Перевод: с английского на все языки

со всех языков на английский

is+that+john+

  • 81 Gibbons, John

    SUBJECT AREA: Metallurgy
    [br]
    fl. 1800–50 Staffordshire, England
    [br]
    English ironmaster who introduced the round hearth in the blastfurnace.
    [br]
    Gibbons was an ironmaster in the Black Country, South Staffordshire, in charge of six blast furnaces owned by the family business. Until Gibbons's innovation in 1832, small changes in the form of the furnace had at times been made, but no one had seriously questioned the square shape of the hearth. Gibbons noticed that a new furnace often worked poorly by improved as time went on. When it was "blown out", i.e. taken out of commission, he found that the corners of the hearth had been rounded off and the sides gouged out, so that it was roughly circular in shape. Gibbons wisely decided to build a blast furnace with a round hearth alongside an existing one with a traditionally shaped hearth and work them in exactly the same conditions. The old furnace produced 75 tons of iron in a week, about normal for the time, while the new one produced 100 tons. Further improvements followed and in 1838 a fellow ironmaster in the same district, T. Oakes, considerably enlarged the furnace, its height attaining no less than 60ft (18m). As a result, output soared to over 200 tons a week. Most other ironmasters adopted the new form with enthusiasm and it proved to be the basis for the modern blast furnace. Gibbons made another interesting innovation: he began charging his furnace with the "rubbish", slag or cinder, from earlier ironmaking operations. It contained a significant amount of iron and was cheaper to obtain than iron ore, as it was just lying around in heaps. Some ironmasters scorned to use other people's throw-outs, but Gibbons sensibly saw it as a cheap source of iron; it was a useful source for some years during the nineteenth century but its use died out when the heaps were used up. Gibbons published an account of his improvements in ironmaking in a pamphlet entitled Practical Remarks on the Construction of the Staffordshire Blast Furnace.
    [br]
    Bibliography
    Further Reading
    J.Percy, 1864, Metallurgy. Iron and Steel, London, p. 476. W.K.V.Gale, 1969, Iron and Steel, London: Longmans, pp. 44–6.
    LRD

    Biographical history of technology > Gibbons, John

  • 82 Hyatt, John Wesley

    [br]
    b. 28 November 1837 Starkey, New York, USA
    d. 10 May 1920 Short Hills, New Jersey, USA
    [br]
    American inventor and the first successful manufacturer of celluloid.
    [br]
    Leaving school at the age of 16, Hyatt spent ten years in the printing trade, demonstrating meanwhile a talent for invention. The offer of a prize of $10,000 for finding a substitute for ivory billiard balls stimulated Hyatt to experiment with various materials. After many failures, he arrived at a composition of paper flock, shellac and collodion, which was widely adopted. Noting the "skin" left after evaporating collodion, he continued his experiments, using nitrocellulose as a base for plastic materials, yet he remained largely ignorant of both chemistry and the dangers of this explosive substance. Independently of Parkes in England, he found that a mixture of nitrocellulose, camphor and a little alcohol could, by heating, be made soft enough to mould but became hard at room temperature. Hyatt's first patent for the material, celluloid, was dated 12 July 1870 (US pat. 105338) and was followed by many others for making domestic and decorative articles of celluloid, replacing more expensive natural materials. Manufacture began at Albany in the winter of 1872–3. In 1881 Hyatt and his brother Isiah Smith floated the Hyatt Pure Water Company. By introducing purifying coagulants into flowing water, they avoided the expense and delay of allowing the water to settle in large tanks before filtration. Many towns and paper and woollen mills adopted the new process, and in 1891 it was introduced into Europe. During 1891–2, Hyatt devised a widely used type of roller bearing. Later inventions included a sugar-cane mill, a multistitch sewing machine and a mill for the cold rolling and straightening of steel shafts. It was characteristic of Hyatt's varied inventions that they achieved improved results at less expense.
    [br]
    Principal Honours and Distinctions
    Society of Chemical Industry Perkin Medal 1914.
    Bibliography
    12 July 1870, US patent no. 105,338 (celluloid).
    Further Reading
    Obituary, 1920, Chem. Metal. Eng. (19 May).
    J. Soc. Chem. Ind. for 16 March 1914 and J. Ind. Eng. Chem. for March 1914 carried accounts of Hyatt's achievements, on the occasion of his award of the Perkin Medal of the Society of Chemical Industry in that year.
    LRD

    Biographical history of technology > Hyatt, John Wesley

  • 83 Dyer, John

    SUBJECT AREA: Textiles
    [br]
    fl. c.1833 England
    [br]
    English inventor of an improved milling machine for woollen cloth.
    [br]
    After being woven, woollen cloth needed to be cleaned and compacted to thicken it and take out the signs of weaving. The traditional way of doing this was to place the length of cloth in fulling stocks, where hammers pounded it in a solution of fuller's earth, but in 1833 John Dyer, a Trowbridge engineer, took out a patent for the first alternative way with real possibilities. He sold the patent the following year but must have reserved the right to make his machine himself, incorporating various additions and improvements into it, because many of the machines used in Trowbridge after 1850 came from him. Milling machines were often used in conjunction with fulling stocks. The cloth was made up into a continuous length and milled by rollers forcing it through a hole or spout, from where it dropped into the fulling liquid to be soaked before being pulled out and pushed through the hole again. Dyer had three pairs of rollers, with one pair set at right angles to the others so that the cloth was squeezed in two directions. These machines do not seem to have come into general use until the 1850s. His machine closely resembled those still in use.
    [br]
    Bibliography
    1833, British patent no. 6,460 (milling machine).
    Further Reading
    J.de L.Mann, 1971, The Cloth Industry in the West of England from 1660 to 1880, Oxford (provides a brief account of the introduction of the milling machine).
    K.G.Ponting, 1971, The Woollen Industry of South-West England, Bath (a general account of the textile industry in the West Country).
    RLH

    Biographical history of technology > Dyer, John

  • 84 Goucher, John

    [br]
    b. c.1831 Woodsetts, Yorkshire, England
    d. unknown
    [br]
    English engineer and inventor of the rubbing bars used on threshing machines and combine harvesters.
    [br]
    John Goucher was the son of a Yorkshire farmer who began his employed life as a carpenter. In 1851, at the age of 20, he was living on the farm of his father and employing four labourers. He developed and patented a means of wrapping wire around the individual bars of a threshing machine drum in such a way that grooves were formed in them. These grooves allowed the threshed grain to pass through without being crushed or otherwise damaged.
    [br]
    Bibliography
    Other patents credited to him range from devices for the propelling of ships in 1854, beaters for threshing machines in 1848, 1856, and again in 1861, stacking corn and other crops in the same year, improvements to steam boilers in 1863, for preserving life in water in 1867, threshing machines in 1873 and 1874, steam engines in 1884, and threshing machines in 1885.
    AP

    Biographical history of technology > Goucher, John

  • 85 Goulding, John

    SUBJECT AREA: Textiles
    [br]
    b. 1791 Massachusetts, USA d. 1877
    [br]
    American inventor of an early form of condenser carding machine.
    [br]
    The condenser method of spinning was developed chiefly by manufacturers and machine makers in eastern Massachusetts between 1824 and 1826. John Goulding, a machinist from Dedham in Massachusetts, combined the ring doffer, patented by Ezekiel Hale in 1825, and the revolving twist tube, patented by George Danforth in 1824; with the addition of twisting keys in the tubes, the carded woollen sliver could be divided and then completely and continuously twisted. He divided the carded web longitudinally with the ring doffer and twisted these strips to consolidate them into slubbings. The dividing was carried out by covering the periphery of the doffer cylinder with separate rings of card clothing and spacing these rings apart by rings of leather, so that instead of width-way detached strips leaving the card, the strips were continuous and did not require piecing. The strips were passed through rotating tubes and wound on bobbins, and although the twist was false it sufficed to compress the fibres together ready for spinning. Goulding patented his invention in both Britain and the USA in 1826, but while his condensers were very successful and within twenty years had been adopted by a high proportion of woollen mills in America, they were not adopted in Britain until much later. Goulding also worked on other improvements to woollen machinery: he developed friction drums, on which the spools of roving from the condenser cards were placed to help transform the woollen jenny into the woollen mule or jack.
    [br]
    Bibliography
    1826, British patent no. 5,355 (condenser carding machine).
    Further Reading
    D.J.Jeremy, 1981, Transatlantic Industrial Revolution. The Diffusion of Textile Technologies Between Britain and America, 1790–1830s, Oxford (provides a good explanation of the development of the condenser card).
    W.English, 1969, The Textile Industry, London (a brief account).
    C.Singer (ed.), 1958, A History of Technology, Vol. IV, Oxford: Clarendon Press (a brief account).
    RLH

    Biographical history of technology > Goulding, John

  • 86 Herschel, John Frederick William

    [br]
    b. 7 March 1792 Slough, England
    d. 11 May 1871 Collingwood, England
    [br]
    English scientist who introduced "hypo" (thiosulphate) as a photographic fixative and discovered the blueprint process.
    [br]
    The only son of Sir William Herschel, the famous astronomer, John graduated from Cambridge in 1813 and went on to become a distinguished astronomer, mathematician and chemist. He left England in November 1833 to set up an observatory near Cape Town, South Africa, where he embarked on a study of the heavens in the southern hemisphere. He returned to England in the spring of 1838, and between 1850 and 1855 Herschel served as Master of the Royal Mint. He made several notable contributions to photography, perhaps the most important being his discovery in 1819 that hyposulphites (thiosulphates) would dissolve silver salts. He brought this property to the attention of W.H.F. Talbot, who in 1839 was using a common salt solution as a fixing agent for his early photographs. After trials, Talbot adopted "hypo", which was a far more effective fixative. It was soon adopted by other photographers and eventually became the standard photographic fixative, as it still is in the 1990s. After hearing of the first photographic process in January 1839, Herschel devised his own process within a week. In September 1839 he made the first photograph on glass. He is credited with introducing the words "positive", "negative" and "snapshot" to photography, and in 1842 he invented the cyanotype or "blueprint" process. This process was later to be widely adopted by engineers and architects for the reproduction of plans and technical drawings, a practice abandoned only in the late twentieth century.
    [br]
    Principal Honours and Distinctions
    Knight of the Royal Hanoverian Guelphic Order 1831. Baronet 1838. FRS 1813. Copley Medal 1821.
    Further Reading
    Dictionary of National Biography, 1968, Vol. IX, pp. 714–19.
    H.J.P.Arnold, 1977, William Henry Fox Talbot, London; Larry J.Schaaf, 1992, Out of the Shadows: Herschel, Talbot and the Invention of Photography, Newhaven and London (for details of his contributions to photography and his relationship with Talbot).
    JW

    Biographical history of technology > Herschel, John Frederick William

  • 87 Kay (of Warrington), John

    SUBJECT AREA: Textiles
    [br]
    fl. c.1770 England
    [br]
    English clockmaker who helped Richard Arkwright to construct his spinning machine.
    [br]
    John Kay was a clockmaker of Warrington. He moved to Leigh, where he helped Thomas Highs to construct his spinning machine, but lack of success made them abandon their attempts. Kay first met Richard Arkwright in March 1767 and six months later was persuaded by Arkwright to make one or more models of the roller spinning machine he had built under Highs's supervision. Kay went with Arkwright to Preston, where they continued working on the machine. Kay also went with Arkwright when he moved to Nottingham. It was around this time that he entered into an agreement with Arkwright to serve him for twenty-one years and was bound not to disclose any details of the machines. Presumably Kay helped to set up the first spinning machines at Arkwright's Nottingham mill as well as at Cromford. Despite their agreement, he seems to have left after about five years and may have disclosed the secret of Arkwright's crank and comb on the carding engine to others. Kay was later to give evidence against Arkwright during the trial of his patent in 1785.
    [br]
    Further Reading
    R.S.Fitton, 1989, The Arkwrights, Spinners of Fortune, Manchester (the most detailed account of Kay's connections with Arkwright and his evidence during the later patent trials).
    A.P.Wadsworth and J. de L.Mann, 1931, The Cotton Trade and Industrial Lancashire, Manchester (mentions Kay's association with Arkwright).
    RLH

    Biographical history of technology > Kay (of Warrington), John

  • 88 Rankine, William John Macquorn

    [br]
    b. 5 July 1820 Edinburgh, Scotland
    d. 1872
    [br]
    [br]
    Rankine was educated at Ayr Academy and Glasgow High School, although he appears to have learned much of his basic mathematics and physics through private study. He attended Edinburgh University and then assisted his father, who was acting as Superintendent of the Edinburgh and Dalkeith Railway. This introduction to engineering practice was followed in 1838 by his appointment as a pupil to Sir John MacNeill, and for the next four years he served under MacNeill on his Irish railway projects. While still in his early twenties, Rankine presented pioneering papers on metal fatigue and other subjects to the Institution of Civil Engineers, for which he won a prize, but he appears to have resigned from the Civils in 1857 after an argument because the Institution would not transfer his Associate Membership into full Membership. From 1844 to 1848 Rankine worked on various projects for the Caledonian Railway Company, but his interests were becoming increasingly theoretical and a series of distinguished papers for learned societies established his reputation as a leading scholar in the new science of thermodynamics. He was elected Fellow of the Royal Society in 1853. At the same time, he remained intimately involved with practical questions of applied science, in shipbuilding, marine engineering and electric telegraphy, becoming associated with the influential coterie of fellow Scots such as the Thomson brothers, Napier, Elder, and Lewis Gordon. Gordon was then the head of a large and successful engineering practice, but he was also Regius Professor of Engineering at the University of Glasgow, and when he retired from the Chair to pursue his business interests, Rankine, who had become his Assistant, was appointed in his place.
    From 1855 until his premature death in 1872, Rankine built up an impressive engineering department, providing a firm theoretical basis with a series of text books that he wrote himself and most of which remained in print for many decades. Despite his quarrel with the Institution of Civil Engineers, Rankine took a keen interest in the institutional development of the engineering profession, becoming the first President of the Institution of Engineers and Shipbuilders in Scotland, which he helped to establish in 1857. Rankine campaigned vigorously for the recognition of engineering studies as a full university degree at Glasgow, and he achieved this in 1872, the year of his death. Rankine was one of the handful of mid-nineteenth century engineers who virtually created engineering as an academic discipline.
    [br]
    Principal Honours and Distinctions
    FRS 1853. First President, Institution of Engineers and Shipbuilders in Scotland, 1857.
    Bibliography
    1858, Manual of Applied Mechanics.
    1859, Manual of the Steam Engine and Other Prime Movers.
    1862, Manual of Civil Engineering.
    1869, Manual of Machinery and Millwork.
    Further Reading
    J.Small, 1957, "The institution's first president", Proceedings of the Institution of Engineers and Shipbuilders in Scotland: 687–97.
    H.B.Sutherland, 1972, Rankine. His Life and Times.
    AB

    Biographical history of technology > Rankine, William John Macquorn

  • 89 Rennie, John

    SUBJECT AREA: Canals, Civil engineering
    [br]
    b. 7 June 1761 Phantassie, East Linton, East Lothian, Scotland
    d. 4 October 1821 Stamford Street, London, England
    [br]
    Scottish civil engineer.
    [br]
    Born into a prosperous farming family, he early demonstrated his natural mechanical and structural aptitude. As a boy he spent a great deal of time, often as a truant, near his home in the workshop of Andrew Meikle. Meikle was a millwright and the inventor of a threshing machine. After local education and an apprenticeship with Meikle, Rennie went to Edinburgh University until he was 22. He then travelled south and met James Watt, who in 1784 offered him the post of Engineer at the Albion Flour Mills, London, which was then under construction. Rennie designed all the mill machinery, and it was while there that he began to develop an interest in canals, opening his own business in 1791 in Blackfriars. He carried out work on the Kennet and Avon Canal and in 1794 became Engineer for the company. He meanwhile carried out other surveys, including a proposed extension of the River Stort Navigation to the Little Ouse and a Basingstoke-to-Salisbury canal, neither of which were built. From 1791 he was also engaged on the Rochdale Canal and the Lancaster Canal, as well as the great masonry aqueduct carrying the latter canal across the river Lune at Lancaster. He also surveyed the Ipswich and Stowmarket and the Chelmer and Blackwater Navigations. He advised on the Horncastle Canal in 1799 and on the River Ancholme in 1799, both of which are in Lincolnshire. In 1802 he was engaged on the Royal Canal in Ireland, and in the same year he was commissioned by the Government to prepare a plan for flooding the Lea Valley as a defence on the eastern approach to London in case Napoleon invaded England across the Essex marshes. In 1809 he surveyed improvements on the Thames, and in the following year he was involved in a proposed canal from Taunton to Bristol. Some of his schemes, particularly in the Fens and Lincolnshire, were a combination of improvements for both drainage and navigation. Apart from his canal work he engaged extensively in the construction and development of docks and harbours including the East and West India Docks in London, Holyhead, Hull, Ramsgate and the dockyards at Chatham and Sheerness. In 1806 he proposed the great breakwater at Plymouth, where work commenced on 22 June 1811.
    He was also highly regarded for his bridge construction. These included Kelso and Musselburgh, as well as his famous Thames bridges: London Bridge (uncompleted at the time of his death), Waterloo Bridge (1810–17) and Southwark Bridge (1815–19). He was elected a Fellow of the Royal Society in 1798.
    [br]
    Principal Honours and Distinctions
    FRS 1798.
    Further Reading
    C.T.G.Boucher, 1963, John Rennie 1761–1821, Manchester University Press. W.Reyburn, 1972, Bridge Across the Atlantic, London: Harrap.
    JHB

    Biographical history of technology > Rennie, John

  • 90 Schanck, John

    SUBJECT AREA: Ports and shipping
    [br]
    b. 1740 Fife, Scotland d. 1823
    [br]
    Scottish admiral, builder of small ships with revolutionary form, pioneer of sliding keels.
    [br]
    Schanck first went to sea in the merchant service, but in 1758 he was transferred to the Royal Navy. After four years as an able seaman, he was made a midshipman (a rare occurrence in those days), and by perseverance was commissioned Lieutenant in 1776 and appointed to command a small vessel operating in the St Lawrence. Being known as an inventive and practical officer, he was soon placed in charge of shipbuilding operations for the British on the Great Lakes and quickly constructed a small fleet that operated on Lake Champlain and elsewhere. He was promoted Captain in 1783. In earlier years Schanck had built a small sliding-keel yacht and sailed it in Boston Harbor. The Admiralty accepted the idea and tested two similar small craft, one with and the other without sliding keels. The success of the keels encouraged the authorities to build further craft of increasing size, culminating in the Lady Nelson, which carried out many surveys in Australian waters at the end of the eighteenth century. Service with the Army and the transport board followed, when his special knowledge and skill were used to the full in the waterways of the Netherlands. Schanck rose to the rank of full Admiral, and advised not only the British Government on coastal defence but other groups on many aspects of hull design.
    [br]
    Further Reading
    John Charnock, 1800, A History of Marine Architecture, etc., London.
    FMW

    Biographical history of technology > Schanck, John

  • 91 Smeaton, John

    [br]
    b. 8 June 1724 Austhorpe, near Leeds, Yorkshire, England
    d. 28 October 1792 Austhorpe, near Leeds, Yorkshire, England
    [br]
    English mechanical and civil engineer.
    [br]
    As a boy, Smeaton showed mechanical ability, making for himself a number of tools and models. This practical skill was backed by a sound education, probably at Leeds Grammar School. At the age of 16 he entered his father's office; he seemed set to follow his father's profession in the law. In 1742 he went to London to continue his legal studies, but he preferred instead, with his father's reluctant permission, to set up as a scientific instrument maker and dealer and opened a shop of his own in 1748. About this time he began attending meetings of the Royal Society and presented several papers on instruments and mechanical subjects, being elected a Fellow in 1753. His interests were turning towards engineering but were informed by scientific principles grounded in careful and accurate observation.
    In 1755 the second Eddystone lighthouse, on a reef some 14 miles (23 km) off the English coast at Plymouth, was destroyed by fire. The President of the Royal Society was consulted as to a suitable engineer to undertake the task of constructing a new one, and he unhesitatingly suggested Smeaton. Work began in 1756 and was completed in three years to produce the first great wave-swept stone lighthouse. It was constructed of Portland stone blocks, shaped and pegged both together and to the base rock, and bonded by hydraulic cement, scientifically developed by Smeaton. It withstood the storms of the English Channel for over a century, but by 1876 erosion of the rock had weakened the structure and a replacement had to be built. The upper portion of Smeaton's lighthouse was re-erected on a suitable base on Plymouth Hoe, leaving the original base portion on the reef as a memorial to the engineer.
    The Eddystone lighthouse made Smeaton's reputation and from then on he was constantly in demand as a consultant in all kinds of engineering projects. He carried out a number himself, notably the 38 mile (61 km) long Forth and Clyde canal with thirty-nine locks, begun in 1768 but for financial reasons not completed until 1790. In 1774 he took charge of the Ramsgate Harbour works.
    On the mechanical side, Smeaton undertook a systematic study of water-and windmills, to determine the design and construction to achieve the greatest power output. This work issued forth as the paper "An experimental enquiry concerning the natural powers of water and wind to turn mills" and exerted a considerable influence on mill design during the early part of the Industrial Revolution. Between 1753 and 1790 Smeaton constructed no fewer than forty-four mills.
    Meanwhile, in 1756 he had returned to Austhorpe, which continued to be his home base for the rest of his life. In 1767, as a result of the disappointing performance of an engine he had been involved with at New River Head, Islington, London, Smeaton began his important study of the steam-engine. Smeaton was the first to apply scientific principles to the steam-engine and achieved the most notable improvements in its efficiency since its invention by Newcomen, until its radical overhaul by James Watt. To compare the performance of engines quantitatively, he introduced the concept of "duty", i.e. the weight of water that could be raised 1 ft (30 cm) while burning one bushel (84 lb or 38 kg) of coal. The first engine to embody his improvements was erected at Long Benton colliery in Northumberland in 1772, with a duty of 9.45 million pounds, compared to the best figure obtained previously of 7.44 million pounds. One source of heat loss he attributed to inaccurate boring of the cylinder, which he was able to improve through his close association with Carron Ironworks near Falkirk, Scotland.
    [br]
    Principal Honours and Distinctions
    FRS 1753.
    Bibliography
    1759, "An experimental enquiry concerning the natural powers of water and wind to turn mills", Philosophical Transactions of the Royal Society.
    Towards the end of his life, Smeaton intended to write accounts of his many works but only completed A Narrative of the Eddystone Lighthouse, 1791, London.
    Further Reading
    S.Smiles, 1874, Lives of the Engineers: Smeaton and Rennie, London. A.W.Skempton, (ed.), 1981, John Smeaton FRS, London: Thomas Telford. L.T.C.Rolt and J.S.Allen, 1977, The Steam Engine of Thomas Newcomen, 2nd edn, Hartington: Moorland Publishing, esp. pp. 108–18 (gives a good description of his work on the steam-engine).
    LRD

    Biographical history of technology > Smeaton, John

  • 92 When a dog bites a man, that is not news. But when a man bites a dog, that is news

    "Когда собака кусает человека, это не новость. Вот когда человек кусает собаку - это новость"
    Крылатое определение (около 1880) газетной сенсации; автор - заведующий отделом городских новостей [ city editor] газеты "Нью-Йорк сан" [The New York Sun] Дж. Богарт [Bogart, John B.]. Некоторые склонны приписывать эти слова издателю "Нью-Йорк сан" Ч. Дэйна [ Dana, Charles Anderson]

    English-Russian dictionary of regional studies > When a dog bites a man, that is not news. But when a man bites a dog, that is news

  • 93 the wind is in that quarter

    разг.
    вот как обстоят дела; см. тж. how the wind blows

    ‘We can expect a big change in policy this year,’ said John. ‘The wind is in that quarter.’ — - В этом году у нас ожидаются большие перемены в политическом курсе. Все говорит об этом, - сказал Джон.

    Large English-Russian phrasebook > the wind is in that quarter

  • 94 Bardeen, John

    [br]
    b. 23 May 1908 Madison, Wisconsin, USA
    d. 30 January 1991 Boston, Massachusetts, USA
    [br]
    American physicist, the first to win the Nobel Prize for Physics twice.
    [br]
    Born the son of a professor of anatomy, he studied electrical engineering at the University of Wisconsin. He then worked for three years as a geophysicist at the Gulf Research Laboratories before taking a PhD in mathematical physics at Princeton, where he was a graduate student. For some time he held appointments at the University of Minnesota and at Harvard, and during the Second World War he joined the US Naval Ordnance Laboratory. In 1945 he joined the Bell Telephone Laboratories to head a new department to work on solid-state devices. While there, he and W.H. Brattain in 1948 published a paper that introduced the transistor. For this he, Brattain and Shockley won the Nobel Prize for Physics in 1956. In 1951 he moved to the University of Illinois as Professor of Physics and Electrical Engineering. There he worked on superconductivity, a phenomenon described in 1911 by Kamerling-Onnes. Bardeen worked with L.N. Cooper and J.A.Schrieffer, and in 1972 they were awarded the Nobel Prize for Physics for the "BCS Theory", which suggested that, under certain circumstances at very low temperatures, electrons can form bound pairs.
    [br]
    Principal Honours and Distinctions
    Nobel Prize for Physics (jointly with Brattain and Shockley) 1956, (jointly with Cooper and Schrieffer) 1972.
    Further Reading
    Isaacs and E.Martin (eds), 1985, Longmans Dictionary of 20th Century Biography.
    IMcN

    Biographical history of technology > Bardeen, John

  • 95 Bevan, Edward John

    [br]
    b. 11 December 1856 Birkenhead, England
    d. 17 October 1921 London, England
    [br]
    English co-inventor of the " viscose rayon " process for making artificial silk.
    [br]
    Bevan began his working life as a chemist in a soap works at Runcorn, but later studied chemistry at Owens College, Manchester. It was there that he met and formed a friendship with C.F. Cross, with whom he started to work on cellulose. Bevan moved to a paper mill in Scotland but then went south to London, where he and Cross set up a partnership in 1885 as consulting and analytical chemists. Their work was mainly concerned with the industrial utilization of cellulose, and with the problems of the paper and jute industries. Their joint publication, A Text-book of Paper-making, which first appeared in 1888 and went into several editions, became the standard reference and textbook on the subject. The book has a long introductory chapter on cellulose.
    In 1892 Cross, Bevan and Clayton Beadle discovered viscose, or sodium cellulose xanthate, and took out the patent which was to be the foundation of the "viscose rayon" industry. They had their own laboratory at Station Avenue, Kew Gardens, where they carried out much work that eventually resulted in viscose: cellulose, usually in the form of wood pulp, was treated first with caustic soda and then with carbon disulphide to form the xanthate, which was then dissolved in a solution of dilute caustic soda to produce a viscous liquid. After being aged, the viscose was extruded through fine holes in a spinneret and coagulated in a dilute acid to regenerate the cellulose as spinnable fibres. At first there was no suggestion of spinning it into fibre, but the hope was to use it for filaments in incandescent electric light bulbs. The sheen on the fibres suggested their possible use in textiles and the term "artificial silk" was later introduced. Cross and Bevan also discovered the acetate "Celanese", which was cellulose triacetate dissolved in acetone and spun in air, but both inventions needed much development before they could be produced commercially.
    In 1892 Bevan turned from cellulose to food and drugs and left the partnership to become Public Analyst to Middlesex County Council, a post he held until his death, although in 1895 he and Cross published their important work Cellulose. He was prominent in the affairs of the Society of Public Analysts and became one of its officials.
    [br]
    Bibliography
    1888, with C.F.Cross, A Text-book of Papermaking.
    1892, with C.F.Cross and C.Beadle, British patent no. 8,700 (viscose). 1895, with C.F.Cross, Cellulose.
    Further Reading
    Obituary, 1921, Journal of the Chemical Society.
    Obituary, 1921, Journal of the Society of Chemical Industry.
    Edwin J.Beer, 1962–3, "The birth of viscose rayon", Transactions of the Newcomen Society 35 (an account of the problems of developing viscose rayon; Beer worked under Cross in the Kew laboratories).
    RLH

    Biographical history of technology > Bevan, Edward John

  • 96 Blenkinsop, John

    [br]
    b. 1783 near Newcastle upon Tyne, England
    d. 22 January 1831 Leeds, England
    [br]
    English coal-mine manager who made the first successful commercial use of steam locomotives.
    [br]
    In 1808 Blenkinsop became agent to J.C.Brandling, MP, owner of Middleton Colliery, from which coal was carried to Leeds over the Middle-ton Waggonway. This had been built by Brandling's ancestor Charles Brandling, who in 1758 obtained an Act of Parliament to establish agreements with owners of land over which the wagon way was to pass. That was the first railway Act of Parliament.
    By 1808 horse haulage was becoming uneconomic because the price of fodder had increased due to the Napoleonic wars. Brandling probably saw the locomotive Catch-Me- Who-Can demonstrated by Richard Trevithick. In 1811 Blenkinsop patented drive by cog-wheel and rack rail, the power to be provided preferably by a steam engine. His object was to produce a locomotive able to haul a substantial load, while remaining light enough to minimize damage to rails made from cast iron which, though brittle, was at that date the strongest material from which rails could be made. The wagonway, formerly of wood, was relaid with iron-edge rails; along one side rails cast with rack teeth were laid beside the running surface. Locomotives incorporating Blenkinsop's cog-wheel drive were designed by Matthew Murray and built by Fenton Murray \& Wood. The design was developed from Trevithick's to include two cylinders, for easier starting and smoother running. The first locomotive was given its first public trial on 24 June 1812, when it successfully hauled eight wagons of coal, on to which fifty spectators climbed. Locomotives of this type entered regular service later in the summer and proved able to haul loads of 110 tons; Trevithick's locomotive of 1804 had managed 25 tons.
    Blenkinsop-type locomotives were introduced elsewhere in Britain and in Europe, and those upon the Kenton \& Coxlodge Wagonway, near Newcastle upon Tyne, were observed by George Stephenson. The Middleton locomotives remained at work until 1835.
    [br]
    Bibliography
    10 April, 1811, "Certain Mechanical Means by which the Conveyance of Coals, Minerals and Other Articles is Facilitated….", British patent no. 3,431.
    Further Reading
    J.Bushell, 1975, The World's Oldest Railway, Sheffield: Turntable (describes Blenkinsop's work).
    E.K.Scott (ed.), 1928, Matthew Murray, Pioneer Engineer, Leeds.
    C.von Oeynhausen and H.von Dechen, 1971, Railways in England 1826 and 1827, Cambridge: W.Heffer \& Sons.
    PJGR

    Biographical history of technology > Blenkinsop, John

  • 97 Daniell, John Frederick

    SUBJECT AREA: Electricity
    [br]
    b. 12 March 1790 London, England
    d. 13 March 1845 London, England
    [br]
    English chemist, inventor of the Daniell primary electric cell.
    [br]
    With an early bias towards science, Daniell's interest in chemistry was formed when he joined a relative's sugar-refining business. He formed a lifelong friendship with W.T.Brande, Professor of Chemistry at the Royal Institution, and together they revived the journal of the Royal Institution, to which Daniell submitted many of his early papers on chemical subjects. He made many contributions to the science of meteorology and in 1820 invented a hydrometer, which became widely used and gave precision to the measurement of atmospheric moisture. As one of the originators of the Society for Promoting Useful Knowledge, Daniell edited several of its early publications. His work on crystallization established his reputation as a chemist and in 1831 he was appointed the first Professor of Chemistry at King's College, London, where he was largely responsible for establishing its department of applied science. He was also involved in the Chemical Society of London and served as its Vice-President. At King's College he began the research into current electricity with which his name is particularly associated. His investigations into the zinc-copper cell revealed that the rapid decline in power was due to hydrogen gas being liberated at the positive electrode. Daniell's cell, invented in 1836, employed a zinc electrode in dilute sulphuric acid and a copper electrode in a solution of copper sulphate, the electrodes being separated by a porous membrane, typically an unglazed earthenware pot. He was awarded the Copley Medal of the Royal Society for his invention which avoided the "polarization" of the simple cell and provided a further source of current for electrical research and for commercial applications such as electroplating. Although the high internal resistance of the Daniell cell limited the current and the potential was only 1.1 volts, the voltage was so unchanging that it was used as a reference standard until the 1870s, when J. Lattimer Clark devised an even more stable cell.
    [br]
    Principal Honours and Distinctions
    FRS 1814. Royal Society Rumford Medal 1832, Copley Medal 1837, Royal Medal 1842.
    Bibliography
    1836, "On voltaic combinations", Phil. Transactions of the Royal Society 126:107–24, 125–9 (the first report of his experiments).
    Further Reading
    Obituary, 1845, Proceedings of the Royal Society, 5:577–80.
    J.R.Partington, 1964, History of Chemistry, Vol. IV, London (describes the Daniell cell and his electrical researches).
    B.Bowers, 1982, History of Electric Light and Power, London.
    GW

    Biographical history of technology > Daniell, John Frederick

  • 98 Forsyth, Alexander John

    SUBJECT AREA: Weapons and armour
    [br]
    b. 28 December 1769 Belhevie, Aberdeenshire, Scotland
    d. 11 June 1843 Belhevie, Aberdeenshire, Scotland
    [br]
    Scottish cleric and ammunition designer.
    [br]
    The son of a Scottish Presbyterian minister, Forsyth also took Holy Orders and took over his father's parish on his death. During his spare time he experimented with explosives and in 1805 he succeeded in developing mercury fulminate as a percussion cap for use in small-arms ammunition, thus paving the way for the eventual design of the self-contained metallic cartridge and contact fuse. This he did by rolling the compound into small pellets, which he placed in a nipple at the breech end of the barrel, where they could be detonated by the falling hammer of the gun. In spring 1806 he went to London, and so impressed was the Master-General of the Ordnance by Forsyth's concept that he gave him facilities in the Tower of London in order to allow him to perfect it. Unfortunately, the Master-General of the Ordnance was replaced shortly afterwards and his successor abruptly stopped the project. Forsyth returned to Scotland and his parish, and it was only after much persuasion by his friends that he eventually petitioned Parliament for recognition of his invention. He was ultimately awarded a small state pension, but died before he received any of it.
    CM

    Biographical history of technology > Forsyth, Alexander John

  • 99 Jackson, John Hughlings

    SUBJECT AREA: Medical technology
    [br]
    b. 4 April 1835 Providence Green, Yorkshire, England
    d. 7 October 1911 London, England
    [br]
    English neurologist and neurophysiologist, discoverer of Jacksonian epilepsy and the neurological basis of speech defects; pioneer of the technique of the localization of the site of cerebral disease.
    [br]
    Jackson studied medicine at York and at St Bartholomew's Hospital, qualifying in 1856. For a while he practised in York and was dissuaded from abandoning medicine for philosophy by Jonathan Hutchinson. Upon his return to London, he was appointed Assistant Physician and later, in 1874, Physician to the London Hospital. He was also on the staff of Moorfields Eye Hospital and in 1874 was appointed to the National Hospital for the Paralysed and Epileptic in Queen's Square. It was particularly in connection with his association with cases at the latter that he was able to establish the association of designated areas of the brain with specific limbs and functions. He acknowledged that in the field of speech the work of Broca had shown the way.
    [br]
    Principal Honours and Distinctions
    FRS 1878. Gulstonian Lecturer and Croonian Lecturer, College of Physicians.
    Bibliography
    1869, Certain Points on the Study and Classification of Diseases of the Nervous System.
    1884, Evolution and Dissolution of the Nervous System.
    1931–32, Selected Writings (ed. J.Taylor et al.).
    MG

    Biographical history of technology > Jackson, John Hughlings

  • 100 Lawes, Sir John Bennet

    [br]
    b. 28 December 1814 Rothamsted, Hertfordshire, England
    d. 31 August 1900 Rothamsted, Hertfordshire, England
    [br]
    English scientific agriculturalist.
    [br]
    Lawes's education at Eton and Oxford did little to inform his early taste for chemistry, which he developed largely on his own. By the age of 20 he had fitted up the best bedroom in his house as a fully equipped chemical laboratory. His first interest was in the making of drugs; it was said that he knew the Pharmacopoeia, by heart. He did, however, receive some instruction from Anthony Todd Thomson of University College, London. His father having died in 1822, Lawes entered into possession of the Rothamsted estate when he came of age in 1834. He began experiments with plants with uses as drugs, but following an observation by a neighbouring farmer of the effect of bones on the growth of certain crops Lawes turned to experiments with bones dissolved in sulphuric acid on his turnip crop. The results were so promising that he took out a patent in 1842 for converting mineral and fossil phosphates into a powerful manure by the action of sulphuric acid. The manufacture of these superphosphates became a major industry of tremendous benefit to agriculture. Lawes himself set up a factory at Deptford in 1842 and a larger one in 1857 at Barking Creek, both near London. The profits from these and other chemical manufacturing concerns earned Lawes profits which funded his experimental work at Rothamsted. In 1843, Lawes set up the world's first agricultural experiment station. Later in the same year he was joined by Joseph Henry Gilbert, and together they carried out a considerable number of experiments of great benefit to agriculture, many of the results of which were published in the leading scientific journals of the day, including the Philosophical Transactions of the Royal Society. In all, 132 papers were published, most of them jointly with Gilbert. A main theme of the work on plants was the effect of various chemical fertilizers on the growth of different crops, compared with the effects of farm manure and of no treatment at all. On animal rearing, they studied particularly the economical feeding of animals.
    The work at Rothamsted soon brought Lawes into prominence; he joined the Royal Agricultural Society in 1846 and became a member of its governing body two years later, a position he retained for over fifty years. Numerous distinctions followed and Rothamsted became a place of pilgrimage for people from many parts of the world who were concerned with the application of science to agriculture. Rothamsted's jubilee in 1893 was marked by a public commemoration headed by the Prince of Wales.
    [br]
    Principal Honours and Distinctions
    Baronet 1882. FRS 1854. Royal Society Royal Medal (jointly with Gilbert) 1867.
    Further Reading
    Memoir with portrait published in J. Roy. Agric. Soc. Memoranda of the origin, plan and results of the field and other experiments at Rothamsted, issued annually by the Lawes Agricultural Trust Committee, with a list of Lawes's scientific papers.
    LRD

    Biographical history of technology > Lawes, Sir John Bennet

См. также в других словарях:

  • John Brown (abolitionist) — John Brown Daguerreotype of Brown, ca.1856. Born May 9, 1800(1800 05 09) Torrington, Connecticut Died …   Wikipedia

  • John Mitchel — (Irish: Seán Mistéil; b.November 3, 1815 ndash; d. March 20, 1875) was an Irish nationalist activist, solicitor and political journalist. Born in Camnish, near Dungiven, County Londonderry, Ireland he became a leading Member of both Young Ireland …   Wikipedia

  • John Constantine — Cover to Hellblazer #189 (December 2003). Art by Tim Bradstreet. Publication information Publisher …   Wikipedia

  • John Carthy — ( ga. Seán Ó Carthaigh) (9 October 1972 20 April 2000) was a 27 year old Irish citizen with a psychiatric illness. On Holy Thursday 20 April 2000 he was shot dead in controversial circumstances by the Emergency Response Unit (ERU) of An Garda… …   Wikipedia

  • John Edwards extramarital affair — John Edwards, a former United States Senator from North Carolina and Democratic Party presidential candidate, admitted in August 2008 to an extramarital affair, which was initially reported by The National Enquirer , an American supermarket… …   Wikipedia

  • John Knox — (c. 1510 – 24 November 1572) was a Scottish clergyman and leader of the Protestant Reformation who is considered the founder of the Presbyterian denomination. He was educated at the University of St Andrews and worked as a notary priest.… …   Wikipedia

  • John Bunyan — Born 28 November 1628(1628 11 28) Bedfordshire, England1 Died 31 August 1688(1688 08 31) (aged 59) E …   Wikipedia

  • John Henry (folklore) — John Henry is an American folk hero, who has been the subject of numerous songs, stories, plays, and novels. Like other Big Men such as Paul Bunyan, Pecos Bill, and Iron John, John Henry also served as a mythical representation of a group within… …   Wikipedia

  • John Bell (bishop) — John Bell LL. D ( d. 1556) was Bishop of Worcester (1539 1543), who served during the reign of Henry VIII of England. Anglican PortalReformationThe advent of movable type during the renaissance and its further innovation by Gutenberg, Fust, and… …   Wikipedia

  • John Howe (loyalist) — John Howe (October 14, 1754 December 27, 1835) was a loyalist printer during the American Revolution, a printer and Postmaster in Halifax, the father of the famous Joseph Howe, a spy prior to the War of 1812, and eventually a Magistrate of the… …   Wikipedia

  • John Dies at the End —   …   Wikipedia

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»