-
1 hyperplanes
Физика: гиперплоскость -
2 hyperplanes
The English-Russian dictionary general scientific > hyperplanes
-
3 antipolar hyperplanes
Большой англо-русский и русско-английский словарь > antipolar hyperplanes
-
4 arrangement of hyperplanes
Большой англо-русский и русско-английский словарь > arrangement of hyperplanes
-
5 orthogonal hyperplanes
Большой англо-русский и русско-английский словарь > orthogonal hyperplanes
-
6 parallel hyperplanes
Большой англо-русский и русско-английский словарь > parallel hyperplanes
-
7 perpendicular hyperplanes
Большой англо-русский и русско-английский словарь > perpendicular hyperplanes
-
8 polar hyperplanes
Большой англо-русский и русско-английский словарь > polar hyperplanes
-
9 antipolar hyperplanes
Математика: антиполярные гиперплоскости -
10 arrangement of hyperplanes
Математика: конфигурация гиперплоскостейУниверсальный англо-русский словарь > arrangement of hyperplanes
-
11 hyperosculating hyperplanes
Математика: гиперсоприкасающиеся гиперплоскостиУниверсальный англо-русский словарь > hyperosculating hyperplanes
-
12 orthogonal hyperplanes
Математика: ортогональные гиперплоскостиУниверсальный англо-русский словарь > orthogonal hyperplanes
-
13 parallel hyperplanes
Математика: параллельные гиперплоскости -
14 perpendicular hyperplanes
Математика: перпендикулярные гиперплоскостиУниверсальный англо-русский словарь > perpendicular hyperplanes
-
15 polar hyperplanes
Математика: полярные гиперплоскости -
16 we assume these hyperplanes intersect at a unique point A
Универсальный англо-русский словарь > we assume these hyperplanes intersect at a unique point A
-
17 antipolar hyperplanes
English-Russian scientific dictionary > antipolar hyperplanes
-
18 arrangement of hyperplanes
English-Russian scientific dictionary > arrangement of hyperplanes
-
19 hyperosculating hyperplanes
English-Russian scientific dictionary > hyperosculating hyperplanes
-
20 orthogonal hyperplanes
English-Russian scientific dictionary > orthogonal hyperplanes
- 1
- 2
См. также в других словарях:
Arrangement of hyperplanes — In geometry and combinatorics, an arrangement of hyperplanes is a finite set A of hyperplanes in a linear, affine, or projective space S . Questions about a hyperplane arrangement A generally concern geometrical, topological, or other properties… … Wikipedia
Hyperplane — A hyperplane is a concept in geometry. It is a higher dimensional generalization of the concepts of a line in Euclidean plane geometry and a plane in 3 dimensional Euclidean geometry. The most familiar kinds of hyperplane are affine and linear… … Wikipedia
Support vector machine — Support vector machines (SVMs) are a set of related supervised learning methods used for classification and regression. Viewing input data as two sets of vectors in an n dimensional space, an SVM will construct a separating hyperplane in that… … Wikipedia
Duality (projective geometry) — A striking feature of projective planes is the symmetry of the roles played by points and lines in the definitions and theorems, and (plane) duality is the formalization of this metamathematical concept. There are two approaches to the subject of … Wikipedia
Gain graph — A gain graph is a graph whose edges are labelled invertibly, or orientably, by elements of a group G . This means that, if an edge e in one direction has label g (a group element), then in the other direction it has label g −1. The label function … Wikipedia
Overdetermined system — For the philosophical term, see overdetermination. In mathematics, a system of linear equations is considered overdetermined if there are more equations than unknowns.[1] The terminology can be described in terms of the concept of counting… … Wikipedia
Reflection (mathematics) — This article is about reflection in geometry. For reflexivity of binary relations, see reflexive relation. A reflection through an axis followed by a reflection across a second axis parallel to the first one results in a total motion which is a… … Wikipedia
Hyperplane at infinity — In mathematics, in particular projective geometry, the hyperplane at infinity, also called the ideal hyperplane, is an ( n −1) dimensional projective space added to an n dimensional affine space A, such as the real affine n space mathbb{R}^n , in … Wikipedia
Quadric (projective geometry) — In projective geometry a quadric is the set of points of a projective space where a certain quadratic form on the homogeneous coordinates becomes zero. It may also be defined as the set of all points that lie on their dual hyperplanes, under some … Wikipedia
Dual space — In mathematics, any vector space, V, has a corresponding dual vector space (or just dual space for short) consisting of all linear functionals on V. Dual vector spaces defined on finite dimensional vector spaces can be used for defining tensors… … Wikipedia
Tesseract — For other uses, see Tesseract (disambiguation). Tesseract 8 cell 4 cube Schlegel diagram Type Convex regular 4 polytope … Wikipedia