Перевод: со всех языков на английский

с английского на все языки

institute+of+radio+engineers

  • 1 Institute of Radio Engineers

    Abbreviation: IRE (old name for the now IEEE, which see)

    Универсальный русско-английский словарь > Institute of Radio Engineers

  • 2 American Institute of Radio Engineers

    Abbreviation: AIRE

    Универсальный русско-английский словарь > American Institute of Radio Engineers

  • 3 British Institute of Radio Engineers

    Engineering: BIRE, BRIT.I.R.E.

    Универсальный русско-английский словарь > British Institute of Radio Engineers

  • 4 member of Institute of Radio Engineers

    Engineering: M.I.R.E.

    Универсальный русско-английский словарь > member of Institute of Radio Engineers

  • 5 Fellow of the Institute of Electronic and Radio Engineers

    Abbreviation: FIERE

    Универсальный русско-английский словарь > Fellow of the Institute of Electronic and Radio Engineers

  • 6 radio

       La radio devient elle aussi numérique, avec une meilleure qualité de diffusion. Pratiquement toutes les radios sont diffusées à la fois par transmission radio et sur le web, par exemple FIP de Radio France. Certaines radios sont diffusées uniquement sur le web, par exemple Arteradio, la radio web de la chaîne de télévision franco-allemande Arte. La norme de numérisation de la FM (Frequency Modulation) est la DAB (digital audio broadcasting), lancée en 1995. L’adoption en mars 2004 de la norme DRM (digital radio mondiale) pour numériser le son sur bande AM (amplitude modulation) doit permettre de relancer la radio AM. Les deux normes DAB et DRM devraient coexister dans les postes radio numériques de demain. Des postes radio numériques existent déjà pour la DAB. Par ailleurs, les années 1990 voient les débuts de la radiotéléphonie cellulaire. Depuis 2000, la connexion à l’internet est possible par ondes radio. Des standards de transmission radio (802.11 et 802.16) sont définis par l’IEEE (Institute of Electrical and Electronics Engineers), l’organisme international de normalisation dans ce domaine.

    Le Dictionnaire du NEF > radio

  • 7 Armstrong, Edwin Howard

    [br]
    b. 18 December 1890 New York City, New York, USA
    d. 31 January 1954 New York City, New York, USA
    [br]
    American engineer who invented the regenerative and superheterodyne amplifiers and frequency modulation, all major contributions to radio communication and broadcasting.
    [br]
    Interested from childhood in anything mechanical, as a teenager Armstrong constructed a variety of wireless equipment in the attic of his parents' home, including spark-gap transmitters and receivers with iron-filing "coherer" detectors capable of producing weak Morse-code signals. In 1912, while still a student of engineering at Columbia University, he applied positive, i.e. regenerative, feedback to a Lee De Forest triode amplifier to just below the point of oscillation and obtained a gain of some 1,000 times, giving a receiver sensitivity very much greater than hitherto possible. Furthermore, by allowing the circuit to go into full oscillation he found he could generate stable continuous-waves, making possible the first reliable CW radio transmitter. Sadly, his claim to priority with this invention, for which he filed US patents in 1913, the year he graduated from Columbia, led to many years of litigation with De Forest, to whom the US Supreme Court finally, but unjustly, awarded the patent in 1934. The engineering world clearly did not agree with this decision, for the Institution of Radio Engineers did not revoke its previous award of a gold medal and he subsequently received the highest US scientific award, the Franklin Medal, for this discovery.
    During the First World War, after some time as an instructor at Columbia University, he joined the US Signal Corps laboratories in Paris, where in 1918 he invented the superheterodyne, a major contribution to radio-receiver design and for which he filed a patent in 1920. The principle of this circuit, which underlies virtually all modern radio, TV and radar reception, is that by using a local oscillator to convert, or "heterodyne", a wanted signal to a lower, fixed, "intermediate" frequency it is possible to obtain high amplification and selectivity without the need to "track" the tuning of numerous variable circuits.
    Returning to Columbia after the war and eventually becoming Professor of Electrical Engineering, he made a fortune from the sale of his patent rights and used part of his wealth to fund his own research into further problems in radio communication, particularly that of receiver noise. In 1933 he filed four patents covering the use of wide-band frequency modulation (FM) to achieve low-noise, high-fidelity sound broadcasting, but unable to interest RCA he eventually built a complete broadcast transmitter at his own expense in 1939 to prove the advantages of his system. Unfortunately, there followed another long battle to protect and exploit his patents, and exhausted and virtually ruined he took his own life in 1954, just as the use of FM became an established technique.
    [br]
    Principal Honours and Distinctions
    Institution of Radio Engineers Medal of Honour 1917. Franklin Medal 1937. IERE Edison Medal 1942. American Medal for Merit 1947.
    Bibliography
    1922, "Some recent developments in regenerative circuits", Proceedings of the Institute of Radio Engineers 10:244.
    1924, "The superheterodyne. Its origin, developments and some recent improvements", Proceedings of the Institute of Radio Engineers 12:549.
    1936, "A method of reducing disturbances in radio signalling by a system of frequency modulation", Proceedings of the Institute of Radio Engineers 24:689.
    Further Reading
    L.Lessing, 1956, Man of High-Fidelity: Edwin Howard Armstrong, pbk 1969 (the only definitive biography).
    W.R.Maclaurin and R.J.Harman, 1949, Invention \& Innovation in the Radio Industry.
    J.R.Whitehead, 1950, Super-regenerative Receivers.
    A.N.Goldsmith, 1948, Frequency Modulation (for the background to the development of frequency modulation, in the form of a large collection of papers and an extensive bibliog raphy).
    KF

    Biographical history of technology > Armstrong, Edwin Howard

  • 8 Jansky, Karl Guthe

    [br]
    b. 22 October 1905 Norman, Oklahoma, USA
    d. 14 February 1950 Red Bank, New Jersey, USA
    [br]
    American radio engineer who discovered stellar radio emission.
    [br]
    Following graduation from the University of Wisconsin in 1928 and a year of postgraduate study, Jansky joined Bell Telephone Laboratories in New Jersey with the task of establishing the source of interference to telephone communications by radio. To this end he constructed a linear-directional short-wave antenna and eventually, in 1931, he concluded that the interference actually came from the stars, the major source being the constellation Sagittarius in the direction of the centre of the Milky Way. Although he continued to study the propagation of short radio waves and the nature of observed echoes, it was left to others to develop the science of radioastronomy and to use the creation of echoes for radiolocation. Although he received no scientific award for his discovery, Jansky's name is primarily honoured by its use as the unit of stellar radio-emission strength.
    [br]
    Bibliography
    1935, "Directional studies of atmospherics at high frequencies", Proceedings of the Institute of Radio Engineers 23:1,158.
    1935, "A note on the sources of stellar interference", Proceedings of the Institute of Radio
    Engineers.
    1937, "Minimum noise levels obtained on short-wave radio receiving systems", Proceedings of the Institute of Radio Engineers 25:1,517.
    1941, "Measurements of the delay and direction of arrival of echoes from nearby short-wave transmitters", Proceedings of the Institute of Radio Engineers 29:322.
    Further Reading
    P.C.Mahon, 1975, BellLabs, Mission Communication. The Story of the Bell Labs.
    W.I.Sullivan (ed.), 1984, The Early Years of Radio-Astronomy: Reflections 50 Years after Jansky's Discovery, Cambridge: Cambridge University Press.
    KF

    Biographical history of technology > Jansky, Karl Guthe

  • 9 Taylor, Albert Hoyt

    [br]
    b. 1 January 1874 Chicago, Illinois, USA
    d. 11 December 1961 Claremont, California, USA
    [br]
    American radio engineer whose work on radio-detection helped lay the foundations for radar.
    [br]
    Taylor gained his degree in engineering from Northwest University, Evanston, Illinois, then spent a time at the University of Gottingen. On his return to the USA he taught successively at Michigan State University, at Lansing, and at the universities of Wisconsin at Madison and North Dakota at Grand Forks. From 1923 until 1945 he supervised the Radio Division at the US Naval Research Laboratories. There he carried out studies of short-wave radio propagation and confirmed Heaviside's 1925 theory of the reflection characteristics of the ionosphere. In the 1920s and 1930s he investigated radio echoes, and in 1933, with L.C.Young and L.A.Hyland, he filed a patent for a system of radio-detection that contributed to the subsequent development of radar.
    [br]
    Principal Honours and Distinctions
    Institute of Electrical and Electronics Engineers Morris N.Liebmann Memorial Award 1927. President, Institute of Radio Engineers 1929. Institute of Electrical and Electronics Engineers Medal of Honour 1942.
    Bibliography
    1926, with E.O.Hulbert, "The propagation of radio waves over the earth", Physical Review 27:189.
    1936, "The measurement of RF power", Proceedings of the Institute of Radio Engineers 24: 1,342.
    Further Reading
    S.S.Swords, 1986, Technical History of the Beginnings of Radar, London: Peter Peregrinus.
    KF

    Biographical history of technology > Taylor, Albert Hoyt

  • 10 Pierce, John Robinson

    [br]
    b. 27 March 1910 Des Moines, Iowa, USA
    [br]
    American scientist and communications engineer said to be the "father" of communication satellites.
    [br]
    From his high-school days, Pierce showed an interest in science and in science fiction, writing under the pseudonym of J.J.Coupling. After gaining Bachelor's, Master's and PhD degrees at the California Institute of Technology (CalTech) in Pasadena in 1933, 1934 and 1936, respectively, Pierce joined the Bell Telephone Laboratories in New York City in 1936. There he worked on improvements to the travelling-wave tube, in which the passage of a beam of electrons through a helical transmission line at around 7 per cent of the speed of light was made to provide amplification at 860 MHz. He also devised a new form of electrostatically focused electron-multiplier which formed the basis of a sensitive detector of radiation. However, his main contribution to electronics at this time was the invention of the Pierce electron gun—a method of producing a high-density electron beam. In the Second World War he worked with McNally and Shepherd on the development of a low-voltage reflex klystron oscillator that was applied to military radar equipment.
    In 1952 he became Director of Electronic Research at the Bell Laboratories' establishment, Murray Hill, New Jersey. Within two years he had begun work on the possibility of round-the-world relay of signals by means of communication satellites, an idea anticipated in his early science-fiction writings (and by Arthur C. Clarke in 1945), and in 1955 he published a paper in which he examined various possibilities for communications satellites, including passive and active satellites in synchronous and non-synchronous orbits. In 1960 he used the National Aeronautics and Space Administration 30 m (98 1/2 ft) diameter, aluminium-coated Echo 1 balloon satellite to reflect telephone signals back to earth. The success of this led to the launching in 1962 of the first active relay satellite (Telstar), which weighed 170 lb (77 kg) and contained solar-powered rechargeable batteries, 1,000 transistors and a travelling-wave tube capable of amplifying the signal 10,000 times. With a maximum orbital height of 3,500 miles (5,600 km), this enabled a variety of signals, including full bandwidth television, to be relayed from the USA to large receiving dishes in Europe.
    From 1971 until his "retirement" in 1979, Pierce was Professor of Electrical Engineering at CalTech, after which he became Chief Technologist at the Jet Propulsion Laboratories, also in Pasadena, and Emeritus Professor of Engineering at Stanford University.
    [br]
    Principal Honours and Distinctions
    Institute of Electrical and Electronics Engineers Morris N.Liebmann Memorial Award 1947; Edison Medal 1963; Medal of Honour 1975. Franklin Institute Stuart Ballantine Award 1960. National Medal of Science 1963. Danish Academy of Science Valdemar Poulsen Medal 1963. Marconi Award 1974. National Academy of Engineering Founders Award 1977. Japan Prize 1985. Arthur C.Clarke Award 1987. Honorary DEng Newark College of Engineering 1961. Honorary DSc Northwest University 1961, Yale 1963, Brooklyn Polytechnic Institute 1963. Editor, Proceedings of the Institute of Radio Engineers 1954–5.
    Bibliography
    23 October 1956, US patent no. 2,768,328 (his development of the travelling-wave tube, filed on 5 November 1946).
    1947, with L.M.Field, "Travelling wave tubes", Proceedings of the Institute of Radio
    Engineers 35:108 (describes the pioneering improvements to the travelling-wave tube). 1947, "Theory of the beam-type travelling wave tube", Proceedings of the Institution of
    Radio Engineers 35:111. 1950, Travelling Wave Tubes.
    1956, Electronic Waves and Messages. 1962, Symbols, Signals and Noise.
    1981, An Introduction to Information Theory: Symbols, Signals and Noise: Dover Publications.
    1990, with M.A.Knoll, Signals: Revolution in Electronic Communication: W.H.Freeman.
    KF

    Biographical history of technology > Pierce, John Robinson

  • 11 Goldmark, Peter Carl

    [br]
    b. 2 December 1906 Budapest, Hungary
    d. 7 December 1977 Westchester Co., New York, USA
    [br]
    Austro-Hungarian engineer who developed the first commercial colour television system and the long-playing record.
    [br]
    After education in Hungary and a period as an assistant at the Technische Hochschule, Berlin, Goldmark moved to England, where he joined Pye of Cambridge and worked on an experimental thirty-line television system using a cathode ray tube (CRT) for the display. In 1936 he moved to the USA to work at Columbia Broadcasting Laboratories. There, with monochrome television based on the CRT virtually a practical proposition, he devoted his efforts to finding a way of producing colour TV images: in 1940 he gave his first demonstration of a working system. There then followed a series of experimental field-sequential colour TV systems based on segmented red, green and blue colour wheels and drums, where the problem was to find an acceptable compromise between bandwidth, resolution, colour flicker and colour-image breakup. Eventually he arrived at a system using a colour wheel in combination with a CRT containing a panchromatic phosphor screen, with a scanned raster of 405 lines and a primary colour rate of 144 fields per second. Despite the fact that the receivers were bulky, gave relatively poor, dim pictures and used standards totally incompatible with the existing 525-line, sixty fields per second interlaced monochrome (black and white) system, in 1950 the Federal Communications Commission (FCC), anxious to encourage postwar revival of the industry, authorized the system for public broadcasting. Within eighteen months, however, bowing to pressure from the remainder of the industry, which had formed its own National Television Systems Committee (NTSC) to develop a much more satisfactory, fully compatible system based on the RCA three-gun shadowmask CRT, the FCC withdrew its approval.
    While all this was going on, Goldmark had also been working on ideas for overcoming the poor reproduction, noise quality, short playing-time (about four minutes) and limited robustness and life of the long-established 78 rpm 12 in. (30 cm) diameter shellac gramophone record. The recent availability of a new, more robust, plastic material, vinyl, which had a lower surface noise, enabled him in 1948 to reduce the groove width some three times to 0.003 in. (0.0762 mm), use a more lightly loaded synthetic sapphire stylus and crystal transducer with improved performance, and reduce the turntable speed to 33 1/3 rpm, to give thirty minutes of high-quality music per side. This successful development soon led to the availability of stereophonic recordings, based on the ideas of Alan Blumlein at EMI in the 1930s.
    In 1950 Goldmark became a vice-president of CBS, but he still found time to develop a scan conversion system for relaying television pictures to Earth from the Lunar Orbiter spacecraft. He also almost brought to the market a domestic electronic video recorder (EVR) system based on the thermal distortion of plastic film by separate luminance and coded colour signals, but this was overtaken by the video cassette recorder (VCR) system, which uses magnetic tape.
    [br]
    Principal Honours and Distinctions
    Institute of Electrical and Electronics Engineers Morris N.Liebmann Award 1945. Institute of Electrical and Electronics Engineers Vladimir K. Zworykin Award 1961.
    Bibliography
    1951, with J.W.Christensen and J.J.Reeves, "Colour television. USA Standard", Proceedings of the Institute of Radio Engineers 39: 1,288 (describes the development and standards for the short-lived field-sequential colour TV standard).
    1949, with R.Snepvangers and W.S.Bachman, "The Columbia long-playing microgroove recording system", Proceedings of the Institute of Radio Engineers 37:923 (outlines the invention of the long-playing record).
    Further Reading
    E.W.Herold, 1976, "A history of colour television displays", Proceedings of the Institute of Electrical and Electronics Engineers 64:1,331.
    KF

    Biographical history of technology > Goldmark, Peter Carl

  • 12 Watson-Watt, Sir Robert Alexander

    [br]
    b. 13 April 1892 Brechin, Angus, Scotland
    d. 6 December 1973 Inverness, Scotland
    [br]
    Scottish engineer and scientific adviser known for his work on radar.
    [br]
    Following education at Brechin High School, Watson-Watt entered University College, Dundee (then a part of the University of St Andrews), obtaining a BSc in engineering in 1912. From 1912 until 1921 he was Assistant to the Professor of Natural Philosophy at St Andrews, but during the First World War he also held various posts in the Meteorological Office. During. this time, in 1916 he proposed the use of cathode ray oscillographs for radio-direction-finding displays. He joined the newly formed Radio Research Station at Slough when it was opened in 1924, and 3 years later, when it amalgamated with the Radio Section of the National Physical Laboratory, he became Superintendent at Slough. At this time he proposed the name "ionosphere" for the ionized layer in the upper atmosphere. With E.V. Appleton and J.F.Herd he developed the "squegger" hard-valve transformer-coupled timebase and with the latter devised a direction-finding radio-goniometer.
    In 1933 he was asked to investigate possible aircraft counter-measures. He soon showed that it was impossible to make the wished-for radio "death-ray", but had the idea of using the detection of reflected radio-waves as a means of monitoring the approach of enemy aircraft. With six assistants he developed this idea and constructed an experimental system of radar (RAdio Detection And Ranging) in which arrays of aerials were used to detect the reflected signals and deduce the bearing and height. To realize a practical system, in September 1936 he was appointed Director of the Bawdsey Research Station near Felixstowe and carried out operational studies of radar. The result was that within two years the East Coast of the British Isles was equipped with a network of radar transmitters and receivers working in the 7–14 metre band—the so-called "chain-home" system—which did so much to assist the efficient deployment of RAF Fighter Command against German bombing raids on Britain in the early years of the Second World War.
    In 1938 he moved to the Air Ministry as Director of Communications Development, becoming Scientific Adviser to the Air Ministry and Ministry of Aircraft Production in 1940, then Deputy Chairman of the War Cabinet Radio Board in 1943. After the war he set up Sir Robert Watson-Watt \& Partners, an industrial consultant firm. He then spent some years in relative retirement in Canada, but returned to Scotland before his death.
    [br]
    Principal Honours and Distinctions
    Knighted 1942. CBE 1941. FRS 1941. US Medal of Merit 1946. Royal Society Hughes Medal 1948. Franklin Institute Elliot Cresson Medal 1957. LLD St Andrews 1943. At various times: President, Royal Meteorological Society, Institute of Navigation and Institute of Professional Civil Servants; Vice-President, American Institute of Radio Engineers.
    Bibliography
    1923, with E.V.Appleton \& J.F.Herd, British patent no. 235,254 (for the "squegger"). 1926, with J.F.Herd, "An instantaneous direction reading radio goniometer", Journal of
    the Institution of Electrical Engineers 64:611.
    1933, The Cathode Ray Oscillograph in Radio Research.
    1935, Through the Weather Hours (autobiography).
    1936, "Polarisation errors in direction finders", Wireless Engineer 13:3. 1958, Three Steps to Victory.
    1959, The Pulse of Radar.
    1961, Man's Means to his End.
    Further Reading
    S.S.Swords, 1986, Technical History of the Beginnings of Radar, Stevenage: Peter Peregrinus.
    KF

    Biographical history of technology > Watson-Watt, Sir Robert Alexander

  • 13 Pierce, George Washington

    [br]
    b. 11 January 1872 Austin, Texas, USA
    d. 25 August 1956 Franklin, New Hampshire, USA
    [br]
    American physicist who made various contributions to electronics, particularly crystal oscillators.
    [br]
    Pierce entered the University of Texas in 1890, gaining his BSc in physics in 1893 and his MSc in 1894. After teaching and doing various odd jobs, in 1897 he obtained a scholarship to Harvard, obtaining his PhD three years later. Following a period at the University of Leipzig, he returned to the USA in 1903 to join the teaching staff at Harvard, where he soon established new courses and began to gain a reputation as a pioneer in electronics, including the study of crystal rectifiers and publication of a textbook on wireless telegraphy. In 1912, with Kennelly, he conceived the idea of motional impedance. The same year he was made first Director of Harvard's Cruft High- Tension Electrical Laboratory, a post he held until his retirement. In 1917 he was appointed Professor of Physics, and for the remainder of the First World War he was also involved in work on submarine detection at the US Naval Base in New London. In 1921 he was appointed Rumford Professor of Physics and became interested in the work of Walter Cady on crystal-controlled circuits. As a result of this he patented the Pierce crystal oscillator in 1924. Having discovered the magnetostriction property of nickel and nichrome, in 1928 he also invented the magnetostriction oscillator. The mercury-vapour discharge lamp is also said to have been his idea. He became Gordon McKay Professor of Physics and Communications in 1935 and retired from Harvard in 1940, but he remained active for the rest of his life with the study of sound generation by birds and insects.
    [br]
    Principal Honours and Distinctions
    President, Institute of Radio Engineers 1918–19. Institute of Electrical and Electronics Engineers Medal of Honour 1929.
    Bibliography
    1910, Principles of Wireless Telegraphy.
    1914, US patent no. 1,450,749 (a mercury vapour tube control circuit). 1919, Electrical Oscillations and Electric Waves.
    1922, "The piezo-electric Resonator", Proceedings of the Institute of Radio Engineers 10:83.
    Further Reading
    F.E.Terman, 1943, Radio Engineers'Handbook, New York: McGraw-Hill (for details of piezo-electric crystal oscillator circuits).
    KF

    Biographical history of technology > Pierce, George Washington

  • 14 Farnsworth, Philo Taylor

    [br]
    b. 19 August 1906 Beaver, Utah, USA
    d. 11 March 1971 Salt Lake City, Utah, USA
    [br]
    American engineer and independent inventor who was a pioneer in the development of television.
    [br]
    Whilst still in high school, Farnsworth became interested in the possibility of television and conceived many of the basic features of a practicable system of TV broadcast and reception. Following two years of study at the Brigham Young University in Provo, Utah, in 1926 he cofounded the Crocker Research Laboratories in San Francisco, subsequently Farnsworth Television Inc. (1929) and Farnsworth Radio \& Television Corporation, Fort Wayne, Indiana (1938). There he began a lifetime of research, primarily in the field of television. In 1927, with the backing of the Radio Corporation of America (RCA) and the collaboration of Vladimir Zworykin, he demonstrated the first all-electronic television system, based on his early ideas for an image dissector tube, the first electronic equivalent of the Nipkow disc. With this rudimentary sixty-line system he was able to transmit a recognizable dollar sign and file the first of many TV patents. From then on he contributed to a variety of developments in the fields of vacuum tubes, radar and atomic-power generation, with patents on cathode ray tubes, amplifying and pick-up tubes, electron multipliers and photoelectric materials.
    [br]
    Principal Honours and Distinctions
    Institute of Radio Engineers Morris Leibmann Memorial Prize 1941.
    Bibliography
    1930, British patent nos. 368,309 and 368,721 (for his image dissector).
    1934, "Television by electron image scanning", Journal of the Franklin Institute 218:411 (describes the complete image-dissector system).
    Further Reading
    J.H.Udelson, 1982, The Great Television Race: A History of the American Television Industry 1925–1941, University of Alabama Press.
    O.E.Dunlop Jr, 1944, Radio's 100 Men of Science.
    G.R.M.Garratt \& A.H.Mumford, 1952, "The history of television", Proceedings of the Institution of Electrical Engineers III A Television 99.
    KF

    Biographical history of technology > Farnsworth, Philo Taylor

  • 15 Kompfner, Rudolph

    [br]
    b. 16 May 1909 Vienna, Austria
    d. 3 December 1977 Stanford, California, USA
    [br]
    Austrian (naturalized English in 1949, American in 1957) electrical engineer primarily known for his invention of the travelling-wave tube.
    [br]
    Kompfner obtained a degree in engineering from the Vienna Technische Hochschule in 1931 and qualified as a Diplom-Ingenieur in Architecture two years later. The following year, with a worsening political situation in Austria, he moved to England and became an architectural apprentice. In 1936 he became Managing Director of a building firm owned by a relative, but at the same time he was avidly studying physics and electronics. His first patent, for a television pick-up device, was filed in 1935 and granted in 1937, but was not in fact taken up. In June 1940 he was interned on the Isle of Man, but as a result of a paper previously sent by him to the Editor of Wireless Engineer he was released the following December and sent to join the group at Birmingham University working on centimetric radar. There he worked on klystrons, with little success, but as a result of the experience gained he eventually invented the travelling-wave tube (TWT), which was based on a helical transmission line. After disbandment of the Birmingham team, in 1946 Kompfner moved to the Clarendon Laboratory at Oxford and in 1947 he became a British subject. At the Clarendon Laboratory he met J.R. Pierce of Bell Laboratories, who worked out the theory of operation of the TWT. After gaining his DPhil at Oxford in 1951, Kompfner accepted a post as Principal Scientific Officer at Signals Electronic Research Laboratories, Baldock, but very soon after that he was invited by Pierce to work at Bell on microwave tubes. There, in 1952, he invented the backward-wave oscillator (BWO). He was appointed Director of Electronics Research in 1955 and Director of Communications Research in 1962, having become a US citizen in 1957. In 1958, with Pierce, he designed Echo 1, the first (passive) satellite, which was launched in August 1960. He was also involved with the development of Telstar, the first active communications satellite, which was launched in 1962. Following his retirement from Bell in 1973, he continued to pursue research, alternately at Stanford, California, and Oxford, England.
    [br]
    Principal Honours and Distinctions
    Physical Society Duddell Medal 1955. Franklin Institute Stuart Ballantine Medal 1960. Institute of Electrical and Electronics Engineers David Sarnoff Award 1960. Member of the National Academy of Engineering 1966. Member of the National Academy of Science 1968. Institute of Electrical and Electronics Engineers Medal of Honour 1973. City of Philadelphia John Scott Award 1974. Roentgen Society Silvanus Thompson Medal 1974. President's National medal of Science 1974. Honorary doctorates Vienna 1965, Oxford 1969.
    Bibliography
    1944, "Velocity modulated beams", Wireless Engineer 17:262.
    1942, "Transit time phenomena in electronic tubes", Wireless Engineer 19:3. 1942, "Velocity modulating grids", Wireless Engineer 19:158.
    1946, "The travelling-wave tube", Wireless Engineer 42:369.
    1964, The Invention of the TWT, San Francisco: San Francisco Press.
    Further Reading
    J.R.Pierce, 1992, "History of the microwave tube art", Proceedings of the Institute of Radio Engineers: 980.
    KF

    Biographical history of technology > Kompfner, Rudolph

  • 16 Cady, Walter Guyton

    [br]
    b. 10 December 1874 Providence, Rhode Island, USA
    d. 9 December 1974 Providence, Rhode Island, USA
    [br]
    American physicist renowned for his pioneering work on piezo-electricity.
    [br]
    After obtaining BSc and MSc degrees in physics at Brown University in 1896 and 1897, respectively, Cady went to Berlin, obtaining his PhD in 1900. Returning to the USA he initially worked for the US Coast and Geodetic Survey, but in 1902 he took up a post at the Wesleyan University, Connecticut, remaining as Professor of Physics from 1907 until his retirement in 1946. During the First World War he became interested in piezo-electricity as a result of attending a meeting on techniques for detecting submarines, and after the war he continued to work on the use of piezo-electricity as a transducer for generating sonar beams. In the process he discovered that piezo-electric materials, such as quartz, exhibited high-stability electrical resonance, and in 1921 he produced the first working piezo-electric resonator. This idea was subsequently taken up by George Washington Pierce and others, resulting in very stable oscillators and narrow-band filters that are widely used in the 1990s in radio communications, electronic clocks and watches.
    Internationally known for his work, Cady retired from his professorship in 1946, but he continued to work for the US Navy. From 1951 to 1955 he was a consultant and research associate at the California Institute of Technology, after which he returned to Providence to continue research at Brown, filing his last patent (one of over fifty) at the age of 93 years.
    [br]
    Principal Honours and Distinctions
    President, Institute of Radio Engineers 1932. London Physical Society Duddell Medal. Institute of Electrical and Electronics Engineers Morris N.Liebmann Memorial Prize 1928.
    Bibliography
    28 January 1920, US patent no. 1,450,246 (piezo-electric resonator).
    1921, "The piezo-electric resonator", Physical Review 17:531. 1946, Piezoelectricity, New York: McGraw Hill (his classic work).
    Further Reading
    B.Jaffe, W.R.Cooke \& H.Jaffe, 1971, Piezoelectric Ceramics.
    KF

    Biographical history of technology > Cady, Walter Guyton

  • 17 Zworykin, Vladimir Kosma

    [br]
    b. 30 July 1889 Mourum (near Moscow), Russia
    d. 29 July 1982 New York City, New York, USA
    [br]
    Russian (naturalized American 1924) television pioneer who invented the iconoscope and kinescope television camera and display tubes.
    [br]
    Zworykin studied engineering at the Institute of Technology in St Petersburg under Boris Rosing, assisting the latter with his early experiments with television. After graduating in 1912, he spent a time doing X-ray research at the Collège de France in Paris before returning to join the Russian Marconi Company, initially in St Petersburg and then in Moscow. On the outbreak of war in 1917, he joined the Russian Army Signal Corps, but when the war ended in the chaos of the Revolution he set off on his travels, ending up in the USA, where he joined the Westinghouse Corporation. There, in 1923, he filed the first of many patents for a complete system of electronic television, including one for an all-electronic scanning pick-up tube that he called the iconoscope. In 1924 he became a US citizen and invented the kinescope, a hard-vacuum cathode ray tube (CRT) for the display of television pictures, and the following year he patented a camera tube with a mosaic of photoelectric elements and gave a demonstration of still-picture TV. In 1926 he was awarded a PhD by the University of Pittsburgh and in 1928 he was granted a patent for a colour TV system.
    In 1929 he embarked on a tour of Europe to study TV developments; on his return he joined the Radio Corporation of America (RCA) as Director of the Electronics Research Group, first at Camden and then Princeton, New Jersey. Securing a budget to develop an improved CRT picture tube, he soon produced a kinescope with a hard vacuum, an indirectly heated cathode, a signal-modulation grid and electrostatic focusing. In 1933 an improved iconoscope camera tube was produced, and under his direction RCA went on to produce other improved types of camera tube, including the image iconoscope, the orthicon and image orthicon and the vidicon. The secondary-emission effect used in many of these tubes was also used in a scintillation radiation counter. In 1941 he was responsible for the development of the first industrial electron microscope, but for most of the Second World War he directed work concerned with radar, aircraft fire-control and TV-guided missiles.
    After the war he worked for a time on high-speed memories and medical electronics, becoming Vice-President and Technical Consultant in 1947. He "retired" from RCA and was made an honorary vice-president in 1954, but he retained an office and continued to work there almost up until his death; he also served as Director of the Rockefeller Institute for Medical Research from 1954 until 1962.
    [br]
    Principal Honours and Distinctions
    Zworykin received some twenty-seven awards and honours for his contributions to television engineering and medical electronics, including the Institution of Electrical Engineers Faraday Medal 1965; US Medal of Science 1966; and the US National Hall of Fame 1977.
    Bibliography
    29 December 1923, US patent no. 2,141, 059 (the original iconoscope patent; finally granted in December 1938!).
    13 July 1925, US patent no. 1,691, 324 (colour television system).
    1930, with D.E.Wilson, Photocells and Their Applications, New York: Wiley. 1934, "The iconoscope. A modern version of the electric eye". Proceedings of the
    Institute of Radio Engineers 22:16.
    1946, Electron Optics and the Electron Microscope.
    1940, with G.A.Morton, Television; revised 1954.
    Further Reading
    J.H.Udelson, 1982, The Great Television Race: History of the Television Industry 1925– 41: University of Alabama Press.
    KF

    Biographical history of technology > Zworykin, Vladimir Kosma

  • 18 Popov, Aleksandr Stepanovich

    [br]
    b. 16 March 1859 Bogoslavsky, Zamod, Ural District, Russia
    d. 13 January 1906 St Petersburg, Russia
    [br]
    Russian physicist and electrical engineer acclaimed by the former Soviet Union as the inventor of radio.
    [br]
    Popov, the son of a village priest, received his early education in a seminary, but in 1877 he entered the University of St Petersburg to study mathematics. He graduated with distinction in 1883 and joined the faculty to teach mathematics and physics. Then, increasingly interested in electrical engineering, he became an instructor at the Russian Navy Torpedo School at Krondstadt, near St Petersburg, where he later became a professor. On 7 May 1895 he is said to have transmitted and received Morse code radio signals over a distance of 40 m (130 ft) in a demonstration given at St Petersburg University to the Russian Chemical Society, but in a paper published in January 1896 in the Journal of the Russian Physical and Chemical Society, he in fact described the use of a coherer for recording atmospheric disturbances such as lightning, together with the design of a modified coherer intended for reception at a distance of 5 km (3 miles). Subsequently, on 26 November 1897, after Marconi's own radio-transmission experiments had been publicized, he wrote a letter claiming priority for his discovery to the English-language journal Electrician, in the form of a translated précis of his original paper, but neither the original Russian paper nor the English précis made specific claims of either a receiver or a transmitter as such. However, by 1898 he had certainly developed some form of ship-to-shore radio for the Russian Navy. In 1945, long after the Russian revolution, the communist regime supported his claim to be the inventor of radio, but this is a matter for much debate and the priority of Marconi's claim is generally acknowledged outside the USSR.
    [br]
    Bibliography
    1896, Journal of the Russian Physical and Chemical Society (his original paper in Russian).
    1897, Electrician 40:235 (the English précis).
    Further Reading
    C.Susskind, 1962, "Popov and the beginnings of radio telegraphy", Proceedings of the Institute of Radio Engineers 50:2,036.
    ——1964, Marconi, Popov and the dawn of radiocommunication', Electronics and Power, London: Institution of Electrical Engineers, 10:76.
    KF

    Biographical history of technology > Popov, Aleksandr Stepanovich

  • 19 Институт радиоинженеров

    Универсальный русско-английский словарь > Институт радиоинженеров

  • 20 Marrison, Warren Alvin

    [br]
    b. 21 May 1896 Inverary, Canada
    d. 27 March 1980 Palo Verdes Estates, California, USA
    [br]
    Canadian (naturalized American) electrical engineer, pioneer of the quartz clock.
    [br]
    Marrison received his high-school education at Kingston Collegiate Institute, Ontario, and in 1914 he entered Queen's University in Kingston. He graduated in Engineering Physics in 1920, his college career having been interrupted by war service in the Royal Flying Corps. During his service in the Flying Corps he worked on radio, and when he returned to Kingston he established his own transmitter. This interest in radio was later to influence his professional life.
    In 1921 he entered Harvard University, where he obtained an MA, and shortly afterwards he joined the Western Electric Company in New York to work on the recording of sound on film. In 1925 he transferred to Western Electric's Bell Laboratory, where he began what was to become his life's work: the development of frequency standards for radio transmission. In 1922 Cady had used the elastic vibration of a quartz crystal to control the frequency of a valve oscillator, but at that time there was no way of counting and displaying the number of vibrations as the frequency was too high. In 1927 Marrison succeeded in dividing the frequency electronically until it was low enough to drive a synchronous motor. Although his purpose was to determine the frequency accurately by counting the number of vibrations that occurred in a given time, he had incidentally produced the first quartz-crystal -ontrolled clock. The results were sufficiently encouraging for him to build an improved version the following year, specifically as a time and frequency standard.
    [br]
    Principal Honours and Distinctions
    British Horological Institute Gold Medal 1947. Clockmakers' Company Tompion Medal 1955.
    Bibliography
    1928, with J.W.Horton, "Precision measurement of frequency", Proceedings of the Institute of Radio Engineers 16:137–54 (provides details of the original quartz clock, although it was not described as such).
    1930, "The crystal clock", Proceedings of the National Academy of Sciences 16:496–507 (describes the second clock).
    Further Reading
    W.R.Topham, 1989, "Warren A.Marrison—pioneer of the quartz revolution", NAWCC Bulletin 31(2):126–34.
    J.D.Weaver, 1982, Electrical and Electronic Clocks and Watches, London (a technical assessment of his work on the quartz clock).
    DV

    Biographical history of technology > Marrison, Warren Alvin

См. также в других словарях:

  • Institute of Radio Engineers — Following several attempts to form a technical organization of wireless practitioners in 1908 1912, the Institute of Radio Engineers (IRE) was finally established in 1912 in New York. Among its founding organizations were the Society of Wireless… …   Wikipedia

  • Institute of Radio Engineers — Das Institute of Radio Engineers, abgekürzt IRE, war von 13. Mai 1912 bis 1. Januar 1963 ein amerikanischer Berufsverband von Ingenieuren aus den Bereichen Elektrotechnik mit Sitz in New York City. Anfang 1963 entstand aus dem Zusammenschluss der …   Deutsch Wikipedia

  • American Institute of Electrical Engineers — The American Institute of Electrical Engineers was a United States based organization of electrical engineers that existed between 1884 and 1963 (when it merged with the Institute of Radio Engineers (IRE)). The 1884 founders of the American… …   Wikipedia

  • British Institution of Radio Engineers — For the American equivalent, see Institute of Radio Engineers. The British Institution of Radio Engineers was a professional organization for radio engineers.[1] It was founded in 1925.[2] The main aim of the Institution was the advancement of… …   Wikipedia

  • American Institute of Electrical Engineers — L American Institute of Electrical Engineers (AIEE) (en français : l « Institut américain des ingénieurs électriciens ») était une organisation américaine créée par des ingénieurs électriciens, de 1884 à 1963[1]. Les ingénieurs qui …   Wikipédia en Français

  • American Institute of Electrical Engineers — Das American Institute of Electrical Engineers (AIEE) war ein US amerikanischer Berufsverband von Elektrotechnikern mit Sitz in New York. Er wurde im Frühjahr 1884 gegründet und fusionierte am 1. Januar 1963 mit dem Institute of Radio Engineers… …   Deutsch Wikipedia

  • Institute of Electrical and Electronics Engineers — (IEEE) Zweck: Förderung technologischer Innovationen zum Nutzen der Menschheit Vorsitz: Moshe Kam Gründungsdatum …   Deutsch Wikipedia

  • Institute of Electrical and Electronics Engineers — Infobox Non profit Non profit name = Institute of Electrical and Electronics Engineers Non profit Non profit type = Professional Organization founded date = January 1, 1963 founder = location = origins = Merger of the American Institute of… …   Wikipedia

  • Institute of Electrical and Electronics Engineers — Logo de l’IEEE L’Institute of Electrical and Electronics Engineers ou IEEE (que l’on peut prononcer « ail triple i » ou « i trois e »), en français l « Institut des ingénieurs électriciens et électroniciens » est une …   Wikipédia en Français

  • Invention of radio — Great Radio Controversy redirects here. For the album by the band Tesla, see The Great Radio Controversy. Contents 1 Physics of wireless signalling 2 Theory of electromagnetism …   Wikipedia

  • Society of Broadcast Engineers — The Society of Broadcast Engineers or SBE is a professional organization for engineers in broadcast radio and television. The SBE also offers certification in various radio frequency and audio technology areas for its members. History The Society …   Wikipedia

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»