Перевод: со всех языков на все языки

со всех языков на все языки

hydraulic+vice

  • 21 Donkin, Bryan III

    [br]
    b. 29 August 1835 London, England
    d. 4 March 1902 Brussels, Belgium
    [br]
    English mechanical engineer.
    [br]
    Bryan Donkin was the eldest son of John Donkin (1802–54) and grandson of Bryan Donkin I (1768–1855). He was educated at University College, London, and at the Ecole Centrale des Arts et Métiers in Paris, and then served an apprenticeship in the firm established by his grandfather. He assisted his uncle, Bryan Donkin II (1809–93), in setting up paper mills at St Petersburg. He became a partner in the Donkin firm in 1868 and Chairman in 1889, and retained this position after the amalgamation with Clench \& Co. of Chesterfield in 1900. Bryan Donkin was one of the first engineers to carry out scientific tests on steam engines and boilers, the results of his experiments being reported in many papers to the engineering institutions. In the 1890s his interests extended to the internal-combustion engine and he translated Rudolf Diesel's book Theory and Construction of a Rational Heat Motor. He was a frequent contributor to the weekly journal The Engineer. He was a member of the Institution of Civil Engineers and of the Institution of Mechanical Engineers, as well as of many other societies, including the Royal Institution, the American Society of Mechanical Engineers, the Société Industrielle de Mulhouse and the Verein Deutscher Ingenieure. In his experimental work he often collaborated with others, notably Professor A.B.W.Kennedy (1847–1928), with whom he was also associated in the consulting engineering firm of Kennedy \& Donkin.
    [br]
    Principal Honours and Distinctions
    Vice-President, Institution of Mechanical Engineers 1901. Institution of Civil Engineers, Telford premiums 1889, 1891; Watt Medal 1894; Manby premium 1896.
    Bibliography
    1894, Gas, Oil and Air Engines, London.
    1896, with A.B.W.Kennedy, Experiments on Steam Boilers, London. 1898, Heat Efficiency of Steam Boilers, London.
    RTS

    Biographical history of technology > Donkin, Bryan III

  • 22 Ewing, Sir James Alfred

    [br]
    b. 27 March 1855 Dundee, Scotland
    d. 1935
    [br]
    Scottish engineer and educator.
    [br]
    Sir Alfred Ewing was one of the leading engineering academics of his generation. He was the son of a minister in the Free Church of Scotland, and was educated at Dundee High School and Edinburgh University, where he studied engineering under Professor Fleeming Jenkin. On Jenkin's nomination, Ewing was recruited as Professor of Mechanical Engineering at the University of Tokyo, where he spent five years from 1878 to 1883. While in Tokyo, he devised an instrument for measuring and recording earthquakes. Ewing returned to his home town of Dundee in 1883, as the first Professor of Engineering at the University College recently established there. After seven years building up the department in Dundee, he moved to Cambridge where he succeeded James Stuart as Professor of Mechanism and Applied Mechanics. In thirteen creative years at Cambridge, he established the Engineering Tripos (1892) and founded the first engineering laboratories at the University (1894). From 1903 to 1917 Ewing served the Admiralty as Director of Naval Education, in which role he took a leading part in the revolution in British naval traditions which equipped the Royal Navy to fight the First World War. In that war, Ewing made an important contribution to the intelligence operation of deciphering enemy wireless messages. In 1916 he returned to Edinburgh as Principal and Vice-Chancellor, and following the war he presided over a period of rapid expansion at the University. He retired in 1929.
    [br]
    Principal Honours and Distinctions
    FRS 1887. KCB 1911. President, British Association for the Advancement of Science 1932.
    Bibliography
    He wrote extensively on technical subjects, and his works included Thermodynamics for Engineers (1920). His many essays and papers on more general subjects are elegantly and attractively written.
    Further Reading
    Dictionary of National Biography Supplement.
    A.W.Ewing, 1939, Life of Sir Alfred Ewing (biography by his son).
    AB

    Biographical history of technology > Ewing, Sir James Alfred

  • 23 Field, Joshua

    [br]
    b. 1786 Hackney, London, England
    d. 11 August 1863 Balham Hill, Surrey, England
    [br]
    English mechanical engineer, co-founder of the Institution of Civil Engineers.
    [br]
    Joshua Field was educated at a boarding school in Essex until the age of 16, when he obtained employment at the Royal Dockyards at Portsmouth under the Chief Mechanical Superintendent, Simon Goodrich (1773–1847), and later in the drawing office at the Admiralty in Whitehall. At this time, machinery for the manufacture of ships' blocks was being made for the Admiralty by Henry Maudslay, who was in need of a competent draughtsman, and Goodrich recommended Joshua Field. This was the beginning of Field's long association with Maudslay; he later became a partner in the firm which was for many years known as Maudslay, Sons \& Field. They undertook a variety of mechanical engineering work but were renowned for marine steam engines, with Field being responsible for much of the design work in the early years. Joshua Field was the eldest of the eight young men who in 1818 founded the Institution of Civil Engineers; he was the first Chairman of the Institution and later became a vice-president. He was the only one of the founders to be elected President and was the first mechanical engineer to hold that office. James Nasmyth in his autobiography relates that Joshua Field kept a methodical account of his technical discussions in a series of note books which were later indexed. Some of these diaries have survived, and extracts from the notes he made on a tour of the industrial areas of the Midlands and the North West in 1821 have been published.
    [br]
    Principal Honours and Distinctions
    FRS 1836. President, Institution of Civil Engineers 1848–9. Member, Smeatonian Society of Civil Engineers 1835; President 1848.
    Bibliography
    1925–6, "Joshua Field's diary of a tour in 1821 through the Midlands", introd. and notes J.W.Hall, Transactions of the Newcomen Society 6:1–41.
    1932–3, "Joshua Field's diary of a tour in 1821 through the provinces", introd. and notes E.C. Smith, Transactions of the Newcomen Society 13:15–50.
    RTS

    Biographical history of technology > Field, Joshua

  • 24 Gaskill, Harvey Freeman

    [br]
    b. 19 January 1845 Royalton, New York, USA
    d. 1 April 1889 Lockport, New York, USA
    [br]
    American mechanical engineer, inventor of the water-pumping engine with flywheel and reciprocating pumps.
    [br]
    Gaskill's father was a farmer near New York, where the son attended the local schools until he was 16 years old. At the age of 13 he already showed his mechanical aptitude by inventing a revolving hayrake, which was not exploited because the family had no money. His parents moved to Lockport, New York, where Harvey became a student at Lockport Union School and then the Poughkeepsie Commercial College, from which he graduated in 1866. After a period in his uncle's law office, he entered the firm of Penfield, Martin \& Gaskill to manufacture a patent clock. Then he was involved in a planing mill and a sash-and-blind manufactory. He devised a clothes spinner and a horse hayrake, but he did not manufacture them. In 1873 he became a draughtsman in the Holly Manufacturing Company in Lockport, which made pumping machinery for waterworks. He was promoted first to Engineer and then to Superintendent of the company in 1877. In 1885 he became a member of the Board of Directors and Vice-President. But for his untimely death, he might have become President. He was also a director of several other manufacturing concerns, public utilities and banks. In 1882 he produced a pump driven by a Woolf compound engine, which was the first time that rotary power with a crank and flywheel had been applied in waterworks. His design was more compact, more economical and lower in cost than previous types and gave the Holly Company a considerable advantage for a time over their main rivals, the Worthington Pump \& Machinery Company. These steam pumps became very popular in the United States and the type was also adopted in Britain.
    [br]
    Further Reading
    As well as obituaries appearing in many American engineering journals on Gaskill's death, there is an entry in the Dictionary of American Biography, 1931, Vol. VII, New York, C.Scribner's Sons.
    RLH

    Biographical history of technology > Gaskill, Harvey Freeman

  • 25 Hales, Stephen

    [br]
    b. September 1677 Bekesbourne, Kent, England
    d. 4 January 1761 Teddington, Middlesex, England
    [br]
    English physiologist and inventor, author of the first account of the measurement of blood pressure.
    [br]
    After attending Corpus Christi, Cambridge, he was admitted as a Fellow in 1702. During the ensuing years he was engaged in botanical, astronomical and chemical activities and research. He was appointed Minister at Teddington, Middlesex, in 1708 and remained in that post until his death. During these years, he continued to engage in a wide range of botanical and physiological activities involving studies of the nutrition of plants, blood pressure and the flow of blood in animals. He was also the inventor of improved ventilation by systems of partition and ducting, and the production of fresh water by distillation for ships at sea. The wide range of his interests did not preclude his care for his pastoral duties, and he was involved in the education of the Prince of Wales's children, although he declined a canonry of Windsor. In his writings he set a standard for the scientific method as related to principles based on facts and observation.
    [br]
    Principal Honours and Distinctions
    FRS 1718. Copley Medal 1739. Académie Française 1753. Founding Member, Society of Arts; Vice-President 1755.
    Bibliography
    1727, Vegetable Statisticks, London. 1733, Statistical Essays, London.
    1743, 1758, A Description of Ventilators, London.
    MG

    Biographical history of technology > Hales, Stephen

  • 26 Whitney, Amos

    [br]
    b. 8 October 1832 Biddeford, Maine, USA
    d. 5 August 1920 Poland Springs, Maine, USA
    [br]
    American mechanical engineer and machine-tool manufacturer.
    [br]
    Amos Whitney was a member of the same distinguished family as Eli Whitney. His father was a locksmith and machinist and he was apprenticed at the age of 14 to the Essex Machine Company of Lawrence, Massachusetts. In 1850 both he and his father were working at the Colt Armory in Hartford, Connecticut, where he first met his future partner, F.A. Pratt. They both subsequently moved to the Phoenix Iron Works, also at Hartford, and in 1860 they started in a small way doing machine work on their own account. In 1862 they took a third partner, Monroe Stannard, and enlarged their workshop. The business continued to expand, but Pratt and Whitney remained at the Phoenix Iron Works until 1864 and in the following year they built their first new factory. The Pratt \& Whitney Company was incorporated in 1869 with a capital of $350,000, Amos Whitney being appointed General Superintendent. The firm specialized in making machine tools and tools particularly for the armament industry. Pratt \& Whitney was one of the leading firms developing the system of interchangeable manufacture which led to the need to establish national standards of measurement. The Rogers-Bond Comparator, developed with the backing of Pratt \& Whitney, played an important part in the establishment of these standards, which formed the basis of the gauges of many various types made by the firm.
    Amos Whitney was made Vice-President of Pratt \& Whitney Company in 1893 and was President from 1898 until 1901, when the company was acquired by the Niles- Bement-Pond Company: he then remained as one of the directors. He was elected a Member of the American Society of Mechanical Engineers in 1913.
    [br]
    Further Reading
    J.W.Roe, 1916, English and American Tool Builders, New Haven; reprinted 1926, New York, and 1987, Bradley, Ill. (describes the origin and development of the Pratt \& Whitney Company).
    RTS

    Biographical history of technology > Whitney, Amos

  • 27 Williams, Sir Edward Leader

    SUBJECT AREA: Canals, Civil engineering
    [br]
    b. 28 April 1828 Worcester, England
    d. 1 June 1910 Altrincham, Cheshire, England
    [br]
    English civil engineer, designer and first Chief Engineer of the Manchester Ship Canal.
    [br]
    After an apprenticeship with the Severn Navigation, of which his father was Chief Engineer, Williams was engaged as Assistant Engineer on the Great Northern Railway, Resident Engineer at Shoreham Harbour and Engineer to the contractors for the Admiralty Pier at Dover. In 1856 he was appointed Engineer to the River Weaver Trust, and among the improvements he made was the introduction of the Anderton barge lift linking the Weaver and the Trent and Mersey Canal. After rejecting the proposal of a flight of locks he considered that barges might be lifted and lowered by hydraulic means. Various designs were submitted and the final choice fell on one by Edwin Clark that had two troughs counterbalancing each other through pistons. Movement of the troughs was initiated by introducing excess water into the upper trough to lift the lower. The work was carried out by Clark.
    In 1872 Williams became Engineer to the Bridgewater Navigation, enlarging the locks at Runcorn and introducing steam propulsion on the canal. He later examined the possibility of upgrading the Mersey \& Irwell Navigation to a Ship Canal. In 1882 his proposals to the Provisional Committee of the proposed Manchester Ship Canal were accepted. His scheme was to use the Mersey Channel as far as Eastham and then construct a lock canal from there to Manchester. He was appointed Chief Engineer of the undertaking.
    The canal's construction was a major engineering work during which Williams overcame many difficulties. He used the principle of the troughs on the Anderton lift as a guide for the construction of the Barton swing aqueduct, which replaced Brindley's original masonry aqueduct on the Bridgewater Canal. The first sod was cut at Eastham on 11 November 1887 and the lower portion of the canal was used for traffic in September 1891. The canal was opened to sea-borne traffic on 1 January 1894 and was formally opened by Queen Victoria on 21 May 1894. In acknowledgement of his work, a knighthood was conferred on him. He continued as Consulting Engineer until ill health forced his retirement.
    [br]
    Principal Honours and Distinctions
    Knighted. Vice-President, Institution of Civil Engineers 1905–7.
    JHB

    Biographical history of technology > Williams, Sir Edward Leader

См. также в других словарях:

  • Cars in Miami Vice — The cars of Miami Vice mainly involve the Ferrari Daytona Spyder and the Ferrari Testarossa, but also include other automobiles driven by the characters on the show. Currently the Ferrari Daytona (kit car) used on the show, and the Ferrari… …   Wikipedia

  • International Association of Hydraulic Engineering and Research — The International Association of Hydraulic Engineering and Research (IAHR), founded in 1935, is a worldwide independent organisation of engineers and water specialists working in fields related to hydraulics and its practical application. IAHR… …   Wikipedia

  • Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign — Department of Civil and Environmental Engineering University of Illinois at Urbana Champaign Newmark Civil Engineering Laboratory …   Wikipedia

  • Elevator — For other uses, see Elevator (disambiguation). A set of lifts in the lower level of a London Underground station. The arrows indicate each elevator s position and direction of travel …   Wikipedia

  • USS Iowa turret explosion — USS Iowa s Turret Two explodes Date April 19, 1989 Place Caribbean Sea ne …   Wikipedia

  • Manitowoc Cranes — Type Public (NYSE: MTW Industry …   Wikipedia

  • Aircraft flight control systems — consist of flight control surfaces, the respective cockpit controls, connecting linkages, and the necessary operating mechanisms to control an aircraft s direction in flight. Aircraft engine controls are also considered as flight controls as they …   Wikipedia

  • china — /chuy neuh/, n. 1. a translucent ceramic material, biscuit fired at a high temperature, its glaze fired at a low temperature. 2. any porcelain ware. 3. plates, cups, saucers, etc., collectively. 4. figurines made of porcelain or ceramic material …   Universalium

  • China — /chuy neuh/, n. 1. People s Republic of, a country in E Asia. 1,221,591,778; 3,691,502 sq. mi. (9,560,990 sq. km). Cap.: Beijing. 2. Republic of. Also called Nationalist China. a republic consisting mainly of the island of Taiwan off the SE coast …   Universalium

  • Flowserve — Infobox Company company name = Flowserve Corporation company company type = Public (NYSE|FLS) foundation = 1997 location = Irving, Texas, USA key people = Lewis M. Kling, President and CEO Andrew J. Beall, Vice President; President, Flow… …   Wikipedia

  • Dimensionless momentum-depth relationship in open-channel flow — Contents 1 Momentum in Open Channel Flow 1.1 What is Momentum? 1.2 Momentum in a Rectangular Channel 1.3 Why is Momentum Important? …   Wikipedia

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»