal of the Institute of Metals 65:17– 36 (seventeenth autumn lecture),
    JKA

    Biographical history of technology > Morrison, William Murray

  • 112 Rastrick, John Urpeth

    [br]
    b. 26 January 1780 Morpeth, England
    d. 1 November 1856 Chertsey, England
    [br]
    English engineer whose career spanned the formative years of steam railways, from constructing some of the earliest locomotives to building great trunk lines.
    [br]
    John Urpeth Rastrick, son of an engineer, was initially articled to his father and then moved to Ketley Ironworks, Shropshire, c. 1801. In 1808 he entered into a partnership with John Hazledine at Bridgnorth, Shropshire: Hazledine and Rastrick built many steam engines to the designs of Richard Trevithick, including the demonstration locomotive Catch-Me-Who-Can. The firm also built iron bridges, notably the bridge over the River Wye at Chepstow in 1815–16.
    Between 1822 and 1826 the Stratford \& Moreton Railway was built under Rastrick's direction. Malleable iron rails were laid, in one of the first instances of their use. They were supplied by James Foster of Stourbridge, with whom Rastrick went into partnership after the death of Hazledine. In 1825 Rastrick was one of a team of engineers sent by the committee of the proposed Liverpool \& Manchester Railway (L \& MR) to carry out trials of locomotives built by George Stephenson on the Killingworth Waggonway. Early in 1829 the directors of the L \& MR, which was by then under construction, sent Rastrick and James Walker to inspect railways in North East England and report on the relative merits of steam locomotives and fixed engines with cable haulage. They reported, rather hesitantly, in favour of the latter, particularly the reciprocal system of Benjamin Thompson. In consequence the Rainhill Trials, at which Rastrick was one of the judges, were held that October. In 1829 Rastrick constructed the Shutt End colliery railway in Worcestershire, for which Foster and Rastrick built the locomotive Agenoria; this survives in the National Railway Museum. Three similar locomotives were built to the order of Horatio Allen for export to the USA.
    From then until he retired in 1847 Rastrick found ample employment surveying railways, appearing as a witness before Parliamentary committees, and supervising construction. Principally, he surveyed the southern part of the Grand Junction Railway, which was built for the most part by Joseph Locke, and the line from Manchester to Crewe which was eventually built as the Manchester \& Birmingham Railway. The London \& Brighton Railway (Croydon to Brighton) was his great achievement: built under Rastrick's supervision between 1836 and 1840, it included three long tunnels and the magnificent Ouse Viaduct. In 1845 he was Engineer to the Gravesend \& Rochester Railway, the track of which was laid through the Thames \& Medway Canal's Strood Tunnel, partly on the towpath and partly on a continuous staging over the water.
    [br]
    Principal Honours and Distinctions
    FRS 1837.
    Bibliography
    1829, with Walker, Report…on the Comparative Merits of Locomotive and Fixed Engines, Liverpool.
    Further Reading
    C.F.Dendy Marshall, 1953, A History of Railway Locomotives Down to the End of the Year 1831, The Locomotive Publishing Co.
    R.E.Carlson, 1969, The Liverpool \& Manchester Railway Project 1821–1831, Newton Abbot: David \& Charles.
    C.Hadfield and J.Norris, 1962, Waterways to Stratford, Newton Abbot: David \& Charles (covers Stratford and Moreton Railway).
    PJGR

    Biographical history of technology > Rastrick, John Urpeth

  • 113 Rickover, Admiral Hyman George

    [br]
    b. 27 January 1900 Russian Poland
    d. 8 July 1986 Arlington, Virginia, USA
    [br]
    Polish/American naval officer, one of the principal architects of the United States nuclear submarine programme.
    [br]
    Born in Poland, Rickover was brought to the United States early in his life by his father, who settled in Chicago as a tailor. Commissioned into the US Navy in 1922, he specialized in electrical engineering (graduating from the US Naval Postgraduate School, Columbia, in 1929), quali-fied as a Submariner in 1931 and then held various posts until appointed Head of the Electrical Section of the Bureau of Ships in 1939. He held this post until the end of the Second World War.
    Rickover was involved briefly in the "Manhattan" atomic bomb project before being assigned to an atomic energy submarine project in 1946. Ultimately he was made responsible for the development and building of the world's first nuclear submarine, the USS Nautilus. He was convinced of the need to make the nuclear submarine an instrument of strategic importance, and this led to the development of the ballistic missile submarine and the Polaris programme.
    Throughout his career he was no stranger to controversy; indeed, his remaining on the active service list as a full admiral until the age of 82 (when forced to retire on the direct intervention of the Navy Secretary) indicates a man beyond the ordinary. He imposed his will on all around him and backed it with a brilliant and clear-thinking brain; his influence was even felt by the Royal Navy during the building of the first British nuclear submarine, HMS Dreadnought. He made many friends, but he also had many detractors.
    [br]
    Principal Honours and Distinctions
    US Distinguished Service Medal with Gold Star. Honorary CBE. US Congress Special Gold Medal 1959. Numerous awards and honorary degrees.
    Bibliography
    Rickover wrote several treatises on education and on the education of engineers. He also wrote on several aspects of the technical history of the US Navy.
    Further Reading
    W.R.Anderson and C.Blair, 1959, Nautilus 90 North, London: Hodder \& Stoughton. E.L.Beach, 1986, The United States Navy, New York: Henry Holt.
    FMW

    Biographical history of technology > Rickover, Admiral Hyman George

  • 114 Riley, James

    SUBJECT AREA: Metallurgy
    [br]
    b. 1840 Halifax, England
    d. 15 July 1910 Harrogate, England
    [br]
    English steelmaker who promoted the manufacture of low-carbon bulk steel by the open-hearth process for tin plate and shipbuilding; pioneer of nickel steels.
    [br]
    After working as a millwright in Halifax, Riley found employment at the Ormesby Ironworks in Middlesbrough until, in 1869, he became manager of the Askam Ironworks in Cumberland. Three years later, in 1872, he was appointed Blast-furnace Manager at the pioneering Siemens Steel Company's works at Landore, near Swansea in South Wales. Using Spanish ore, he produced the manganese-rich iron (spiegeleisen) required as an additive to make satisfactory steel. Riley was promoted in 1874 to be General Manager at Landore, and he worked with William Siemens to develop the use of the latter's regenerative furnace for the production of open-hearth steel. He persuaded Welsh makers of tin plate to use sheets rolled from lowcarbon (mild) steel instead of from charcoal iron and, partly by publishing some test results, he was instrumental in influencing the Admiralty to build two naval vessels of mild steel, the Mercury and the Iris.
    In 1878 Riley moved north on his appointment as General Manager of the Steel Company of Scotland, a firm closely associated with Charles Tennant that was formed in 1872 to make steel by the Siemens process. Already by 1878, fourteen Siemens melting furnaces had been erected, and in that year 42,000 long tons of ingots were produced at the company's Hallside (Newton) Works, situated 8 km (5 miles) south-east of Glasgow. Under Riley's leadership, steelmaking in open-hearth furnaces was initiated at a second plant situated at Blochairn. Plates and sections for all aspects of shipbuilding, including boilers, formed the main products; the company also supplied the greater part of the steel for the Forth (Railway) Bridge. Riley was associated with technical modifications which improved the performance of steelmaking furnaces using Siemens's principles. He built a gasfired cupola for melting pig-iron, and constructed the first British "universal" plate mill using three-high rolls (Lauth mill).
    At the request of French interests, Riley investigated the properties of steels containing various proportions of nickel; the report that he read before the Iron and Steel Institute in 1889 successfully brought to the notice of potential users the greatly enhanced strength that nickel could impart and its ability to yield alloys possessing substantially lower corrodibility.
    The Steel Company of Scotland paid dividends in the years to 1890, but then came a lean period. In 1895, at the age of 54, Riley moved once more to another employer, becoming General Manager of the Glasgow Iron and Steel Company, which had just laid out a new steelmaking plant at Wishaw, 25 km (15 miles) south-east of Glasgow, where it already had blast furnaces. Still the technical innovator, in 1900 Riley presented an account of his experiences in introducing molten blast-furnace metal as feed for the open-hearth steel furnaces. In the early 1890s it was largely through Riley's efforts that a West of Scotland Board of Conciliation and Arbitration for the Manufactured Steel Trade came into being; he was its first Chairman and then its President.
    In 1899 James Riley resigned from his Scottish employment to move back to his native Yorkshire, where he became his own master by acquiring the small Richmond Ironworks situated at Stockton-on-Tees. Although Riley's 1900 account to the Iron and Steel Institute was the last of the many of which he was author, he continued to contribute to the discussion of papers written by others.
    [br]
    Principal Honours and Distinctions
    President, West of Scotland Iron and Steel Institute 1893–5. Vice-President, Iron and Steel Institute, 1893–1910. Iron and Steel Institute (London) Bessemer Gold Medal 1887.
    Bibliography
    1876, "On steel for shipbuilding as supplied to the Royal Navy", Transactions of the Institute of Naval Architects 17:135–55.
    1884, "On recent improvements in the method of manufacture of open-hearth steel", Journal of the Iron and Steel Institute 2:43–52 plus plates 27–31.
    1887, "Some investigations as to the effects of different methods of treatment of mild steel in the manufacture of plates", Journal of the Iron and Steel Institute 1:121–30 (plus sheets II and III and plates XI and XII).
    27 February 1888, "Improvements in basichearth steel making furnaces", British patent no. 2,896.
    27 February 1888, "Improvements in regenerative furnaces for steel-making and analogous operations", British patent no. 2,899.
    1889, "Alloys of nickel and steel", Journal of the Iron and Steel Institute 1:45–55.
    Further Reading
    A.Slaven, 1986, "James Riley", in Dictionary of Scottish Business Biography 1860–1960, Volume 1: The Staple Industries (ed. A.Slaven and S. Checkland), Aberdeen: Aberdeen University Press, 136–8.
    "Men you know", The Bailie (Glasgow) 23 January 1884, series no. 588 (a brief biography, with portrait).
    J.C.Carr and W.Taplin, 1962, History of the British Steel Industry, Harvard University Press (contains an excellent summary of salient events).
    JKA

    Biographical history of technology > Riley, James

  • 115 Taylor, Albert Hoyt

    [br]
    b. 1 January 1874 Chicago, Illinois, USA
    d. 11 December 1961 Claremont, California, USA
    [br]
    American radio engineer whose work on radio-detection helped lay the foundations for radar.
    [br]
    Taylor gained his degree in engineering from Northwest University, Evanston, Illinois, then spent a time at the University of Gottingen. On his return to the USA he taught successively at Michigan State University, at Lansing, and at the universities of Wisconsin at Madison and North Dakota at Grand Forks. From 1923 until 1945 he supervised the Radio Division at the US Naval Research Laboratories. There he carried out studies of short-wave radio propagation and confirmed Heaviside's 1925 theory of the reflection characteristics of the ionosphere. In the 1920s and 1930s he investigated radio echoes, and in 1933, with L.C.Young and L.A.Hyland, he filed a patent for a system of radio-detection that contributed to the subsequent development of radar.
    [br]
    Principal Honours and Distinctions
    Institute of Electrical and Electronics Engineers Morris N.Liebmann Memorial Award 1927. President, Institute of Radio Engineers 1929. Institute of Electrical and Electronics Engineers Medal of Honour 1942.
    Bibliography
    1926, with E.O.Hulbert, "The propagation of radio waves over the earth", Physical Review 27:189.
    1936, "The measurement of RF power", Proceedings of the Institute of Radio Engineers 24: 1,342.
    Further Reading
    S.S.Swords, 1986, Technical History of the Beginnings of Radar, London: Peter Peregrinus.
    KF

    Biographical history of technology > Taylor, Albert Hoyt

  • 116 Theophilus Presbyter

    [br]
    fl. late eleventh/early twelfth century
    [br]
    German author of the most detailed medieval treatise relating to technology.
    [br]
    The little that is known of Theophilus is what can be inferred from his great work, De diversis artibus. He was a Benedictine monk and priest living in north-west Germany, probably near an important art centre. He was an educated man, conversant with scholastic philosophy and at the same time a skilled, practising craftsman. Even his identity is obscure: Theophilus is a pseudonym, possibly for Roger of Helmarshausen, for the little that is known of both is in agreement.
    Evidence in De diversis suggests that it was probably composed during 1110 to 1140. White (see Further Reading) goes on to suggest late 1122 or early 1123, on the grounds that Theophilus only learned of St Bernard of Clairvaulx's diatribe against lavish church ornamentation during the writing of the work, for it is only in the preface to Book 3 that Theophilus seeks to justify his craft. St Bernard's Apologia can be dated late 1122. No other medieval work on art combines the comprehensive range, orderly presentation and attention to detail as does De diversis. It has been described as an encyclopedia of medieval skills and crafts. It also offers the best and often the only description of medieval technology, including the first direct reference to papermaking in the West, the earliest medieval account of bell-founding and the most complete account of organ building. Many metallurgical techniques are described in detail, such as the making of a crucible furnace and bloomery hearth.
    The treatise is divided into three books, the first on the materials and art of painting, the second on glassmaking, including stained glass, glass vessels and the blown-cylinder method for flat glass, and the final and longest book on metalwork, including working in iron, copper, gold and silver for church use, such as chalices and censers. The main texts are no mere compilations, but reveal the firsthand knowledge that can only be gained by a skilled craftsman. The prefaces to each book present perhaps the only medieval expression of an artist's ideals and how he sees his art in relation to the general scheme of things. For Theophilus, his art is a gift from God and every skill an act of praise and piety. Theophilus is thus an indispensable source for medieval crafts and technology, but there are indications that the work was also well known at the time of its composition and afterwards.
    [br]
    Bibliography
    The Wolfenbuttel and Vienna manuscripts of De diversis are the earliest, both dating from the first half of the twelfth century, while the British Library copy, in an early thirteenth-century hand, is the most complete. Two incomplete copies from the thirteenth century held at Cambridge and Leipzig offer help in arriving at a definitive edition.
    There are several references to De diversis in sixteenth-century printed works, such as Cornelius Agrippa (1530) and Josias Simmler (1585). The earliest printed edition of
    De diversis was prepared by G.H.Lessing in 1781 with the title, much used since, Diversarium artium schedula.
    There are two good recent editions: Theophilus: De diversis artibus. The Various Arts, 1964, trans. with introd. by C.R.Dodwell, London: Thomas Nelson, and On Diverse Arts. The Treatise of Theophilus, 1963, trans. with introd. and notes by J.G.Harthorne and C.S.Smith, Chicago University Press.
    Further Reading
    Lynn White, 1962, "Theophilus redivivus", Technology and Culture 5:224–33 (a comparative review of Theophilus (op. cit.) and On Diverse Arts (op. cit.)).
    LRD

    Biographical history of technology > Theophilus Presbyter

  • 117 Thomas, Hugh Owen

    SUBJECT AREA: Medical technology
    [br]
    b. 1833 Anglesey, North Wales
    d. 6 January 1891 Liverpool, England
    [br]
    Welsh orthopaedic surgeon, a founder of modern orthopaedics and inventor of Thomas's splints.
    [br]
    Eldest son of a bone-setter, he studied at University College London, Edinburgh and Paris and became a member of the Royal College of Surgeons in 1857. Three years later he commenced practice in Liverpool, but he was never appointed to the staff of a hospital. Over the next twenty years he not only developed his own approach to orthopaedic practice, but also promoted a number of advances in other aspects of medicine such as epilepsy.
    Of a mechanical (as well as musical) bent of mind, he had his own workshop and over some twenty years developed his pattern of splints for fractures. In 1877 Rushton Parker, later Professor of Surgery at Liverpool, expressed his admiration of the splints. This led to the publication of their details and shortly after to their wide acceptance.
    Thomas's nephew Robert Jones was collaborating with him on a book on orthopaedics at the time of his death and went on to continue the tradition of what has been called the Liverpool School of orthopaedics.
    [br]
    Principal Honours and Distinctions
    Bibliography
    1875, Diseases of the Hip, Knee and Ankle-joints.
    Further Reading
    A.W.Beasley, 1982, The origins of orthopaedies', Journal of the Royal Society of Medicine 75.
    MG

    Biographical history of technology > Thomas, Hugh Owen

  • 118 Twiss, William

    [br]
    b. 1745
    d. 14 March 1827 Hardon Grange, Bingley, Yorkshire, England.
    [br]
    English army officer and military engineer.
    [br]
    William Twiss entered the Ordnance Department at the age of 15, and in 1762, aged 17, he was appointed Overseer of Works at Gibraltar. At the end of the Seven Years War, in 1763, he was commissioned Ensign in the Engineers, and further promotion followed while he still remained in Gibraltar. In 1771, as a Lieutenant, he returned to England to be employed on Port-smouth's dockyard fortifications. In 1776 he was posted to Canada, where he was soon appointed Controller of Works for the building of a British fleet for Lake Champlain. He was involved in military operations in the American War of Independence and in 1777 was present at the capture of Fort Ticonderoga (New York State). He was taken prisoner shortly afterwards, but was soon exchanged, and a year later he was promoted Captain.
    In 1779 he was given the task of constructing a short canal at Coteau du Lac, Quebec, to bypass rough water at this point in the St Lawrence River between Montreal and Pointe Maligne. This was probably the first locked canal in North America. In 1781, following his appointment as Chief Engineer for all military works in Canada, he supervised further navigational improvements on the St Lawrence with canals at Les Cèdres and the Cascades. In parallel with these projects, he was responsible for an amazing variety of works in Canada, including hospitals, windmills, store-houses, barracks, fortifications, roads, bridges, prisons, ironworks and dams. He was also responsible for a temporary citadel in Quebec.
    In 1783 he returned to England, and from 1794–1810 he served as Lieutenant- Governor of the Royal Military Academy at Woolwich, although in 1799 he was sent to Holland as Commanding Engineer to the Duke of York. In 1802 he was promoted Colonel and was in Ireland reporting on the defences there. He became Colonel Commandant, Royal Engineers, in 1809, and retired two years later. In retirement he was promoted Lieu tenant-General in 1812 and General in 1825.
    [br]
    Further Reading
    W.Porter, 1889–1915, History of the Corps of Royal Engineers, London: Longmans.
    JHB

    Biographical history of technology > Twiss, William

  • 119 اتجاه

    اِتِّجاه \ attitude: a way of thinking or behaving: What is your attitude to employing female teachers?. bearings: direction, where one is in relation to other places: He lost his bearings in the desert and wandered about helplessly. Let me get my bearings and I’ll find the right road course. direction: the way that sb. or sth. goes: He went in the wrong direction. line: a course; a direction: One road follows the line of the river; the other follows the coastline. track: the course that is taken when one is tracking, the course that is being followed in any planned action: I think she’s on the right track. trend: the general direction of a change: a trend towards greater freedom for women. way: a direction: Which is the way to London? I’ve lost my way. It’s a long way away (it’s far away). Please lead the way (Please go in front). \ See Also ناحية (ناحِيَة)، مثيل (مَثيل)، وجهة (وِجْهَة)، سَبِيل \ الاتِّجاه المُعَاكِس \ reverse: (of a machine) going backwards: He put his car into reverse. \ بِاتِّجاه \ on: (showing a direction) towards: She turned her back on me. His eyes were on the door. towards: in the direction of: My window faced towards the east. \ بِاتِّجاه الخَلْف \ in reverse gear: going backwards (in the reverse direction). \ بِاتِّجاه الشَّرْق \ east: in or towards the direction in which the sun rises: We flew east for several hours. eastwards: towards the east. \ بِاتِّجاه الشَّمَال \ northward(s): towards the north. \ بِاتِّجاه عقارب الساعة \ clockwise: in the direction taken by the hands of a clock: To open this lock, turn the key clockwise (or in a clockwise direction). \ بِاتِّجاه مجرَى النَّهْر \ downstream: (moving) in the way the water flows, towards the mouth of a river, etc.: I threw a stick into the water and watched it float downstream.

    Arabic-English dictionary > اتجاه

  • 120 خط

    خَطّ \ band: a line of material that is different from the rest, esp. in colour: A red band was painted round the tin. line: a long thin mark: a pencil line; the white lines on a football field. streak: an irregular thin strip of colour: streaks of red cloud at sunset. stripe: a long narrow band of colour: a flag with green, yellow and blue stripes. trail: a track left by sb. or sth.: The storm left a trail of destruction. The police were on his trail (were following signs, in search of him). \ See Also شريط (شَرِيط)، أَثَر \ خَطّ \ graph: a line drawn on squared paper, to show the change in amount at different times or under different conditions: He drew a graph of the monthly rainfall. \ See Also رَسْم بَيَانِيّ \ خَطّ الاسْتِواء \ equator: an imaginary line around the earth, halfway between its most northern and southern points. \ خَطّ أنابِيب \ pipeline: a large pipe through which liquid or gas is carried for long distances (esp. oil from an oilfield to a port). \ خَطّ قَضيب سِكّة الحديد \ railway, railroad: a track along which trains run: The road crosses the railway (line) by a bridge. \ خَطّ كتَابة باليَد \ handwriting: sb.’s way of writing: I can’t read your handwriting. \ خَطّ مَجْرى التَّفْكير \ line: the course of an idea: a line of thought. \ خَطّ حَديدي جانِبِيّ \ siding: a short piece of railway track beside a main line (for loading goods, etc.). \ خَطّ السَّاحِل \ coastline: a line following the shape of the coast, esp. as seen from the sea. \ خَطّ سَفَر جَوِّي \ airline: air transport system for public use. \ خَطّ سِكَّة الحَديد \ line: a railway track: the main line to London; a branch line. \ خَطّ السَّمْت \ meridian: an imaginary line drawn from the top point of the earth to the bottom, used on maps to show position. \ خَطّ سَيْر \ line: a course; a direction: One road follows the line of the river; the other follows the coastline. path: the line along which sth. moves: the moon’s path round the earth. route: the way that one takes from one place to another: Which is the safest route up the mountain?. \ See Also طريق (طَرِيق)‏ \ خَطّ الطُّول \ longitude: one of a set of imaginary lines round the world that are drawn on maps to show how far east or west sth. is (see latitude). \ خَطّ العَرْض \ latitude: one of a set of imaginary lines round the world that are usual on maps to show how far north or south sth. is (see longitude): In northern latitudes, daylight lasts for 20 hours in the summer. parallel: an imaginary line on a map, for describing the position of anything (see latitude): The 49th parallel (of latitude) forms a border between Canada and the USA. \ خَطّ القِتال \ line: (in war) a row of defended positions: in the front line; behind the enemy lines. \ خَطّ قَصير (عَلامَة وَصْل) (شَرْطَة قصيرة)‏ \ hyphen: (-) that is used for joining two words, as in: blood-red. \ خَطّ قُطْري \ diagonal: (in the direction of) a straight line joining two opposite corners of a square; (of) any straight line which runs in a sloping direction: a cloth with a diagonal pattern. \ خَطّ اليَد \ script: handwriting, not printing. \ خَطّ الدَّرْز \ seam: the line where two edges of cloth or leather meet (and are sewn or stuck together): the seam of one’s trouser leg. \ خَطّ حُدود مَلْعَب (الكُرَة)‏ \ touchline: the line down each side of a football field. \ خُطوطٌ رئيسيَّة \ outline: a statement of the main facts: an outline of English history. \ خَطَأٌ \ amiss: wrong; out of order: There’s something amiss with this telephone. error: mistake. fault: sth. that is wrong; a weakness: The lights have gone out; there must be an electrical fault. mistake: an incorrect act or thought: It was a mistake to lend him money. Your English is full of mistakes. wrong: not right; unjust; against custom; against the law: It is wrong to tell lies or to steal, not correct; mistaken; unsuitable That’s the wrong answer, and the wrong way to do it. She came in the wrong clothes for riding, (a) wrong action, a crime; an injustice If you do no wrong, you will not be punished. \ أَخْطَاء (أَغلاطٌ كِتابيَّة أو مَطبعيَّة)‏ \ errata.

    Arabic-English dictionary > خط

См. также в других словарях:

  • North East (London sub region) — North East London   London Plan sub region   …   Wikipedia

  • North East (London Assembly constituency) — North East London Assembly constituency North East shown within London Created: 2000 Member: Jennette Arnold P …   Wikipedia

  • North West London Credit Union — (NWLCU) Ltd. is a savings and loans credit union for people who reside or work within North West London, in the United Kingdom. [1] It is owned and run by its members.[2] The NWLCU was founded on 30 April 1998, as the Watling Grahame Park Credit… …   Wikipedia

  • North East London — may refer to: Eastern part of North London North East (London sub region) North East (London Assembly constituency) The name of Tottenham Hotspur F.C. in the Pro Evolution Soccer series due to licensing issues This disambiguation page lists… …   Wikipedia

  • North West London Wolverines — London Capital London Capital logo absent Club fondé le 1998 Couleurs Bleu et blanc Président …   Wikipédia en Français

  • North West London — may refer to: NW postcode area Western part of North London This disambiguation page lists articles about distinct geographical locations with the same name. If an internal link led you here, yo …   Wikipedia

  • North End, London — may refer to: North End, Bexley North End, Camden North End, Hammersmith and Fulham This disambiguation page lists articles about distinct geographical locations with the same name. If an internal link led …   Wikipedia

  • North Greenwich (London Underground) — Station North Greenwich, dahinter der Millennium Dome …   Deutsch Wikipedia

  • North Acton (London Underground) — Eingang zur Station Zwei sich kreuzende U Bahn …   Deutsch Wikipedia

  • North Ealing (London Underground) — Stationsgebäude Bahnsteig mit Zug North Ealing ist eine oberirdis …   Deutsch Wikipedia

  • North Harrow (London Underground) — Stationseingang Bahnsteig North H …   Deutsch Wikipedia

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»