Перевод: со всех языков на все языки

со всех языков на все языки

information+consultant+es

  • 101 Kepner, Charles Higgins

    (b. 1922) Gen Mgt
    U.S. manager and consultant. Originator with Benjamin Tregoe of a methodological approach to decision making based on information gathering, organization, and analysis, which was first explained in the Rational Manager (1965).

    The ultimate business dictionary > Kepner, Charles Higgins

  • 102 Alexanderson, Ernst Frederik Werner

    [br]
    b. 25 January 1878 Uppsala, Sweden
    d. ? May 1975 Schenectady, New York, USA
    [br]
    Swedish-American electrical engineer and prolific radio and television inventor responsible for developing a high-frequency alternator for generating radio waves.
    [br]
    After education in Sweden at the High School and University of Lund and the Royal Institution of Technology in Stockholm, Alexanderson took a postgraduate course at the Berlin-Charlottenburg Engineering College. In 1901 he began work for the Swedish C \& C Electric Company, joining the General Electric Company, Schenectady, New York, the following year. There, in 1906, together with Fessenden, he developed a series of high-power, high-frequency alternators, which had a dramatic effect on radio communications and resulted in the first real radio broadcast. His early interest in television led to working demonstrations in his own home in 1925 and at the General Electric laboratories in 1927, and to the first public demonstration of large-screen (7 ft (2.13 m) diagonal) projection TV in 1930. Another invention of significance was the "amplidyne", a sensitive manufacturing-control system subsequently used during the Second World War for controlling anti-aircraft guns. He also contributed to developments in electric propulsion and radio aerials.
    He retired from General Electric in 1948, but continued television research as a consultant for the Radio Corporation of America (RCA), filing his 321st patent in 1955.
    [br]
    Principal Honours and Distinctions
    Institution of Radio Engineers Medal of Honour 1919. President, IERE 1921. Edison Medal 1944.
    Bibliography
    Publications relating to his work in the early days of radio include: "Magnetic properties of iron at frequencies up to 200,000 cycles", Transactions of the American Institute of Electrical Engineers (1911) 30: 2,443.
    "Transatlantic radio communication", Transactions of the American Institute of Electrical
    Engineers (1919) 38:1,269.
    The amplidyne is described in E.Alexanderson, M.Edwards and K.Boura, 1940, "Dynamo-electric amplifier for power control", Transactions of the American
    Institution of Electrical Engineers 59:937.
    Further Reading
    E.Hawkes, 1927, Pioneers of Wireless, Methuen (provides an account of Alexanderson's work on radio).
    J.H.Udelson, 1982, The Great Television Race: A History of the American Television Industry 1925–1941, University of Alabama Press (provides further details of his contribution to the development of television).
    KF

    Biographical history of technology > Alexanderson, Ernst Frederik Werner

  • 103 Black, Harold Stephen

    [br]
    b. 14 April 1898 Leominster, Massachusetts, USA
    d. 11 December 1983 Summitt, New Jersey, USA
    [br]
    American electrical engineer who discovered that the application of negative feedback to amplifiers improved their stability and reduced distortion.
    [br]
    Black graduated from Worcester Polytechnic Institute, Massachusetts, in 1921 and joined the Western Electric Company laboratories (later the Bell Telephone Laboratories) in New York City. There he worked on a variety of electronic-communication problems. His major contribution was the discovery in 1927 that the application of negative feedback to an amplifier, whereby a fraction of the output signal is fed back to the input in the opposite phase, not only increases the stability of the amplifier but also has the effect of reducing the magnitude of any distortion introduced by it. This discovery has found wide application in the design of audio hi-fi amplifiers and various control systems, and has also given valuable insight into the way in which many animal control functions operate.
    During the Second World War he developed a form of pulse code modulation (PCM) to provide a practicable, secure telephony system for the US Army Signal Corps. From 1963–6, after his retirement from the Bell Labs, he was Principal Research Scientist with General Precision Inc., Little Falls, New Jersey, following which he became an independent consultant in communications. At the time of his death he held over 300 patents.
    [br]
    Principal Honours and Distinctions
    Institute of Electronic and Radio Engineers Lamme Medal 1957.
    Bibliography
    1934, "Stabilised feedback amplifiers", Electrical Engineering 53:114 (describes the principles of negative feedback).
    21 December 1937, US patent no. 2,106,671 (for his negative feedback discovery.
    1947, with J.O.Edson, "Pulse code modulation", Transactions of the American Institute of Electrical Engineers 66:895.
    1946, "A multichannel microwave radio relay system", Transactions of the American Institute of Electrical Engineers 65:798.
    1953, Modulation Theory, New York: D.van Nostrand.
    1988, Laboratory Management: Principles \& Practice, New York: Van Nostrand Rheinhold.
    Further Reading
    For early biographical details see "Harold S. Black, 1957 Lamme Medalist", Electrical Engineering (1958) 77:720; "H.S.Black", Institute of Electrical and Electronics Engineers Spectrum (1977) 54.
    KF

    Biographical history of technology > Black, Harold Stephen

  • 104 Burks, Arthur Walter

    [br]
    b. 13 October 1915 Duluth, Minnesota, USA
    [br]
    American engineer involved in the development of the ENIAC and Whirlwind computers.
    [br]
    After obtaining his AB degree from De Pere University, Wisconsin (1937), and his AM and PhD from the University of Michigan (1938 and 1941, respectively), Burks carried out research at the Moore School of Engineering, University of Pennsylvania, during the Second World War, and at the same time taught philosophy in another department. There, with Herman Goldstine, he was involved in the construction of ENIAC (the Electronic Numerical Integrator and Computer).
    In 1946 he took a post as Assistant Professor of Engineering at Michigan University, and subsequently became Associate Professor (1948) and Full Professor (1954). Between 1946 and 1948 he was also associated with the computer activities of John von Neumann at the Institute of Advanced Studies, Princeton, and was involved in the development of the Whirlwind I computer (the first stored-program computer) by Jay Forrester at the Massachusetts Institute of Technology. From 1948 until 1954 he was a consultant for the Burroughs Corporation and also contributed to the Oak Ridge computer ORACLE. He was Chairman of the Michigan University Department of Communications Science in 1967–71 and at various times was Visiting Professor at Harvard University and the universities of Illinois and Stanford. In 1975 he became Editor of the Journal of Computer and System Sciences.
    [br]
    Bibliography
    1946. "Super electronic computing machine", Electronics Industry 62.
    1947. "Electronic computing circuits of the ENIAC", Proceedings of the Institute of Radio Engineers 35:756.
    1980, "From ENIAC to the stored program computer. Two revolutions in computing", in N.Metropolis, J.Hewlett \& G.-C.Rota (eds), A History of Computing in the 20th Century, London: Academic Press.
    Further Reading
    J.W.Corlada, 1987, Historical Dictionary of Data Processing (provides further details of Burk's career).
    KF

    Biographical history of technology > Burks, Arthur Walter

  • 105 Cady, Walter Guyton

    [br]
    b. 10 December 1874 Providence, Rhode Island, USA
    d. 9 December 1974 Providence, Rhode Island, USA
    [br]
    American physicist renowned for his pioneering work on piezo-electricity.
    [br]
    After obtaining BSc and MSc degrees in physics at Brown University in 1896 and 1897, respectively, Cady went to Berlin, obtaining his PhD in 1900. Returning to the USA he initially worked for the US Coast and Geodetic Survey, but in 1902 he took up a post at the Wesleyan University, Connecticut, remaining as Professor of Physics from 1907 until his retirement in 1946. During the First World War he became interested in piezo-electricity as a result of attending a meeting on techniques for detecting submarines, and after the war he continued to work on the use of piezo-electricity as a transducer for generating sonar beams. In the process he discovered that piezo-electric materials, such as quartz, exhibited high-stability electrical resonance, and in 1921 he produced the first working piezo-electric resonator. This idea was subsequently taken up by George Washington Pierce and others, resulting in very stable oscillators and narrow-band filters that are widely used in the 1990s in radio communications, electronic clocks and watches.
    Internationally known for his work, Cady retired from his professorship in 1946, but he continued to work for the US Navy. From 1951 to 1955 he was a consultant and research associate at the California Institute of Technology, after which he returned to Providence to continue research at Brown, filing his last patent (one of over fifty) at the age of 93 years.
    [br]
    Principal Honours and Distinctions
    President, Institute of Radio Engineers 1932. London Physical Society Duddell Medal. Institute of Electrical and Electronics Engineers Morris N.Liebmann Memorial Prize 1928.
    Bibliography
    28 January 1920, US patent no. 1,450,246 (piezo-electric resonator).
    1921, "The piezo-electric resonator", Physical Review 17:531. 1946, Piezoelectricity, New York: McGraw Hill (his classic work).
    Further Reading
    B.Jaffe, W.R.Cooke \& H.Jaffe, 1971, Piezoelectric Ceramics.
    KF

    Biographical history of technology > Cady, Walter Guyton

  • 106 Campbell-Swinton, Alan Archibald

    [br]
    b. 18 October 1863 Kimmerghame, Berwickshire, Scotland
    d. 19 February 1930 London, England
    [br]
    Scottish electrical engineer who correctly predicted the development of electronic television.
    [br]
    After a time at Cargilfield Trinity School, Campbell-Swinton went to Fettes College in Edinburgh from 1878 to 1881 and then spent a year abroad in France. From 1882 until 1887 he was employed at Sir W.G.Armstrong's works in Elswick, Newcastle, following which he set up his own electrical contracting business in London. This he gave up in 1904 to become a consultant. Subsequently he was an engineer with many industrial companies, including the W.T.Henley Telegraph Works Company, Parson Marine Steam Turbine Company and Crompton Parkinson Ltd, of which he became a director. During this time he was involved in electrical and scientific research, being particularly associated with the development of the Parson turbine.
    In 1903 he tried to realize distant electric vision by using a Braun oscilloscope tube for the. image display, a second tube being modified to form a synchronously scanned camera, by replacing the fluorescent display screen with a photoconductive target. Although this first attempt at what was, in fact, a vidicon camera proved unsuccessful, he was clearly on the right lines and in 1908 he wrote a letter to Nature with a fairly accurate description of the principles of an all-electronic television system using magnetically deflected cathode ray tubes at the camera and receiver, with the camera target consisting of a mosaic of photoconductive elements that were scanned and discharged line by line by an electron beam. He expanded on his ideas in a lecture to the Roentgen Society, London, in 1911, but it was over twenty years before the required technology had advanced sufficiently for Shoenberg's team at EMI to produce a working system.
    [br]
    Principal Honours and Distinctions
    FRS (Member of Council 1927 and 1929). Freeman of the City of London. Liveryman of Goldsmiths' Company. First President, Wireless Society 1920–1. Vice-President, Royal Society of Arts, and Chairman of Council 1917–19,1920–2. Chairman, British Scientific Research Association. Vice-President, British Photographic Research Association. Member of the Broadcasting Board 1924. Vice-President, Roentgen Society 1911–12. Vice-President, Institution of Electrical Engineers 1921–5. President, Radio Society of Great Britain 1913–21. Manager, Royal Institution 1912–15.
    Bibliography
    1908, Nature 78:151; 1912, Journal of the Roentgen Society 8:1 (both describe his original ideas for electronic television).
    1924, "The possibilities of television", Wireless World 14:51 (gives a detailed description of his proposals, including the use of a threestage valve video amplifier).
    1926, Nature 118:590 (describes his early experiments of 1903).
    Further Reading
    The Proceedings of the International Conference on the History of Television. From Early Days to the Present, November 1986, Institution of Electrical Engineers Publication No. 271 (a report of some of the early developments in television). A.A.Campbell-Swinton FRS 1863–1930, Royal Television Society Monograph, 1982, London (a biography).
    KF

    Biographical history of technology > Campbell-Swinton, Alan Archibald

  • 107 Eccles, William Henry

    [br]
    b. 23 August 1875 Ulverston, Cumbria, England
    d. 27 April 1966 Oxford, England
    [br]
    English physicist who made important contributions to the development of radio communications.
    [br]
    After early education at home and at private school, Eccles won a scholarship to the Royal College of Science (now Imperial College), London, where he gained a First Class BSc in physics in 1898. He then worked as a demonstrator at the college and studied coherers, for which he obtained a DSc in 1901. Increasingly interested in electrical engineering, he joined the Marconi Company in 1899 to work on oscillators at the Poole experimental radio station, but in 1904 he returned to academic life as Professor of Mathematics and Physics and Department Head at South West Polytechnic, Chelsea. There he discovered ways of using the negative resistance of galena-crystal detectors to generate oscillations and gave a mathematical description of the operation of the triode valve. In 1910 he became Reader in Engineering at University College, London, where he published a paper explaining the reflection of radio waves by the ionosphere and designed a 60 MHz short-wave transmitter. From 1916 to 1926 he was Professor of Applied Physics and Electrical Engineering at the Finsbury City \& Guilds College and a private consulting engineer. During the First World War he was a military scientific adviser and Secretary to the Joint Board of Scientific Societies. After the war he made many contributions to electronic-circuit development, many of them (including the Eccles-Jordan "flip-flop" patented in 1918 and used in binary counters) in conjunction with F.W.Jordan, about whom little seems to be known. Illness forced Eccles's premature academic retirement in 1926, but he remained active as a consultant for many years.
    [br]
    Principal Honours and Distinctions
    FRS 1921. President, Institution of Electrical Engineers, 1926–7. President, Physical Society 1929. President, Radio Society of Great Britain.
    Bibliography
    1912, "On the diurnal variation of the electric waves occurring in nature and on the propagation of electric waves round the bend of the earth", Proceedings of the Royal Society 87:79. 1919, with F.W.Jordan, "Method of using two triode valves in parallel for generating oscillations", Electrician 299:3.
    1915, Handbook of Wireless Telegraphy.
    1921, Continuous Wave Wireless Telegraphy.
    Further Reading
    1971, "William Henry Eccles, 1875–1966", Biographical Memoirs of the Royal Society, London, 17.
    KF

    Biographical history of technology > Eccles, William Henry

  • 108 Goldstine, Herman H.

    [br]
    b. 13 September 1913 USA
    [br]
    American mathematician largely responsible for the development of ENIAC, an early electronic computer.
    [br]
    Goldstine studied mathematics at the University of Chicago, Illinois, gaining his PhD in 1936. After teaching mathematics there, he moved to a similar position at the University of Michigan in 1939, becoming an assistant professor. After the USA entered the Second World War, in 1942 he joined the army as a lieutenant in the Ballistic Missile Research Laboratory at the Aberdeen Proving Ground in Maryland. He was then assigned to the Moore School of Engineering at the University of Pennsylvania, where he was involved with Arthur Burks in building the valve-based Electronic Numerical Integrator and Computer (ENIAC) to compute ballistic tables. The machine was completed in 1946, but prior to this Goldstine had met John von Neumann of the Institute for Advanced Studies (IAS) at Princeton, New Jersey, and active collaboration between them had already begun. After the war he joined von Neumann as Assistant Director of the Computer Project at the Institute of Advanced Studies, Princeton, becoming its Director in 1954. There he developed the idea of computer-flow diagrams and, with von Neumann, built the first computer to use a magnetic drum for data storage. In 1958 he joined IBM as Director of the Mathematical Sciences Department, becoming Director of Development at the IBM Data Processing Headquarters in 1965. Two years later he became a Research Consultant, and in 1969 he became an IBM Research Fellow.
    [br]
    Principal Honours and Distinctions
    Goldstine's many awards include three honorary degrees for his contributions to the development of computers.
    Bibliography
    1946, with A.Goldstine, "The Electronic Numerical Integrator and Computer (ENIAC)", Mathematical Tables and Other Aids to Computation 2:97 (describes the work on ENIAC).
    1946, with A.W.Burks and J.von Neumann, "Preliminary discussions of the logical design of an electronic computing instrument", Princeton Institute for Advanced Studies.
    1972, The Computer from Pascal to von Neumann, Princeton University Press.
    1977, "A brief history of the computer", Proceedings of the American Physical Society 121:339.
    Further Reading
    M.Campbell-Kelly \& M.R.Williams (eds), 1985, The Moore School Lectures (1946), Charles Babbage Institute Report Series for the History of Computing, Vol 9. M.R.Williams, 1985, History of Computing Technology, London: Prentice-Hall.
    KF

    Biographical history of technology > Goldstine, Herman H.

  • 109 Keller, Arthur

    [br]
    b. 18 August 1901 New York City, New York, USA d. 1983
    [br]
    American engineer and developer of telephone switching equipment who was instrumental in the development of electromechanical recording and stereo techniques.
    [br]
    He obtained a BSc in electrical engineering at Cooper Union for the Advancement of Science and Art, New York, in 1923 and an MSc from Yale University, and he did postgraduate work at Columbia University. Most of the time he was also on the staff of the Bell Telephone Laboratories. The Bell Laboratories and its predecessors had a long tradition in research in speech and hearing, and in a team of researchers under H.C. Harrison, Keller developed a number of definite improvements in electrical pick-ups, gold-sputtering for matrix work and electrical disc recording equipment. From 1931 onwards the team at Bell Labs developed disc recording for moving pictures and entered into collaboration with Leopold Stokowski and the Philadelphia Orchestra concerning transmission and recording of high-fidelity sound over wires, and stereo techniques. Keller developed a stereo recording system for disc records independently of A.D. Blumlein that was used experimentally in the Bell Labs during the 1930s. During the Second World War Keller was in a team developing sonar (sound navigation and ranging) for the US Navy. After the war he concentrated on switching equipment for telephone exchanges and developed a miniature relay. In 1966 he retired from the Bell Laboratories, where he had been Director of several departments, ending as Director of the Switching Apparatus Laboratory. After retirement he was a consultant internationally, concerning electromechanical devices in particular. When, in 1980, the Bell Laboratories decided to issue LP re-recordings of a number of the experimental records made during the 1930s, Keller was brought in from retirement to supervise the project and decide on the selections.
    [br]
    Bibliography
    Keller was inventor or co-inventor of forty patents, including: US patent no. 2,114,471 (the principles of stereo disc recording); US patent no. 2,612,586 (tape guides with air lubrication); US patent no. 3,366,901 (a miniature crossbar switch).
    Apart from a large number of highly technical papers, Keller also wrote the article "Phonograph" in the 1950 and 1957 editions of Encyclopaedia Britannica.
    1986, Reflections of a Stereo Pioneer, San Francisco: San Francisco Press (an honest, personal account).
    GB-N

    Biographical history of technology > Keller, Arthur

  • 110 Kilby, Jack St Clair

    [br]
    b. 8 November 1923 Jefferson City, Missouri, USA
    [br]
    American engineer who filed the first patents for micro-electronic (integrated) circuits.
    [br]
    Kilby spent most of his childhood in Great Bend, Kansas, where he often accompanied his father, an electrical power engineer, on his maintenance rounds. Working in the blizzard of 1937, his father borrowed a "ham" radio, and this fired Jack to study for his amateur licence (W9GTY) and to construct his own equipment while still a student at Great Bend High School. In 1941 he entered the University of Illinois, but four months later, after the attack on Pearl Harbor, he was enlisted in the US Army and found himself working in a radio repair workshop in India. When the war ended he returned to his studies, obtaining his BSEE from Illinois in 1947 and his MSEE from the University of Wisconsin. He then joined Centralab, a small electronics firm in Milwaukee owned by Globe-Union. There he filed twelve patents, including some for reduced titanate capacitors and for Steatite-packing of transistors, and developed a transistorized hearing-aid. During this period he also attended a course on transistors at Bell Laboratories. In May 1958, concerned to gain experience in the field of number processing, he joined Texas Instruments in Dallas. Shortly afterwards, while working alone during the factory vacation, he conceived the idea of making monolithic, or integrated, circuits by diffusing impurities into a silicon substrate to create P-N junctions. Within less than a month he had produced a complete oscillator on a chip to prove that the technology was feasible, and the following year at the 1ERE Show he demonstrated a germanium integrated-circuit flip-flop. Initially he was granted a patent for the idea, but eventually, after protracted litigation, priority was awarded to Robert Noyce of Fairchild. In 1965 he was commissioned by Patrick Haggerty, the Chief Executive of Texas Instruments, to make a pocket calculator based on integrated circuits, and on 14 April 1971 the world's first such device, the Pocketronic, was launched onto the market. Costing $150 (and weighing some 2½ lb or 1.1 kg), it was an instant success and in 1972 some 5 million calculators were sold worldwide. He left Texas Instruments in November 1970 to become an independent consultant and inventor, working on, amongst other things, methods of deriving electricity from sunlight.
    [br]
    Principal Honours and Distinctions
    Franklin Institute Stuart Ballantine Medal 1966. Institute of Electrical and Electronics Engineers David Sarnoff Award 1966; Cledo Brunetti Award (jointly with Noyce) 1978; Medal of Honour 1986. National Academy of Engineering 1967. National Science Medal 1969. National Inventors Hall of Fame 1982. Honorary DEng Miami 1982, Rochester 1986. Honorary DSc Wisconsin 1988. Distinguished Professor, Texas A \& M University.
    Bibliography
    6 February 1959, US patent no. 3,138,743 (the first integrated circuit (IC); initially granted June 1964).
    US patent no. 3,819,921 (the Pocketronic calculator).
    Further Reading
    T.R.Reid, 1984, Microchip. The Story of a Revolution and the Men Who Made It, London: Pan Books (for the background to the development of the integrated circuit). H.Queisser, 1988, Conquest of the Microchip, Cambridge, Mass.: Harvard University Press.
    KF

    Biographical history of technology > Kilby, Jack St Clair

  • 111 Maiman, Theodore Harold

    [br]
    b. 11 July 1927 Los Angeles, California, USA
    [br]
    American physicist who developed the laser.
    [br]
    The son of an electrical engineer, Theodore H. Maiman graduated with the degree of BS in engineering physics from the University of Colorado in 1949. He then went on to do postgraduate work at Stanford University, where he gained an MS in electrical engineering in 1951 and a PhD in physics in 1955 for work on spectroscopy using microwave-optical techniques. He then joined the Hughes Research Laboratories, where he worked on the stimulated emission of microwave energy. In this field Charles H. Townes had developed the maser (an acronym of microwave amplification by stimulated emission of radiation) and in a paper in 1958 with Arthur L. Schawlow he had suggested the possibility of a further development into optical frequencies, or, of an optical maser, later known as a laser (an acronym of light amplification by stimulated emission of radiation). Maiman was the first to achieve this when in May 1960 he operated a ruby laser and coherent light was produced for the first time. In 1962 he founded his own company, Korad Corporation, for research, development and manufacture of high-power lasers. He founded Maiman Associates in 1968, acting as consultant on lasers and optics. He was a co-founder of the Laser Video Corporation in 1972, and in 1976 he became Vice-President for advanced technology at TRW Electronics.
    [br]
    Principal Honours and Distinctions
    Franklin Institute Stuart Ballantine Medal 1962. American Electrical Society/American Astronautical Society Award 1965. American Physical Society Oliver E.Buckley Solid State Physics Prize 1966. Fannie and John Hertz Foundation Award for Applied Physical Science 1966. American Optical Society R.W.Wood Prize 1976.
    Bibliography
    1980, entry in McGraw-Hill Modern Scientists and Engineers, Part 2, New York, pp. 271–2 (autobiographical).
    RTS

    Biographical history of technology > Maiman, Theodore Harold

  • 112 Preece, Sir William Henry

    [br]
    b. 15 February 1834 Bryn Helen, Gwynedd, Wales
    d. 6 November 1913 Penrhos, Gwynedd, Wales
    [br]
    Welsh electrical engineer who greatly furthered the development and use of wireless telegraphy and the telephone in Britain, dominating British Post Office engineering during the last two decades of the nineteenth century.
    [br]
    After education at King's College, London, in 1852 Preece entered the office of Edwin Clark with the intention of becoming a civil engineer, but graduate studies at the Royal Institution under Faraday fired his enthusiasm for things electrical. His earliest work, as connected with telegraphy and in particular its application for securing the safe working of railways; in 1853 he obtained an appointment with the Electric and National Telegraph Company. In 1856 he became Superintendent of that company's southern district, but four years later he moved to telegraph work with the London and South West Railway. From 1858 to 1862 he was also Engineer to the Channel Islands Telegraph Company. When the various telegraph companies in Britain were transferred to the State in 1870, Preece became a Divisional Engineer in the General Post Office (GPO). Promotion followed in 1877, when he was appointed Chief Electrician to the Post Office. One of the first specimens of Bell's telephone was brought to England by Preece and exhibited at the British Association meeting in 1877. From 1892 to 1899 he served as Engineer-in-Chief to the Post Office. During this time he made a number of important contributions to telegraphy, including the use of water as part of telegraph circuits across the Solent (1882) and the Bristol Channel (1888). He also discovered the existence of inductive effects between parallel wires, and with Fleming showed that a current (thermionic) flowed between the hot filament and a cold conductor in an incandescent lamp.
    Preece was distinguished by his administrative ability, some scientific insight, considerable engineering intuition and immense energy. He held erroneous views about telephone transmission and, not accepting the work of Oliver Heaviside, made many errors when planning trunk circuits. Prior to the successful use of Hertzian waves for wireless communication Preece carried out experiments, often on a large scale, in attempts at wireless communication by inductive methods. These became of historic interest only when the work of Maxwell and Hertz was developed by Guglielmo Marconi. It is to Preece that credit should be given for encouraging Marconi in 1896 and collaborating with him in his early experimental work on radio telegraphy.
    While still employed by the Post Office, Preece contributed to the development of numerous early public electricity schemes, acting as Consultant and often supervising their construction. At Worcester he was responsible for Britain's largest nineteenth-century public hydro-electric station. He received a knighthood on his retirement in 1899, after which he continued his consulting practice in association with his two sons and Major Philip Cardew. Preece contributed some 136 papers and printed lectures to scientific journals, ninety-nine during the period 1877 to 1894.
    [br]
    Principal Honours and Distinctions
    CB 1894. Knighted (KCB) 1899. FRS 1881. President, Society of Telegraph Engineers, 1880. President, Institution of Electrical Engineers 1880, 1893. President, Institution of Civil Engineers 1898–9. Chairman, Royal Society of Arts 1901–2.
    Bibliography
    Preece produced numerous papers on telegraphy and telephony that were presented as Royal Institution Lectures (see Royal Institution Library of Science, 1974) or as British Association reports.
    1862–3, "Railway telegraphs and the application of electricity to the signaling and working of trains", Proceedings of the ICE 22:167–93.
    Eleven editions of Telegraphy (with J.Sivewright), London, 1870, were published by 1895.
    1883, "Molecular radiation in incandescent lamps", Proceedings of the Physical Society 5: 283.
    1885. "Molecular shadows in incandescent lamps". Proceedings of the Physical Society 7: 178.
    1886. "Electric induction between wires and wires", British Association Report. 1889, with J.Maier, The Telephone.
    1894, "Electric signalling without wires", RSA Journal.
    Further Reading
    J.J.Fahie, 1899, History of Wireless Telegraphy 1838–1899, Edinburgh: Blackwood. E.Hawkes, 1927, Pioneers of Wireless, London: Methuen.
    E.C.Baker, 1976, Sir William Preece, F.R.S. Victorian Engineer Extraordinary, London (a detailed biography with an appended list of his patents, principal lectures and publications).
    D.G.Tucker, 1981–2, "Sir William Preece (1834–1913)", Transactions of the Newcomen Society 53:119–36 (a critical review with a summary of his consultancies).
    GW / KF

    Biographical history of technology > Preece, Sir William Henry

  • 113 Sarnoff, David

    [br]
    b. 27 February 1891 Uzlian, Minsk (now in Belarus)
    d. 12 December 1971 New York City, New York, USA
    [br]
    Russian/American engineer who made a major contribution to the commercial development of radio and television.
    [br]
    As a Jewish boy in Russia, Sarnoff spent several years preparing to be a Talmudic Scholar, but in 1900 the family emigrated to the USA and settled in Albany, New York. While at public school and at the Pratt Institute in Brooklyn, New York, he helped the family finances by running errands, selling newspapers and singing the liturgy in the synagogue. After a short period as a messenger boy with the Commercial Cable Company, in 1906 he became an office boy with the Marconi Wireless Telegraph Company of America (see G. Marconi). Having bought a telegraph instrument with his first earnings, he taught himself Morse code and was made a junior telegraph operator in 1907. The following year he became a wireless operator at Nantucket Island, then in 1909 he became Manager of the Marconi station at Sea Gate, New York. After two years at sea he returned to a shore job as wireless operator at the world's most powerful station at Wanamaker's store in Manhattan. There, on 14 April 1912, he picked up the distress signals from the sinking iner Titanic, remaining at his post for three days.
    Rewarded by rapid promotion (Chief Radio Inspector 1913, Contract Manager 1914, Assistant Traffic Manager 1915, Commercial Manager 1917) he proposed the introduction of commercial radio broadcasting, but this received little response. Consequently, in 1919 he took the job of Commercial Manager of the newly formed Radio Corporation of America (RCA), becoming General Manager in 1921, Vice- President in 1922, Executive Vice-President in 1929 and President in 1930. In 1921 he was responsible for the broadcasting of the Dempsey-Carpentier title-fight, as a result of which RCA sold $80 million worth of radio receivers in the following three years. In 1926 he formed the National Broadcasting Company (NBC). Rightly anticipating the development of television, in 1928 he inaugurated an experimental NBC television station and in 1939 demonstrated television at the New York World Fair. Because of his involvement with the provision of radio equipment for the armed services, he was made a lieutenant-colonel in the US Signal Corps Reserves in 1924, a full colonel in 1931 and, while serving as a communications consultant to General Eisenhower during the Second World War, Brigadier General in 1944.
    With the end of the war, RCA became a major manufacturer of television receivers and then invested greatly in the ultimately successful development of shadowmask tubes and receivers for colour television. Chairman and Chief Executive from 1934, Sarnoff held the former post until his retirement in 1970.
    [br]
    Principal Honours and Distinctions
    French Croix de Chevalier d'honneur 1935, Croix d'Officier 1940, Croix de Commandant 1947. Luxembourg Order of the Oaken Crown 1960. Japanese Order of the Rising Sun 1960. US Legion of Merit 1946. UN Citation 1949. French Union of Inventors Gold Medal 1954.
    KF

    Biographical history of technology > Sarnoff, David

  • 114 Stibitz, George R.

    [br]
    b. 20 April 1904 York, Pennsylvania, USA
    [br]
    American mathematician responsible for the conception of the Bell Laboratories "Complex " computer.
    [br]
    Stibitz spent his early years in Dayton, Ohio, and obtained his first degree at Denison University, Granville, Ohio, his MS from Union College, Schenectady, New York, in 1927 and his PhD in mathematical physics from Cornell University, Ithaca, New York, in 1930. After working for a time for General Electric, he joined Bell Laboratories to work on various communications problems. In 1937 he started to experiment at home with telephone relays as the basis of a calculator for addition, multiplication and division. Initially this was based on binary arithmetic, but later he used binary-coded decimal (BCD) and was able to cope with complex numbers. In November 1938 the ideas were officially taken up by Bell Laboratories and, with S.B.Williams as Project Manager, Stibitz built a complex-number computer known as "Complex", or Relay I, which became operational on 8 January 1940.
    With the outbreak of the Second World War, he was co-opted to the National Defence Research Council to work on anti-aircraft (AA) gun control, and this led to Bell Laboratories Relay II computer, which was completed in 1943 and which had 500 relays, bi-quinary code and selfchecking of errors. A further computer, Relay III, was used for ballistic simulation of actual AA shell explosions and was followed by more machines before and after Stibitz left Bell after the end of the war. Stibitz then became a computer consultant, involved in particular with the development of the UNIVAC computer by John Mauchly and J.Presper Eckert.
    [br]
    Principal Honours and Distinctions
    Institute of Electrical and Electronics Engineers Emanuel R.Priore Award 1977.
    Bibliography
    1957, with J.A.Larrivee, Mathematics and Computers, New York: McGraw-Hill. 1967, "The Relay computer at the Bell Laboratories", Datamation 35.
    Further Reading
    E.Loveday, 1977, "George Stibitz and the Bell Labs Relay computer", Datamation 80. M.R.Williams, 1985, A History of Computing Technology, London: Prentice-Hall.
    KF

    Biographical history of technology > Stibitz, George R.

  • 115 Strachey, Christopher

    [br]
    b. 16 November 1916 England
    d. 18 May 1975 Oxford, England
    [br]
    English physicist and computer engineer who proposed time-sharing as a more efficient means of using a mainframe computer.
    [br]
    After education at Gresham's School, London, Strachey went to King's College, Cambridge, where he completed an MA. In 1937 he took up a post as a physicist at the Standard Telephone and Cable Company, then during the Second World War he was involved in radar research. In 1944 he became an assistant master at St Edmunds School, Canterbury, moving to Harrow School in 1948. Another change of career in 1951 saw him working as a Technical Officer with the National Research and Development Corporation, where he was involved in computer software and hardware design. From 1958 until 1962 he was an independent consultant in computer design, and during this time (1959) he realized that as mainframe computers were by then much faster than their human operators, their efficiency could be significantly increased by "time-sharing" the tasks of several operators in rapid succession. Strachey made many contributions to computer technology, being variously involved in the design of the Manchester University MkI, Elliot and Ferranti Pegasus computers. In 1962 he joined Cambridge University Mathematics Laboratory as a senior research fellow at Churchill College and helped to develop the programming language CPL. After a brief period as Visiting Lecturer at the Massachusetts Institute of Technology, he returned to the UK in 1966 as Reader in Computation and Fellow of Wolfeon College, Oxford, to establish a programming research group. He remained there until his death.
    [br]
    Principal Honours and Distinctions
    Distinguished Fellow of the British Computer Society 1972.
    Bibliography
    1961, with M.R.Wilkes, "Some proposals for improving the efficiency of Algol 60", Communications of the ACM 4:488.
    1966, "Systems analysis and programming", Scientific American 25:112. 1976, with R.E.Milne, A Theory of Programming Language Semantics.
    Further Reading
    J.Alton, 1980, Catalogue of the Papers of C. Strachey 1916–1975.
    M.Campbell-Kelly, 1985, "Christopher Strachey 1916–1975. A biographical note", Annals of the History of Computing 7:19.
    M.R.Williams, 1985, A History of Computing Technology, London: Prentice-Hall.
    KF

    Biographical history of technology > Strachey, Christopher

  • 116 Watson-Watt, Sir Robert Alexander

    [br]
    b. 13 April 1892 Brechin, Angus, Scotland
    d. 6 December 1973 Inverness, Scotland
    [br]
    Scottish engineer and scientific adviser known for his work on radar.
    [br]
    Following education at Brechin High School, Watson-Watt entered University College, Dundee (then a part of the University of St Andrews), obtaining a BSc in engineering in 1912. From 1912 until 1921 he was Assistant to the Professor of Natural Philosophy at St Andrews, but during the First World War he also held various posts in the Meteorological Office. During. this time, in 1916 he proposed the use of cathode ray oscillographs for radio-direction-finding displays. He joined the newly formed Radio Research Station at Slough when it was opened in 1924, and 3 years later, when it amalgamated with the Radio Section of the National Physical Laboratory, he became Superintendent at Slough. At this time he proposed the name "ionosphere" for the ionized layer in the upper atmosphere. With E.V. Appleton and J.F.Herd he developed the "squegger" hard-valve transformer-coupled timebase and with the latter devised a direction-finding radio-goniometer.
    In 1933 he was asked to investigate possible aircraft counter-measures. He soon showed that it was impossible to make the wished-for radio "death-ray", but had the idea of using the detection of reflected radio-waves as a means of monitoring the approach of enemy aircraft. With six assistants he developed this idea and constructed an experimental system of radar (RAdio Detection And Ranging) in which arrays of aerials were used to detect the reflected signals and deduce the bearing and height. To realize a practical system, in September 1936 he was appointed Director of the Bawdsey Research Station near Felixstowe and carried out operational studies of radar. The result was that within two years the East Coast of the British Isles was equipped with a network of radar transmitters and receivers working in the 7–14 metre band—the so-called "chain-home" system—which did so much to assist the efficient deployment of RAF Fighter Command against German bombing raids on Britain in the early years of the Second World War.
    In 1938 he moved to the Air Ministry as Director of Communications Development, becoming Scientific Adviser to the Air Ministry and Ministry of Aircraft Production in 1940, then Deputy Chairman of the War Cabinet Radio Board in 1943. After the war he set up Sir Robert Watson-Watt \& Partners, an industrial consultant firm. He then spent some years in relative retirement in Canada, but returned to Scotland before his death.
    [br]
    Principal Honours and Distinctions
    Knighted 1942. CBE 1941. FRS 1941. US Medal of Merit 1946. Royal Society Hughes Medal 1948. Franklin Institute Elliot Cresson Medal 1957. LLD St Andrews 1943. At various times: President, Royal Meteorological Society, Institute of Navigation and Institute of Professional Civil Servants; Vice-President, American Institute of Radio Engineers.
    Bibliography
    1923, with E.V.Appleton \& J.F.Herd, British patent no. 235,254 (for the "squegger"). 1926, with J.F.Herd, "An instantaneous direction reading radio goniometer", Journal of
    the Institution of Electrical Engineers 64:611.
    1933, The Cathode Ray Oscillograph in Radio Research.
    1935, Through the Weather Hours (autobiography).
    1936, "Polarisation errors in direction finders", Wireless Engineer 13:3. 1958, Three Steps to Victory.
    1959, The Pulse of Radar.
    1961, Man's Means to his End.
    Further Reading
    S.S.Swords, 1986, Technical History of the Beginnings of Radar, Stevenage: Peter Peregrinus.
    KF

    Biographical history of technology > Watson-Watt, Sir Robert Alexander

  • 117 Wilkes, Maurice Vincent

    [br]
    b. 26 June 1913 Stourbridge, Worcestershire, England
    [br]
    English physicist who was jointly responsible for the construction of the EDS AC computer.
    [br]
    Educated at King Edward VI Grammar School, Stourbridge, where he began to make radio sets and read Wireless World, Wilkes went to St John's College, Cambridge, in 1931, graduating as a Wrangler in the Mathematical Tripos in 1934. He then carried out research at the Cavendish Laboratory, becoming a demonstrator in 1937. During the Second World War he worked on radar, differential analysers and operational research at the Bawdsey Research Station and other air-defence establishments. In 1945 he returned to Cambridge as a lecturer and as Acting Director of the Mathematical (later Computer) Laboratory, serving as Director from 1946 to 1970.
    During the late 1940s, following visits to the USA for computer courses and to see the ENIAC computer, with the collaboration of colleagues he constructed the Cambridge University digital computer EDSAC (for Electronic Delay Storage Automatic Computer), using ultrasonic delay lines for data storage. In the mid-1950s a second machine, EDSAC2, was constructed using a magnetic-core memory. In 1965 he became Professor of Computer Technology. After retirement he worked for the Digital Electronic Corporation (DEC) from 1981 to 1986, serving also as Adjunct Professor of Computer Science and Electrical Engineering at the Massachusetts Institute of Technology from 1981 to 1985. In 1990 he became a research strategy consultant to the Olivetti Research Directorate.
    [br]
    Principal Honours and Distinctions
    FRS 1956. First President, British Computer Society 1957–60. Honorary DSc Munich 1978, Bath 1987. Honorary DTech Linkoping 1975. FEng 1976. Institution of Electrical Engineers Faraday Medal 1981.
    Bibliography
    1948, "The design of a practical high-speed computing machine", Proceedings of the Royal Society A195:274 (describes EDSAC).
    1949, Oscillation of the Earth's Atmosphere.
    1956, Automatic Digital Computers, London: Methuen. 1966, A Short Introduction to Numerical Analysis.
    1968, Time-Sharing Computer Systems: McDonald \& Jane's.
    1979, The Cambridge CAP Computer and its Operating System: H.Holland.
    1985, Memoirs of a Computer Pioneer, Cambridge, Mass.: MIT Press (autobiography).
    Further Reading
    B.Randell (ed.), 1973, The Origins of Digital Computers, Berlin: Springer-Verlag.
    KF

    Biographical history of technology > Wilkes, Maurice Vincent

  • 118 Zworykin, Vladimir Kosma

    [br]
    b. 30 July 1889 Mourum (near Moscow), Russia
    d. 29 July 1982 New York City, New York, USA
    [br]
    Russian (naturalized American 1924) television pioneer who invented the iconoscope and kinescope television camera and display tubes.
    [br]
    Zworykin studied engineering at the Institute of Technology in St Petersburg under Boris Rosing, assisting the latter with his early experiments with television. After graduating in 1912, he spent a time doing X-ray research at the Collège de France in Paris before returning to join the Russian Marconi Company, initially in St Petersburg and then in Moscow. On the outbreak of war in 1917, he joined the Russian Army Signal Corps, but when the war ended in the chaos of the Revolution he set off on his travels, ending up in the USA, where he joined the Westinghouse Corporation. There, in 1923, he filed the first of many patents for a complete system of electronic television, including one for an all-electronic scanning pick-up tube that he called the iconoscope. In 1924 he became a US citizen and invented the kinescope, a hard-vacuum cathode ray tube (CRT) for the display of television pictures, and the following year he patented a camera tube with a mosaic of photoelectric elements and gave a demonstration of still-picture TV. In 1926 he was awarded a PhD by the University of Pittsburgh and in 1928 he was granted a patent for a colour TV system.
    In 1929 he embarked on a tour of Europe to study TV developments; on his return he joined the Radio Corporation of America (RCA) as Director of the Electronics Research Group, first at Camden and then Princeton, New Jersey. Securing a budget to develop an improved CRT picture tube, he soon produced a kinescope with a hard vacuum, an indirectly heated cathode, a signal-modulation grid and electrostatic focusing. In 1933 an improved iconoscope camera tube was produced, and under his direction RCA went on to produce other improved types of camera tube, including the image iconoscope, the orthicon and image orthicon and the vidicon. The secondary-emission effect used in many of these tubes was also used in a scintillation radiation counter. In 1941 he was responsible for the development of the first industrial electron microscope, but for most of the Second World War he directed work concerned with radar, aircraft fire-control and TV-guided missiles.
    After the war he worked for a time on high-speed memories and medical electronics, becoming Vice-President and Technical Consultant in 1947. He "retired" from RCA and was made an honorary vice-president in 1954, but he retained an office and continued to work there almost up until his death; he also served as Director of the Rockefeller Institute for Medical Research from 1954 until 1962.
    [br]
    Principal Honours and Distinctions
    Zworykin received some twenty-seven awards and honours for his contributions to television engineering and medical electronics, including the Institution of Electrical Engineers Faraday Medal 1965; US Medal of Science 1966; and the US National Hall of Fame 1977.
    Bibliography
    29 December 1923, US patent no. 2,141, 059 (the original iconoscope patent; finally granted in December 1938!).
    13 July 1925, US patent no. 1,691, 324 (colour television system).
    1930, with D.E.Wilson, Photocells and Their Applications, New York: Wiley. 1934, "The iconoscope. A modern version of the electric eye". Proceedings of the
    Institute of Radio Engineers 22:16.
    1946, Electron Optics and the Electron Microscope.
    1940, with G.A.Morton, Television; revised 1954.
    Further Reading
    J.H.Udelson, 1982, The Great Television Race: History of the Television Industry 1925– 41: University of Alabama Press.
    KF

    Biographical history of technology > Zworykin, Vladimir Kosma

См. также в других словарях:

  • Information broker — An information broker, also known as an independent information professional or information consultant, is a person or business that researches information for clients. Common uses for information brokers include market research and patent… …   Wikipedia

  • Consultant Plus — Developer(s) «Consultant Plus» Operating system Microsoft Windows Type law assistance system License Proprietary …   Wikipedia

  • Information technology consulting — (also called IT consulting, Computer consultancy, Computing consultancy, technology consulting business and technology services or IT advisory) is a field that focuses on advising businesses on how best to use information technology to meet their …   Wikipedia

  • Consultant — For other uses, see Consultant (disambiguation). A consultant (from Latin: consultare to discuss ) is a professional who provides professional or expert advice[1] in a particular area such as management, accountancy, the environment,… …   Wikipedia

  • Consultant — Un consultant est un prestataire de services en conseil. Les consultants sont souvent regroupés au sein de sociétés de conseil, ou bien interviennent de façon indépendante. Selon le Grand dictionnaire terminologique[1], un consultant est un… …   Wikipédia en Français

  • Information Technology Association of America — The Information Technology Association of America (ITAA) is a leading industry trade group for information technology companies. The Association s membership contains most all of the world s major ICT firms and accounts for over 90% of ICT goods… …   Wikipedia

  • Information Systems Audit and Control Association — Website: www.isaca.org ISACA is an international professional association that deals with IT Governance. It is an affiliate member of IFAC.[1] Previously known as the Information Systems Audit and Control Association, ISACA now goes by its… …   Wikipedia

  • information fatigue syndrome — n. The weariness and stress that result from having to deal with excessive amounts of information. Also: IFS. Example Citation: Psychologist Dr David Lewis, who was involved in preparing the report, suggested that a new phenomenon, information… …   New words

  • Information Tribunal — The Information Tribunal was a tribunal non departmental public body in the United Kingdom. It was established as the Data Protection Tribunal to hear appeals under the Data Protection Act 1984. Its name was changed to reflect its wider… …   Wikipedia

  • Information Services Department — Infobox Government agency agency name = Information Services Department nativename a = 政府新聞處 logo caption = seal width = seal caption = headquarters = 3/F 8/F, Murray Building, Garden Road, Central, Hong Kong formed = preceding1 = dissolved =… …   Wikipedia

  • Consultant — VP A person who offers information and advice in a particular field. RadioPP Station advisor or counselor; format doctor …   Audio and video glossary

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»