Перевод: со всех языков на все языки

со всех языков на все языки

in+early+january

  • 121 Bell, Imrie

    [br]
    b. 1836 Edinburgh, Scotland
    d. 21 November 1906 Croydon, Surrey, England
    [br]
    Scottish civil engineer who built singular and pioneering structures.
    [br]
    Following education at the Royal High School of Edinburgh, Bell served an apprenticeship with a Mr Bertram, engineer and shipwright of Leith, before continuing as a regular pupil with Bell and Miller, the well-known civil engineers of Glasgow. A short period at Pelton Colliery in County Durham followed, and then at the early age of 20 Bell was appointed Resident Engineer on the construction of the Meadowside Graving Dock in Glasgow.
    The Meadowside Dry Dock was opened on 28 January 1858 and was a remarkable act of faith by the proprietors Messrs Tod and McGregor, one of the earliest companies in iron shipbuilding in the British Isles. It was the first dry dock in the City of Glasgow and used the mouth of the river Kelvin for canting ships; at the time the dimensions of 144×19×5.5m depth were regarded as quite daring. This dock was to remain in regular operation for nearly 105 years and is testimony to the skills of Imrie Bell and his colleagues.
    In the following years he worked for the East India Railway Company, where he was in charge of the southern half of the Jumna Railway Bridge at Allahabad, before going on to other exciting civil engineering contracts in India. On his return home, Bell became Engineer to Leith Docks, and three years later he became Executive Engineer to the States of Jersey, where he constructed St Helier's Harbour and the lighthouse at La Corbiere—the first in Britain to be built with Portland cement. In 1878 he rejoined his old firm of Bell and Miller, and ultimately worked from their Westminster office. One of his last jobs in Scotland was supervising the building of the Great Western Road Bridge in Glasgow, one of the beautiful bridges in the West End of the city.
    Bell retired from business in 1898 and lived in Surrey for the rest of his life.
    [br]
    Bibliography
    1879–80, "On the St Helier's Harbour works", Transactions of the Institution of Engineers and Shipbuilders in Scotland 23.
    Further Reading
    Fred M.Walker, 1984, Song of the Clyde, Cambridge: PSL.
    FMW

    Biographical history of technology > Bell, Imrie

  • 122 Bentham, Sir Samuel

    SUBJECT AREA: Ports and shipping
    [br]
    b. 11 January 1757 England
    d. 31 May 1831 London, England
    [br]
    English naval architect and engineer.
    [br]
    He was the son of Jeremiah Bentham, a lawyer. His mother died when he was an infant and his early education was at Westminster. At the age of 14 he was apprenticed to a master shipwright at Woolwich and later at Chatham Dockyard, where he made some small improvements in the fittings of ships. In 1778 he completed his apprenticeship and sailed on the Bienfaisant on a summer cruise of the Channel Fleet where he suggested and supervised several improvements to the steering gear and gun fittings.
    Unable to find suitable employment at home, he sailed for Russia to study naval architecture and shipbuilding, arriving at St Petersburg in 1780, whence he travelled throughout Russia as far as the frontier of China, examining mines and methods of working metals. He settled in Kritchev in 1782 and there established a small shipyard with a motley work-force. In 1784 he was appointed to command a battalion. He set up a yard on the "Panopticon" principle, with all workshops radiating from his own central office. He increased the armament of his ships greatly by strengthening the hulls and fitting guns without recoil, which resulted in a great victory over the Turks at Liman in 1788. For this he was awarded the Cross of St George and promoted to Brigadier- General. Soon after, he was appointed to a command in Siberia, where he was responsible for opening up the resources of the country greatly by developing river navigation.
    In 1791 he returned to England, where he was at first involved in the development of the Panopticon for his brother as well as with several other patents. In 1795 he was asked to look into the mechanization of the naval dockyards, and for the next eighteen years he was involved in improving methods of naval construction and machinery. He was responsible for the invention of the steam dredger, the caisson method of enclosing the entrances to docks, and the development of non-recoil cannonades of large calibre.
    His intervention in the maladministration of the naval dockyards resulted in an enquiry that brought about the clearing-away of much corruption, making him very unpopular. As a result he was sent to St Petersburg to arrange for the building of a number of ships for the British navy, in which the Russians had no intention of co-operating. On his return to England after two years he was told that his office of Inspector-General of Navy Works had been abolished and he was appointed to the Navy Board; he had several disagreements with John Rennie and in 1812 was told that this office, too, had been abolished. He went to live in France, where he stayed for thirteen years, returning in 1827 to arrange for the publication of some of his papers.
    There is some doubt about his use of his title: there is no record of his having received a knighthood in England, but it was assumed that he was authorized to use the title, granted to him in Russia, after his presentation to the Tsar in 1809.
    [br]
    Further Reading
    Mary Sophia Bentham, Life of Brigadier-General Sir Samuel Bentham, K.S.G., Formerly Inspector of Naval Works (written by his wife, who died before completing it; completed by their daughter).
    IMcN

    Biographical history of technology > Bentham, Sir Samuel

  • 123 Boxer, Major-General Edward Mourrier

    SUBJECT AREA: Weapons and armour
    [br]
    b. February 1822
    d. 11 January 1897 Isle of Wight, England
    [br]
    English Ammunition designer and inventor of the brass, fully obturating cartridge case.
    [br]
    Commissioned into the Royal Artillery in 1839, Boxer's flair for the technical aspects of gunnery led to his appointment, at the early age of 33, as Superintendent of the Laboratory at the Royal Arsenal, Woolwich. He was able to devote his attention to the design of more effective shells, cartridges and fuses, with his greatest achievement being the invention, in 1866, of the Boxer cartridge, which had a case made of brass and a percussion cap set into the base. The real significance of the cartridge was that for the first time the chamber could be fully sealed, by way of the propellant gases expanding the case against the chamber wall, with the result that effective weapon range and accuracy could be dramatically increased. His achievement was recognized when Parliament voted a special financial grant, and the Boxer cartridge is still in wide use today. Boxer was promoted Colonel in 1868 and retired the following year as an honorary Major-General.
    [br]
    Principal Honours and Distinctions
    FRS 1858.
    Bibliography
    1855, Treatise on Artillery. Prepared for the Use of the Practical Class, Royal Military Academy, London: Eyre \& Spottiswode.
    1858, Diagrams to Illustrate the Service and Management of Heavy Ordnance Referred
    to in Treatise on Artillery, London: Eyre \& Spottiswode.
    CM

    Biographical history of technology > Boxer, Major-General Edward Mourrier

  • 124 Brown, Joseph Rogers

    [br]
    b. 26 January 1810 Warren, Rhode Island, USA
    d. 23 July 1876 Isles of Shoals, New Hampshire, USA
    [br]
    American machine-tool builder and co-founder of Brown \& Sharpe.
    [br]
    Joseph Rogers Brown was the eldest son of David Brown, who was modestly established as a maker of and dealer in clocks and watches. Joseph assisted his father during school vacations and at the age of 17 left to obtain training as a machinist. In 1829 he joined his father in the manufacture of tower clocks at Pawtucket, Rhode Island, and two years later went into business for himself in Pawtucket making lathes and small tools. In 1833 he rejoined his father in Providence, Rhode Island, as a partner in the manufacture of docks, watches and surveying and mathematical instruments. David Brown retired in 1841.
    J.R.Brown invented and built in 1850 a linear dividing engine which was the first automatic machine for graduating rules in the United States. In 1851 he brought out the vernier calliper, the first application of a vernier scale in a workshop measuring tool. Lucian Sharpe was taken into partnership in 1853 and the firm became J.R.Brown \& Sharpe; in 1868 the firm was incorporated as the Brown \& Sharpe Manufacturing Company.
    In 1855 Brown invented a precision gear-cutting machine to make clock gears. The firm obtained in 1861 a contract to make Wilcox \& Gibbs sewing machines and gave up the manufacture of clocks. At about this time F.W. Howe of the Providence Tool Company arranged for Brown \& Sharpe to make a turret lathe required for the manufacture of muskets. This was basically Howe's design, but Brown added a few features, and it was the first machine tool built for sale by the Brown \& Sharpe Company. It was followed in 1862 by the universal milling machine invented by Brown initially for making twist drills. Particularly for cutting gear teeth, Brown invented in 1864 a formed milling cutter which could be sharpened without changing its profile. In 1867 the need for an instrument for checking the thickness of sheet material became apparent, and in August of that year J.R.Brown and L.Sharpe visited the Paris Exhibition and saw a micrometer calliper invented by Jean Laurent Palmer in 1848. They recognized its possibilities and with a few developments marketed it as a convenient, hand-held measuring instrument. Grinding lathes were made by Brown \& Sharpe in the early 1860s, and from 1868 a universal grinding machine was developed, with the first one being completed in 1876. The patent for this machine was granted after Brown's sudden death while on holiday.
    [br]
    Further Reading
    J.W.Roe, 1916, English and American Tool Builders, New Haven: Yale University Press; repub. 1926, New York and 1987, Bradley, Ill.: Lindsay Publications Inc. (further details of Brown \& Sharpe Company and their products).
    R.S.Woodbury, 1958, History of the Gear-Cutting Machine, Cambridge, Mass.: MIT Press ——, 1959, History of the Grinding Machine, Cambridge, Mass.: MIT Press.
    ——, 1960, History of the Milling Machine, Cambridge, Mass.: MIT Press.
    RTS

    Biographical history of technology > Brown, Joseph Rogers

  • 125 Buckle, William

    [br]
    b. 29 July 1794 Alnwick, Northumberland, England
    d. 30 September 1863 London, England
    [br]
    English mechanical engineer who introduced the first large screw-cutting lathe to Boulton, Watt \& Co.
    [br]
    William Buckle was the son of Thomas Buckle (1759–1849), a millwright who later assisted the 9th Earl of Dundonald (1749–1831) in his various inventions, principally machines for the manufacture of rope. Soon after the birth of William, the family moved from Alnwick to Hull, Yorkshire, where he received his education. The family again moved c.1808 to London, and William was apprenticed to Messrs Woolf \& Edwards, millwrights and engineers of Lambeth. During his apprenticeship he attended evening classes at a mechanical drawing school in Finsbury, which was then the only place of its kind in London.
    After completing his apprenticeship, he was sent by Messrs Humphrys to Memel in Prussia to establish steamboats on the rivers and lakes there under the patronage of the Prince of Hardenburg. After about four years he returned to Britain and was employed by Boulton, Watt \& Co. to install the engines in the first steam mail packet for the service between Dublin and Holyhead. He was responsible for the engines of the steamship Lightning when it was used on the visit of George IV to Ireland.
    About 1824 Buckle was engaged by Boulton, Watt \& Co. as Manager of the Soho Foundry, where he is credited with introducing the first large screw-cutting lathe. At Soho about 700 or 800 men were employed on a wide variety of engineering manufacture, including coining machinery for mints in many parts of the world, with some in 1826 for the Mint at the Soho Manufactory. In 1851, following the recommendations of a Royal Commission, the Royal Mint in London was reorganized and Buckle was asked to take the post of Assistant Coiner, the senior executive officer under the Deputy Master. This he accepted, retaining the post until the end of his life.
    At Soho, Buckle helped to establish a literary and scientific institution to provide evening classes for the apprentices and took part in the teaching. He was an original member of the Institution of Mechanical Engineers, which was founded in Birmingham in January 1847, and a member of their Council from then until 1855. He contributed a number of papers in the early years, including a memoir of William Murdock whom he had known at Soho; he resigned from the Institution in 1856 after his move to London. He was an honorary member of the London Association of Foreman Engineers.
    [br]
    Bibliography
    1850, "Inventions and life of William Murdock", Proceedings of the Institution of Mechanical Engineers 2 (October): 16–26.
    RTS

    Biographical history of technology > Buckle, William

  • 126 Chaudron, Joseph

    [br]
    b. 29 November 1822 Gosselies, Belgium
    d. 16 January 1905 Auderghem, Belgium
    [br]
    Belgian mining engineer, pioneer in boring shafts.
    [br]
    In 1842, as a graduate of the Ecole des Mines in Liège, he became a member of the Belgian Corps Royal des Mines, which he left ten years later as Chief Engineer. By that time he had become decisively influential in the Société Anglo-Belge des Mines du Rhin, founded in 1848. After it became the Gelsenkirchen-based Bergwerkgesellschaft Dahlbusch in 1873, he became President of its Board of Directors and remained in this position until his death. Thanks to his outstanding technical and financial abilities, the company developed into one of the largest in the Ruhr coal district.
    When K.G. Kind practised his shaft-boring for the company in the early 1850s but did not overcome the difficulty of making the bottom of the bore-hole watertight, Chaudron joined forces with him to solve the problem and constructed a rotary heading which was made watertight with a box stuffed with moss; rings of iron tubing were placed on this as the sinking progressed, effectively blocking off the aquiferous strata as a result of the hydrostatic pressure which helped support the weight of the tubing until it was secured permanently. The Kind-Chaudron system of boring shafts in the full section marked an important advance upon existing methods, and was completely applied for the first time at a coalmine near Mons, Belgium, in 1854–6. In Brussels Chaudron and Kind founded the Société de Fonçage par le Procédé Kind et Chaudron in 1854, and Chaudron was granted a patent the next year. Foreign patents followed and the Kind-Chaudron system was the one most frequently applied in the latter part of the nineteenth century. Altogether, under Chaudron's control, there were more than eighty shafts sunk in wet strata in Germany, Belgium, France and England.
    [br]
    Bibliography
    1853–4, "Notice sur le procédé inventé par l'ingénieur Kind, pour l"établissement des puits de mines', Annales des travaux publics de Belgique 12:327–38.
    1862, "Über die nach dem Kindschen Erdbohrverfahren in Belgien ausgefùhrten Schachtbohrarbeiten", Berg-und Hüttenmännische Zeitschrift 21:402−7, 419−21, 444−7.
    1867, "Notice sur les travaux exécutés en France, en Belgique et en Westphalie de 1862– 1867", Annales des travaux publics de Belgique 25: 136–45.
    1872, "Remplacement d'un cuvelage en bois par un cuvelage en fonte", Annales des
    travaux publics de Belgique 30:77–91.
    Further Reading
    D.Hoffmann, 1962, Acht Jahrzehnte Gefrierverfahren nachPötsch, Essen, pp. 12–18 (evaluates the Kind-Chaudron system as a new era).
    W.Kesten, 1952, Geschichte der Bergwerksgesellschaft Dahlbusch, Essen (gives a delineation of the mining company's flourishing as well as the technical measures under his influence).
    T.Tecklenburg, 1914, Handbuch der Tiefbohrkunde, 2nd edn, Vol VI, Berlin, pp. 39–58 (provides a detailed description of Chaudron's tubing).
    WK

    Biographical history of technology > Chaudron, Joseph

  • 127 Cody, Colonel Samuel Franklin

    SUBJECT AREA: Aerospace
    [br]
    b. probably 6 March 1861 Texas, USA
    d. 7 August 1913 Farnborough, England
    [br]
    American (naturalised British) aviation pioneer who made the first sustained aeroplane flight in Britain.
    [br]
    "Colonel" Cody was one of the most colourful and controversial characters in aviation history. He dressed as a cowboy, frequently rode a horse, and appeared on the music-hall stage as a sharpshooter. Cody lived in England from 1896 and became a British subject in 1909. He wrote a melodrama, The Klondyke Nugget, which was first performed in 1898, with Cody as the villain and his wife as the heroine. It was a great success and Cody made enough money to indulge in his hobby of flying large kites. Several man-lifting kites were being developed in the mid-1890s, primarily for military observation purposes. Captain B.S.F. Baden-Powell built multiple hexagonal kites in England, while Lawrence Hargrave, in Australia, developed a very successful boxkite. Cody's man-lifting kites were so good that the British Government engaged him to supply kites, and act as an instructor with the Royal Engineers at the Balloon Factory, Farnborough. Cody's kites were rather like a box-kite with wings and, indeed, some were virtually tethered gliders. In 1905 a Royal Engineer reached a record height of 2,600 ft (790 m) in one of Cody's kites. While at Farnborough, Cody assisted with the construction of the experimental airship "British Army Dirigible No. 1", later known as Nulli Secundus. Cody was on board for the first flight in 1907. In the same year, Cody fitted an engine to one of his kites and it flew with no one on board; he also built a free-flying glider version. He went on to build a powered aeroplane with an Antoinette engine and on 16 October 1908 made a flight of 1,390 ft (424 m) at Farnborough; this was the first real flight in Britain. During the following years, Cody's large "Flying Cathedral" became a popular sight at aviation meetings, and in 1911 his "Cathedral" was the only British aeroplane to complete the course in the Circuit of Britain Contest. In 1912 Cody won the first British Military Aeroplane competition (a similar aeroplane is preserved by the Science Museum, London). Unfortunately, Cody and a passenger were killed when his latest aeroplane crashed at Farnborough in 1913; because Cody was such a popular figure at Farnborough, the tree to which he sometimes tethered his aeroplane was preserved as a memorial.
    Later, there was a great controversy over who the first person to make an aeroplane flight in Britain was, as A.V. Roe, Horatio Phillips and Cody had all made hops before October 1908; most historians, however, now accept that it was Cody. Cody's title of'Colonel' was unofficial, although it was used by King George V on one of several visits to see Cody's work.
    [br]
    Bibliography
    Cody gave a lecture to the (Royal) Aeronautical Society which was published in their
    Aeronautical Journal, London, January 1909.
    Further Reading
    P.B.Walker, 1971, Early Aviation at Farnborough, 2 vols, London (an authoritative source).
    A.Gould Lee, 1965, The Flying Cathedral, London (biography). G.A.Broomfield, 1953, Pioneer of the Air, Aldershot (a less-reliable biography).
    JDS

    Biographical history of technology > Cody, Colonel Samuel Franklin

  • 128 Davidson, Robert

    [br]
    b. 18 April 1804 Aberdeen, Scotland
    d. 16 November 1894 Aberdeen, Scotland
    [br]
    Scottish chemist, pioneer of electric power and builder of the first electric railway locomotives.
    [br]
    Davidson, son of an Aberdeen merchant, attended Marischal College, Aberdeen, between 1819 and 1822: his studies included mathematics, mechanics and chemistry. He subsequently joined his father's grocery business, which from time to time received enquiries for yeast: to meet these, Davidson began to manufacture yeast for sale and from that start built up a successful chemical manufacturing business with the emphasis on yeast and dyes. About 1837 he started to experiment first with electric batteries and then with motors. He invented a form of electromagnetic engine in which soft iron bars arranged on the periphery of a wooden cylinder, parallel to its axis, around which the cylinder could rotate, were attracted by fixed electromagnets. These were energized in turn by current controlled by a simple commutaring device. Electric current was produced by his batteries. His activities were brought to the attention of Michael Faraday and to the scientific world in general by a letter from Professor Forbes of King's College, Aberdeen. Davidson declined to patent his inventions, believing that all should be able freely to draw advantage from them, and in order to afford an opportunity for all interested parties to inspect them an exhibition was held at 36 Union Street, Aberdeen, in October 1840 to demonstrate his "apparatus actuated by electro-magnetic power". It included: a model locomotive carriage, large enough to carry two people, that ran on a railway; a turning lathe with tools for visitors to use; and a small printing machine. In the spring of 1842 he put on a similar exhibition in Edinburgh, this time including a sawmill. Davidson sought support from railway companies for further experiments and the construction of an electromagnetic locomotive; the Edinburgh exhibition successfully attracted the attention of the proprietors of the Edinburgh 585\& Glasgow Railway (E \& GR), whose line had been opened in February 1842. Davidson built a full-size locomotive incorporating his principle, apparently at the expense of the railway company. The locomotive weighed 7 tons: each of its two axles carried a cylinder upon which were fastened three iron bars, and four electromagnets were arranged in pairs on each side of the cylinders. The motors he used were reluctance motors, the power source being zinc-iron batteries. It was named Galvani and was demonstrated on the E \& GR that autumn, when it achieved a speed of 4 mph (6.4 km/h) while hauling a load of 6 tons over a distance of 1 1/2 miles (2.4 km); it was the first electric locomotive. Nevertheless, further support from the railway company was not forthcoming, although to some railway workers the locomotive seems to have appeared promising enough: they destroyed it in Luddite reaction. Davidson staged a further exhibition in London in 1843 without result and then, the cost of battery chemicals being high, ceased further experiments of this type. He survived long enough to see the electric railway become truly practicable in the 1880s.
    [br]
    Bibliography
    1840, letter, Mechanics Magazine, 33:53–5 (comparing his machine with that of William Hannis Taylor (2 November 1839, British patent no. 8,255)).
    Further Reading
    1891, Electrical World, 17:454.
    J.H.R.Body, 1935, "A note on electro-magnetic engines", Transactions of the Newcomen Society 14:104 (describes Davidson's locomotive).
    F.J.G.Haut, 1956, "The early history of the electric locomotive", Transactions of the Newcomen Society 27 (describes Davidson's locomotive).
    A.F.Anderson, 1974, "Unusual electric machines", Electronics \& Power 14 (November) (biographical information).
    —1975, "Robert Davidson. Father of the electric locomotive", Proceedings of the Meeting on the History of Electrical Engineering Institution of Electrical Engineers, 8/1–8/17 (the most comprehensive account of Davidson's work).
    A.C.Davidson, 1976, "Ingenious Aberdonian", Scots Magazine (January) (details of his life).
    PJGR / GW

    Biographical history of technology > Davidson, Robert

См. также в других словарях:

  • January 2004 — larr; January February March April May June July August September October November December →EventsJanuary 1* Ireland s Roman Catholic and Protestant Boy Scouts organisations merge after nearly a century of division, in spite of efforts by the R …   Wikipedia

  • January 2008 tornado outbreak sequence — Extensive tornado damage in Southeastern Wisconsin Date of tornado outbreak: January 7 – January 11, 2008 Duration1: 3 days, 11 hours, 48 minutes …   Wikipedia

  • Early Days: The Best of Led Zeppelin — Early Days: The Best of Led Zeppelin, Vol. 1 Saltar a navegación, búsqueda Early Days: The Best of Led Zeppelin, Vol. 1 Álbum recopilatorio de Led Zeppelin Publicación 23 de noviembre de 1999 Grabación …   Wikipedia Español

  • January 2003 — January 2003: ← January February March April May June July August September October November DecemberEventsJanuary 1, 2003*The first day of the year in the Gregorian calendar *Luíz Inácio Lula da Silva ( Lula ) becomes the 37th president of the… …   Wikipedia

  • Early decision — is a common early admission policy used in college admissions in the United States for admitting freshmen to undergraduate programs. It is used to indicate to the University or College that the candidate considers that institution to be his or… …   Wikipedia

  • Early action — is a type of early admission process for admission to colleges and universities in the United States. Unlike the regular admissions process, early action usually requires students to submit an application by November 1 of their senior year of… …   Wikipedia

  • Early thermal weapons — were devices or substances used in warfare during the classical and medieval periods (approx 8th century BC until the mid 16th century AD) which used heat or burning action to destroy or damage enemy personnel, fortifications or territories.… …   Wikipedia

  • early bird — early birds 1) PHRASE: V inflects If you say that the early bird catches the worm, you mean that the person who arrives first in a place is most likely to get what they want. The serious buying happens between 6 and 8am, and it is very much the… …   English dictionary

  • Early Modern Romania — is the portion of Romanian history that falls in the early modern period, roughly from the end of the 15th century to the end of the 18th century (or from the union of Mihai Viteazul of 1600–1601, to the revolution of Tudor Vladimirescu in 1821.) …   Wikipedia

  • early\ bird\ catches\ the\ worm — • early bird gets the worm • early bird catches the worm proverb A person who gets up early in the morning has the best chance of succeeding; if you arrive early or are quicker, you get ahead of others. When Billy s father woke him up for school… …   Словарь американских идиом

  • early\ bird\ gets\ the\ worm — • early bird gets the worm • early bird catches the worm proverb A person who gets up early in the morning has the best chance of succeeding; if you arrive early or are quicker, you get ahead of others. When Billy s father woke him up for school… …   Словарь американских идиом

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»