Перевод: со всех языков на английский

с английского на все языки

hydraulic+engineering+work

  • 41 Reason, Richard Edmund

    [br]
    b. 21 December 1903 Exeter, Devon, England
    d. 20 March 1987 Great Bowden, Leicestershire, England
    [br]
    English metrologist who developed instruments for measuring machined-surface roughness.
    [br]
    Richard Edmund Reason was educated at Tonbridge School and the Royal College of Science (Imperial College), where he studied under Professor A.F.C.Pollard, Professor of Technical Optics. After graduating in 1925 he joined Taylor, Taylor and Hobson Ltd, Leicester, manufacturers of optical, electrical and scientific instruments, and remained with that firm throughout his career. One of his first contributions was in the development, with E.F.Fincham, of the Fincham Coincidence Optometer. At this time the firm, under William Taylor, was mainly concerned with optical instruments and lens manufacture, but in the 1930s Reason was also engaged in developing means for measuring the roughness of machined surfaces. The need for establishing standards and methods of measurement of surface finish was called for when the subcontracting of aero-engine components became necessary during the Second World War. This led to the development by Reason of an instrument in which a stylus was moved across the surface and the profile recorded electronically. This was called the Talysurf and was first produced in 1941. Further development followed, and from 1947 Reason tackled the problem of measuring roundness, producing the first Talyrond machine in 1949. The technology developed for these instruments was used in the production of others such as the Talymin Comparator and the Talyvel electronic level. Reason was also associated with the development of optical projection systems to measure the profile of parts such as gear teeth, screw threads and turbine blades. He retired in 1968 but continued as a consultant to the company. He served for many years on committees of the British Standards Institution on surface metrology and was a representative of Britain at the International Standards Organization.
    [br]
    Principal Honours and Distinctions
    OBE 1967. FRS 1971. Honorary DSc University of Birmingham 1969. Honorary DSc Leicester University 1971.
    Further Reading
    D.J.Whitehouse, 1990, Biographical Memoirs of Fellows of the Royal Society 36, London, pp. 437–62 (an illustrated obituary notice listing Reason's eighty-nine British patents, published between 1930 and 1972, and his twenty-one publications, dating from 1937 to 1966).
    K.J.Hume, 1980, A History of Engineering Metrology, London, 113–21 (contains a shorter account of Reason's work).
    RTS

    Biographical history of technology > Reason, Richard Edmund

  • 42 Roberts, Richard

    [br]
    b. 22 April 1789 Carreghova, Llanymynech, Montgomeryshire, Wales
    d. 11 March 1864 London, England
    [br]
    Welsh mechanical engineer and inventor.
    [br]
    Richard Roberts was the son of a shoemaker and tollkeeper and received only an elementary education at the village school. At the age of 10 his interest in mechanics was stimulated when he was allowed by the Curate, the Revd Griffith Howell, to use his lathe and other tools. As a young man Roberts acquired a considerable local reputation for his mechanical skills, but these were exercised only in his spare time. For many years he worked in the local limestone quarries, until at the age of 20 he obtained employment as a pattern-maker in Staffordshire. In the next few years he worked as a mechanic in Liverpool, Manchester and Salford before moving in 1814 to London, where he obtained employment with Henry Maudslay. In 1816 he set up on his own account in Manchester. He soon established a reputation there for gear-cutting and other general engineering work, especially for the textile industry, and by 1821 he was employing about twelve men. He built machine tools mainly for his own use, including, in 1817, one of the first planing machines.
    One of his first inventions was a gas meter, but his first patent was obtained in 1822 for improvements in looms. His most important contribution to textile technology was his invention of the self-acting spinning mule, patented in 1825. The normal fourteen-year term of this patent was extended in 1839 by a further seven years. Between 1826 and 1828 Roberts paid several visits to Alsace, France, arranging cottonspinning machinery for a new factory at Mulhouse. By 1826 he had become a partner in the firm of Sharp Brothers, the company then becoming Sharp, Roberts \& Co. The firm continued to build textile machinery, and in the 1830s it built locomotive engines for the newly created railways and made one experimental steam-carriage for use on roads. The partnership was dissolved in 1843, the Sharps establishing a new works to continue locomotive building while Roberts retained the existing factory, known as the Globe Works, where he soon after took as partners R.G.Dobinson and Benjamin Fothergill (1802–79). This partnership was dissolved c. 1851, and Roberts continued in business on his own for a few years before moving to London as a consulting engineer.
    During the 1840s and 1850s Roberts produced many new inventions in a variety of fields, including machine tools, clocks and watches, textile machinery, pumps and ships. One of these was a machine controlled by a punched-card system similar to the Jacquard loom for punching rivet holes in plates. This was used in the construction of the Conway and Menai Straits tubular bridges. Roberts was granted twenty-six patents, many of which, before the Patent Law Amendment Act of 1852, covered more than one invention; there were still other inventions he did not patent. He made his contribution to the discussion which led up to the 1852 Act by publishing, in 1830 and 1833, pamphlets suggesting reform of the Patent Law.
    In the early 1820s Roberts helped to establish the Manchester Mechanics' Institute, and in 1823 he was elected a member of the Literary and Philosophical Society of Manchester. He frequently contributed to their proceedings and in 1861 he was made an Honorary Member. He was elected a Member of the Institution of Civil Engineers in 1838. From 1838 to 1843 he served as a councillor of the then-new Municipal Borough of Manchester. In his final years, without the assistance of business partners, Roberts suffered financial difficulties, and at the time of his death a fund for his aid was being raised.
    [br]
    Principal Honours and Distinctions
    Member, Institution of Civil Engineers 1838.
    Further Reading
    There is no full-length biography of Richard Roberts but the best account is H.W.Dickinson, 1945–7, "Richard Roberts, his life and inventions", Transactions of the Newcomen Society 25:123–37.
    W.H.Chaloner, 1968–9, "New light on Richard Roberts, textile engineer (1789–1864)", Transactions of the Newcomen Society 41:27–44.
    RTS

    Biographical history of technology > Roberts, Richard

  • 43 Root, Elisha King

    [br]
    b. 10 May 1808 Ludlow, Massachusetts, USA
    d. 31 August 1865 Hartford, Connecticut, USA
    [br]
    American mechanical engineer and inventor.
    [br]
    After an elementary education, Elisha K.Root was apprenticed as a machinist and worked in that occupation at Ware and Chicopee Falls, Massachusetts. In 1832 he went to Collinsville, Connecticut, to join the Collins Company, manufacturers of axes. He started as a lathe hand but soon became Foreman and, in 1845, Superintendent. While with the company, he devised and patented special-purpose machinery for forming axes which transformed the establishment from a primitive workshop to a modern factory.
    In 1849 Root was offered positions by four different manufacturers and accepted the post of Superintendent of the armoury then being planned at Hartford, Connecticut, by Samuel Colt for the manufacture of his revolver pistol, which he had invented in 1835. Initial acceptance of the revolver was slow, but by the mid1840s Colt had received sufficient orders to justify the establishment of a new factory and Root was engaged to design and install the machinery. The principle of interchangeable manufacture was adopted, and Root devised special machines for boring, rifling, making cartridges, etc., and a system of jigs, fixtures, tools and gauges. One of these special machines was a drop hammer that he invented and patented in 1853 and which established the art of die-forging on a modern basis. He was also associated with F.A. Pratt in the design of the "Lincoln" milling machine in 1855.
    When Colt died in 1862, Root became President of the company and continued in that capacity until his own death. It was said that he was one of the ablest and most highly paid mechanics from New England and that he was largely responsible for the success of both the Collins and the Colt companies.
    [br]
    Further Reading
    J.W.Roe, 1916, English and American Tool Builders, New Haven; reprinted 1926, New York, and 1987, Bradley, Ill. (describes Root's work at the Colt Armory).
    Paul Uselding, 1974, "Elisha K.Root, Forging, and the “American System”", "Elisha K.Root, forging, and the “American System”", Technology and Culture 15:543–68 (provides further biographical details, his work with the Collins Company and a list of his patents).
    RTS

    Biographical history of technology > Root, Elisha King

  • 44 Taylor, Frederick Winslow

    [br]
    b. 20 March 1856 Germantown, Pennsylvania, USA
    d. 21 March 1915 Philadelphia, Pennsylvania, USA
    [br]
    American mechanical engineer and pioneer of scientific management.
    [br]
    Frederick W.Taylor received his early education from his mother, followed by some years of schooling in France and Germany. Then in 1872 he entered Phillips Exeter Academy, New Hampshire, to prepare for Harvard Law School, as it was intended that he should follow his father's profession. However, in 1874 he had to abandon his studies because of poor eyesight, and he began an apprenticeship at a pump-manufacturing works in Philadelphia learning the trades of pattern-maker and machinist. On its completion in 1878 he joined the Midvale Steel Company, at first as a labourer but then as Shop Clerk and Foreman, finally becoming Chief Engineer in 1884. At the same time he was able to resume study in the evenings at the Stevens Institute of Technology, and in 1883 he obtained the degree of Mechanical Engineer (ME). He also found time to take part in amateur sport and in 1881 he won the tennis doubles championship of the United States.
    It was while with the Midvale Steel Company that Taylor began the systematic study of workshop management, and the application of his techniques produced significant increases in the company's output and productivity. In 1890 he became Manager of a company operating large paper mills in Maine and Wisconsin, until 1893 when he set up on his own account as a consulting engineer specializing in management organization. In 1898 he was retained exclusively by the Bethlehem Steel Company, and there continued his work on the metal-cutting process that he had started at Midvale. In collaboration with J.Maunsel White (1856–1912) he developed high-speed tool steels and their heat treatment which increased cutting capacity by up to 300 per cent. He resigned from the Bethlehem Steel Company in 1901 and devoted the remainder of his life to expounding the principles of scientific management which became known as "Taylorism". The Society to Promote the Science of Management was established in 1911, renamed the Taylor Society after his death. He was an active member of the American Society of Mechanical Engineers and was its President in 1906; his presidential address "On the Art of Cutting Metals" was reprinted in book form.
    [br]
    Principal Honours and Distinctions
    Paris Exposition Gold Medal 1900. Franklin Institute Elliott Cresson Gold Medal 1900. President, American Society of Mechanical Engineers 1906. Hon. ScD, University of Pennsylvania 1906. Hon. LLD, Hobart College 1912.
    Bibliography
    F.W.Taylor was the author of about 100 patents, several papers to the American Society of Mechanical Engineers, On the Art of Cutting Metals (1907, New York) and The Principles of Scientific Management (1911, New York) and, with S.E.Thompson, 1905 A Treatise on Concrete, New York, and Concrete Costs, 1912, New York.
    Further Reading
    The standard biography is Frank B.Copley, 1923, Frederick W.Taylor, Father of Scientific Management, New York (reprinted 1969, New York) and there have been numerous commentaries on his work: see, for example, Daniel Nelson, 1980, Frederick W.Taylor and the Rise of Scientific Management, Madison, Wis.
    RTS

    Biographical history of technology > Taylor, Frederick Winslow

  • 45 Wilkinson, David

    [br]
    b. 5 January 1771 Smithfield (now Slatersville), Rhode Island, USA
    d. 3 February 1852 Caledonia Springs, Ontario, Canada
    [br]
    American mechanical engineer and inventor of a screw-cutting lathe.
    [br]
    David Wilkinson was the third son of Oziel Wilkinson (1744–1815), a blacksmith who c.1783 established at Pawtucket, Rhode Island, a plant for making farm tools and domestic utensils. This enterprise he steadily expanded with the aid of his sons, until by 1800 it was regarded as the leading iron and machinery manufacturing business in New England. At the age of 13, David Wilkinson entered his father's workshops. Their products included iron screws, and the problem of cutting the threads was one that engaged his attention. After working on it for some years he devised a screw-cutting lathe, for which he obtained a patent in 1798. In about 1800 David and his brother Daniel established their own factory at Pawtucket, known as David Wilkinson \& Co., where they specialized in the manufacture of textile machinery. Later they began to make cast cannon and installed a special boring machine for machining them. The firm prospered until 1829, when a financial crisis caused its collapse. David Wilkinson set up a new business in Cohoes, New York, but this was not a success and from 1836 he travelled around finding work chiefly in canal and bridge construction in New Jersey, Ohio and Canada. In 1848 he petitioned Congress for some reward for his invention of the screw-cutting lathe of 1798; he was awarded $10,000.
    [br]
    Further Reading
    J.W.Roe, 1916, English and American Tool Builders, New Haven; reprinted 1926, New York, and 1987, Bradley, Ill. (provides a short account of David Wilkinson and his work).
    R.S.Woodbury, 1961, History of the Lathe to 1850, Cleveland, Ohio (includes a description of Wilkinson's screw-cutting lathe).
    RTS

    Biographical history of technology > Wilkinson, David

  • 46 Bullard, Edward Payson

    [br]
    b. 18 April 1841 Uxbridge, Massachusetts, USA
    d. 22 December 1906 Bridgeport, Connecticut, USA
    [br]
    American mechanical engineer and machine-tool manufacturer who designed machines for boring.
    [br]
    Edward Payson Bullard served his apprenticeship at the Whitin Machine Works, Whitinsville, Massachusetts, and worked at the Colt Armory in Hartford, Connecticut, until 1863; he then entered the employ of Pratt \& Whitney, also in Hartford. He later formed a partnership with J.H.Prest and William Parsons manufacturing millwork and tools, the firm being known as Bullard \& Prest. In 1866 Bullard organized the Norwalk Iron Works Company of Norwalk, Connecticut, but afterwards withdrew and continued the business in Hartford. In 1868 the firm of Bullard \& Prest was dissolved and Bullard became Superintendent of a large machine shop in Athens, Georgia. He later organized the machine tool department of Post \& Co. at Cincinnati, and in 1872 he was made General Superintendent of the Gill Car Works at Columbus, Ohio. In 1875 he established a machinery business in Beekman Street, New York, under the name of Allis, Bullard \& Co. Mr Allis withdrew in 1877, and the Bullard Machine Company was organized.
    In 1880 Bullard secured entire control of the business and also became owner of the Bridgeport Machine Tool Works, Bridgeport, Connecticut. In 1883 he designed his first vertical boring and turning mill with a single head and belt feed and a 37 in. (94 cm) capacity; this was the first small boring machine designed to do the accurate work previously done on the face plate of a lathe. In 1889 Bullard gave up his New York interests and concentrated his entire attention on manufacturing at Bridgeport, the business being incorporated in 1894 as the Bullard Machine Tool Company. The company specialized in the construction of boring machines, the design being developed so that it became essentially a vertical turret lathe. After Bullard's death, his son Edward Payson Bullard II (b. 10 July 1872 Columbus, Ohio, USA; d. 26 June 1953 Fairfield, Connecticut, USA) continued as head of the company and further developed the boring machine into a vertical multi-spindle automatic lathe which he called the "Mult-au-matic" lathe. Both father and son were members of the American Society of Mechanical Engineers.
    [br]
    Further Reading
    J.W.Roe, 1916, English and American Tool Builders, New Haven: Yale University Press; repub. 1926, New York and 1987, Bradley, Ill.: Lindsay Publications Inc. (describes Bullard's machines).
    RTS

    Biographical history of technology > Bullard, Edward Payson

  • 47 Clement (Clemmet), Joseph

    [br]
    bapt. 13 June 1779 Great Asby, Westmoreland, England
    d. 28 February 1844 London, England
    [br]
    English machine tool builder and inventor.
    [br]
    Although known as Clement in his professional life, his baptism at Asby and his death were registered under the name of Joseph Clemmet. He worked as a slater until the age of 23, but his interest in mechanics led him to spend much of his spare time in the local blacksmith's shop. By studying books on mechanics borrowed from his cousin, a watchmaker, he taught himself and with the aid of the village blacksmith made his own lathe. By 1805 he was able to give up the slating trade and find employment as a mechanic in a small factory at Kirkby Stephen. From there he moved to Carlisle for two years, and then to Glasgow where, while working as a turner, he took lessons in drawing; he had a natural talent and soon became an expert draughtsman. From about 1809 he was employed by Leys, Mason \& Co. of Aberdeen designing and making power looms. For this work he built a screw-cutting lathe and continued his self-education. At the end of 1813, having saved about £100, he made his way to London, where he soon found employment as a mechanic and draughtsman. Within a few months he was engaged by Joseph Bramah, and after a trial period a formal agreement dated 1 April 1814 was made by which Clement was to be Chief Draughtsman and Superintendent of Bramah's Pimlico works for five years. However, Bramah died in December 1814 and after his sons took over the business it was agreed that Clement should leave before the expiry of the five-year period. He soon found employment as Chief Draughtsman with Henry Maudslay \& Co. By 1817 Clement had saved about £500, which enabled him to establish his own business at Prospect Place, Newington Butts, as a mechanical draughtsman and manufacturer of high-class machinery. For this purpose he built lathes for his own use and invented various improvements in their detailed design. In 1827 he designed and built a facing lathe which incorporated an ingenious system of infinitely variable belt gearing. He had also built his own planing machine by 1820 and another, much larger one in 1825. In 1828 Clement began making fluted taps and dies and standardized the screw threads, thus anticipating on a small scale the national standards later established by Sir Joseph Whitworth. Because of his reputation for first-class workmanship, Clement was in the 1820s engaged by Charles Babbage to carry out the construction of his first Difference Engine.
    [br]
    Principal Honours and Distinctions
    Society of Arts Gold Medal 1818 (for straightline mechanism), 1827 (for facing lathe); Silver Medal 1828 (for lathe-driving device).
    Bibliography
    Further Reading
    S.Smiles, 1863, Industrial Biography, London, reprinted 1967, Newton Abbot (virtually the only source of biographical information on Clement).
    L.T.C.Rolt, 1965, Tools for the Job, London (repub. 1986); W.Steeds, 1969, A History of Machine Tools 1700–1910, Oxford (both contain descriptions of his machine tools).
    RTS

    Biographical history of technology > Clement (Clemmet), Joseph

  • 48 Donkin, Bryan II

    [br]
    b. 29 April 1809 London, England
    d. 4 December 1893 Blackheath, Kent, England
    [br]
    English mechanical engineer.
    [br]
    Bryan Donkin was the fifth son of Bryan Donkin I (1768–1855) and was educated at schools in Bromley (Kent), London, Paris and Nantes. He was an apprentice in his father's Bermondsey works and soon became an active and valuable assistant in the design and construction of papermaking, printing, pumping and other machinery. In 1829 he was sent to France to superintend the construction of paper mills and other machinery at Nantes. He later became a partner in the firm which in 1858 received an order to construct and set up a large paper mill at St Petersburg. This work took him to Russia several times before its completion in 1862. He obtained several patents relating to paper-making and steam engines. He was elected an associate of the Institution of Civil Engineers in 1835 and a member in 1840.
    [br]
    Principal Honours and Distinctions
    Member, Smeatonian Society of Civil Engineers 1859; President 1872.
    RTS

    Biographical history of technology > Donkin, Bryan II

  • 49 Kaplan, Viktor

    [br]
    b. 27 November 1876 Mutz, Austria
    d. 23 August 1834 Unterach, Austria
    [br]
    Austrian engineer, inventor of the Kaplan turbine.
    [br]
    Kaplan was educated at the Realschule in Vienna and went on to the Technische Hochschule to study machine construction, gaining his engineer's diploma in 1900. He spent a year in voluntary service in the Navy before entering Ganz \& Co. at Lebersdorf, where he was engaged in the manufacture of diesel engines. In 1903 he turned to an academic career, first with a professorship in kinematics, theoretical machine studies and machine construction at the Technische Hochschule in Brunn (now Brno). In 1918 he became Professor of Water Turbine Construction, remaining as such until his early retirement for health reasons in 1931.
    Kaplan's first publication on turbines, in 1908, was an extension of work carried out for his doctorate at the Technische Hochschule in Vienna and concerned the Francis-type turbine. Kaplan went on to develop and patent the form of water turbine that came to bear his name. It is a reaction turbine which uses a large flow on a low head and which is made like a ship's propeller with variable-pitch vanes running in a close-fitting casing. Its application was neglected at first, but since the 1920s it has become the basic turbine for most high-powered hydroelectric plant: the turbines have been capable of around 85 per cent efficiency and modern developments have raised this figure still further. Perhaps the most impressive application of the Kaplan turbine and its derivatives is the great tidal-power scheme in the estuary of the Rance by St-Malo in France, completed in 1966. The turbines probably have to meet a greater demand for flexibility than any others, for they must operate at constant speed with variable head, as the tide ebbs and flows.
    LRD

    Biographical history of technology > Kaplan, Viktor

  • 50 Norton, Charles Hotchkiss

    [br]
    b. 23 November 1851 Plainville, Connecticut, USA
    d. 27 October 1942 Plainville, Connecticut, USA
    [br]
    American mechanical engineer and machine-tool designer.
    [br]
    After an elementary education at the public schools of Plainville and Thomaston, Connecticut, Charles H.Norton started work in 1866 at the Seth Thomas Clock Company in Thomaston. He was soon promoted to machinist, and further progress led to his successive appointments as Foreman, Superintendent of Machinery and Manager of the department making tower clocks. He designed many public clocks.
    In 1886 he obtained a position as Assistant Engineer with the Brown \& Sharpe Manufacturing Company at Providence, Rhode Island, and was engaged in redesigning their universal grinding machine to give it more rigidity and make it more suitable for use as a production machine. In 1890 he left to become a partner in a newly established firm, Leland, Faulconer \& Norton Company at Detroit, Michigan, designing and building machine tools. He withdrew from this firm in 1895 and practised as a consulting mechanical engineer for a short time before returning to Brown \& Sharpe in 1896. There he designed a grinding machine incorporating larger and wider grinding wheels so that heavier cuts could be made to meet the needs of the mass-production industries, especially the automobile industry. This required a heavier and more rigid machine and greater power, but these ideas were not welcomed at Brown \& Sharpe and in 1900 Norton left to found the Norton Grinding Company in Worcester, Massachusetts. Here he was able to develop heavy-production grinding machines, including special machines for grinding crank-shafts and camshafts for the automobile industry.
    In setting up the Norton Grinding Company, Charles H.Norton received financial support from members of the Norton Emery Wheel Company (also of Worcester and known after 1906 as the Norton Company), but he was not related to the founder of that company. The two firms were completely independent until 1919 when they were merged. From that time Charles H.Norton served as Chief Engineer of the machinery division of the Norton Company, until 1934 when he became their Consulting Engineer.
    [br]
    Principal Honours and Distinctions
    City of Philadelphia, John Scott Medal 1925.
    Bibliography
    Further Reading
    Robert S.Woodbury, 1959, History of the Grinding Machine, Cambridge, Mass, (contains biographical information and details of the machines designed by Norton).
    RTS

    Biographical history of technology > Norton, Charles Hotchkiss

  • 51 Pratt, Francis Ashbury

    [br]
    b. 15 February 1827 Woodstock, Vermont, USA
    d. 10 February 1902 Hartford, Connecticut, USA
    [br]
    American mechanical engineer and machine-tool manufacturer.
    [br]
    Francis A.Pratt served an apprenticeship as a machinist with Warren Aldrich, and on completing it in 1848 he entered the Gloucester Machine Works as a journeyman machinist. From 1852 to 1854 he worked at the Colt Armory in Hartford, Connecticut, where he met his future partner, Amos Whitney. He then became Superintendent of the Phoenix Iron Works, also at Hartford and run by George S.Lincoln \& Company. While there he designed the well-known "Lincoln" miller, which was first produced in 1855. This was a development of the milling machine built by Robbins \& Lawrence and designed by F.W. Howe, and incorporated a screw drive for the table instead of the rack and pinion used in the earlier machine.
    Whitney also moved to the Phoenix Iron Works, and in 1860 the two men started in a small way doing machine work on their own account. In 1862 they took a third partner, Monroe Stannard, and enlarged their workshop. The business continued to expand, but Pratt and Whitney remained at the Phoenix Iron Works until 1864 and in the following year they built their first new factory. The Pratt \& Whitney Company was incorporated in 1869 with a capital of $350,000, F.A.Pratt being elected President. The firm specialized in making machine tools and tools particularly for the armament industry. In the 1870s Pratt made no less than ten trips to Europe gaining orders for equipping armouries in many different countries. Pratt \& Whitney was one of the leading firms developing the system of interchangeable manufacture which led to the need to establish national standards of measurement. The Rogers-Bond Comparator, developed with the backing of Pratt \& Whitney, played an important part in the establishment of these standards, which formed the basis of the gauges of many various types made by the firm. Pratt remained President of the company until 1898, after which he served as their Consulting Engineer for a short time before retiring from professional life. He was granted a number of patents relating to machine tools. He was a founder member of the American Society of Mechanical Engineers in 1880 and was elected a vice-president in 1881. He was an alderman of the city of Hartford.
    [br]
    Principal Honours and Distinctions
    Vice-President, American Society of Mechanical Engineers 1881.
    Further Reading
    J.W.Roe, 1916, English and American Tool Builders, New Haven; reprinted 1926, New York, and 1987, Bradley, 111. (describes the origin and development of the Pratt \& Whitney Company).
    RTS

    Biographical history of technology > Pratt, Francis Ashbury

  • 52 Somerset, Edward, 2nd Marquis of Worcester

    [br]
    b. 1601
    d. 3 April 1667 Lambeth (?), London, England
    [br]
    English inventor of a steam-operated pump for raising water, described in his work A Century of…Inventions.
    [br]
    Edward Somerset became 6th Earl and 2nd Marquis of Worcester and Titular Earl of Glamorgan. He was educated privately and then abroad, visiting Germany, Italy and France. He was made Councillor of Wales in 1633 and Deputy Lord Lieutenant of Monmouthshire in 1635. On the outbreak of the Civil War, he was commissioned to levy forces against the Scots in 1640. He garrisoned Raglan Castle for the King and was employed by Charles I to bring troops in from Ireland. He was declared an enemy of the realm by Parliament and was banished, remaining in France for some years. On the Restoration, he recovered most of his estates, principally in South Wales, and was able to devote most of his time to mechanical studies and experiments.
    Soon after 1626, he had employed the services of a skilled Dutch or German mechanic, Caspar Kaltoff, to make small-scale models for display to interested people. In 1638 he showed Charles I a 14 ft (4.3m) diameter wheel carrying forty weights that was claimed to have solved the problem of perpetual motion. He wrote his Century of the Names and Scantlings of Such Inventions as at Present I Can Call to Mind to have Tried and Perfected in 1655, but it was not published until 1663: no. 68 describes "An admirable and most forcible way to drive up water by fire", which has been claimed as an early steam-engine. Before the Civil War he made experiments at Raglan Castle, and after the war he built one of his engines at Vauxhall, London, where it raised water to a height of 40 ft (12 m). An Act of Parliament enabling Worcester to receive the benefit and profits of his water-commanding engine for ninety-nine years did not restore his fortunes. Descriptions of this invention are so vague that it cannot be reconstructed.
    [br]
    Bibliography
    1655, Century of the Names and Scantlings of Such Inventions as at Present I Can Call to Mind to have Tried and Perfected.
    Further Reading
    H.Dircks, 1865, The Life, Times and Scientific Labours of the Second Marquis of Worcester.
    Dictionary of National Biography, 1898, Vol. L, London: Smith Elder \& Co. (mainly covers his political career).
    H.W.Dickinson, 1938, A Short History of the Steam Engine, Cambridge University Press (discusses his steam engine invention).
    W.H.Thorpe, 1932–3, "The Marquis of Worcester and Vauxhall", Transactions of the Newcomen Society 13.
    RLH

    Biographical history of technology > Somerset, Edward, 2nd Marquis of Worcester

  • 53 Spencer, Christopher Miner

    [br]
    b. 10 June 1833 Manchester, Connecticut, USA
    d. 14 January 1922 Hartford, Connecticut, USA
    [br]
    American mechanical engineer and inventor.
    [br]
    Christopher M.Spencer served an apprenticeship from 1847 to 1849 in the machine shop at the silk mills of Cheney Brothers in his native town and remained there for a few years as a journeyman machinist. In 1853 he went to Rochester, New York, to obtain experience with machinery other than that used in the textile industry. He then spent some years with the Colt Armory at Hartford, Connecticut, before returning to Cheney Brothers, where he obtained his first patent, which was for a silk-winding machine.
    Spencer had long been interested in firearms and in 1860 he obtained a patent for a repeating rifle. The Spencer Repeating Rifle Company was organized for its manufacture, and before the end of the American Civil War about 200,000 rifles had been produced. He patented a number of other improvements in firearms and in 1868 was associated with Charles E.Billings (1835–1920) in the Roper Arms Company, set up at Amherst, Massachusetts, to manufacture Spencer's magazine gun. This was not a success, however, and in 1869 they moved to Hartford, Connecticut, and formed the Billings \& Spencer Company. There they developed the technology of the drop hammer and Spencer continued his inventive work, which included an automatic turret lathe for producing metal screws. The patent that he obtained for this in 1873 inexplicably failed to protect the essential feature of the machine which provided the automatic action, with the result that Spencer received no patent right on the most valuable feature of the machine.
    In 1874 Spencer withdrew from active connection with Billings \& Spencer, although he remained a director, and in 1876 he formed with others the Hartford Machine Screw Company. However, he withdrew in 1882 to form the Spencer Arms Company at Windsor, Connecticut, for the manufacture of another of his inventions, a repeating shotgun. But this company failed and Spencer returned to the field of automatic lathes, and in 1893 he organized the Spencer Automatic Machine Screw Company at Windsor, where he remained until his retirement.
    [br]
    Further Reading
    J.W.Roe, 1916, English and American Tool Builders, New Haven; reprinted 1926, New York, and 1987, Bradley, Ill. (briefly describes his career and his automatic lathes).
    L.T.C.Rolt, 1965, Tools for the Job, London; repub. 1986 (gives a brief description of Spencer's automatic lathes).
    RTS

    Biographical history of technology > Spencer, Christopher Miner

  • 54 Whitney, Amos

    [br]
    b. 8 October 1832 Biddeford, Maine, USA
    d. 5 August 1920 Poland Springs, Maine, USA
    [br]
    American mechanical engineer and machine-tool manufacturer.
    [br]
    Amos Whitney was a member of the same distinguished family as Eli Whitney. His father was a locksmith and machinist and he was apprenticed at the age of 14 to the Essex Machine Company of Lawrence, Massachusetts. In 1850 both he and his father were working at the Colt Armory in Hartford, Connecticut, where he first met his future partner, F.A. Pratt. They both subsequently moved to the Phoenix Iron Works, also at Hartford, and in 1860 they started in a small way doing machine work on their own account. In 1862 they took a third partner, Monroe Stannard, and enlarged their workshop. The business continued to expand, but Pratt and Whitney remained at the Phoenix Iron Works until 1864 and in the following year they built their first new factory. The Pratt \& Whitney Company was incorporated in 1869 with a capital of $350,000, Amos Whitney being appointed General Superintendent. The firm specialized in making machine tools and tools particularly for the armament industry. Pratt \& Whitney was one of the leading firms developing the system of interchangeable manufacture which led to the need to establish national standards of measurement. The Rogers-Bond Comparator, developed with the backing of Pratt \& Whitney, played an important part in the establishment of these standards, which formed the basis of the gauges of many various types made by the firm.
    Amos Whitney was made Vice-President of Pratt \& Whitney Company in 1893 and was President from 1898 until 1901, when the company was acquired by the Niles- Bement-Pond Company: he then remained as one of the directors. He was elected a Member of the American Society of Mechanical Engineers in 1913.
    [br]
    Further Reading
    J.W.Roe, 1916, English and American Tool Builders, New Haven; reprinted 1926, New York, and 1987, Bradley, Ill. (describes the origin and development of the Pratt \& Whitney Company).
    RTS

    Biographical history of technology > Whitney, Amos

  • 55 гидроэнергостроительство

    Универсальный русско-английский словарь > гидроэнергостроительство

  • 56 Vermuyden, Sir Cornelius

    SUBJECT AREA: Civil engineering
    [br]
    b. c. 1590 St Maartensdijk, Zeeland, the Netherlands
    d. 4 February 1656 probably London, England
    [br]
    Dutch/British civil engineer responsible for many of the drainage and flood-protection schemes in low-lying areas of England in the seventeenth century.
    [br]
    At the beginning of the seventeenth century, several wealthy men in England joined forces as "adventurers" to put their money into land ventures. One such group was responsible for the draining of the Fens. The first need was to find engineers who were versed in the processes of land drainage, particularly when that land was at, or below, sea level. It was natural, therefore, to turn to the Netherlands to find these skilled men. Joachim Liens was one of the first of the Dutch engineers to go to England, and he started work on the Great Level; however, no real progress was made until 1621, when Cornelius Vermuyden was brought to England to assist in the work.
    Vermuyden had grown up in a district where he could see for himself the techniques of embanking and reclaiming land from the sea. He acquired a reputation of expertise in this field, and by 1621 his fame had spread to England. In that year the Thames had flooded and breached its banks near Havering and Dagenham in Essex. Vermuyden was commissioned to repair the breach and drain neighbouring marshland, with what he claimed as complete success. The Commissioners of Sewers for Essex disputed this claim and whthheld his fee, but King Charles I granted him a portion of the reclaimed land as compensation.
    In 1626 Vermuyden carried out his first scheme for drainage works as a consultant. This was the drainage of Hatfield Chase in South Yorkshire. Charles I was, in fact, Vermuyden's employer in the drainage of the Chase, and the work was undertaken as a means of raising additional rents for the Royal Exchequer. Vermuyden was himself an "adventurer" in the undertaking, putting capital into the venture and receiving the title to a considerable proportion of the drained lands. One of the important elements of his drainage designs was the principal of "washes", which were flat areas between the protective dykes and the rivers to carry flood waters, to prevent them spreading on to nearby land. Vermuyden faced bitter opposition from those whose livelihoods depended on the marshlands and who resorted to sabotage of the embankments and violence against his imported Dutch workmen to defend their rights. The work could not be completed until arbiters had ruled out on the respective rights of the parties involved. Disagreements and criticism of his engineering practices continued and he gave up his interest in Hatfield Chase. The Hatfield Chase undertaking was not a great success, although the land is now rich farmland around the river Don in Doncaster. However, the involved financial and land-ownership arrangements were the key to the granting of a knighthood to Cornelius Vermuyden in January 1628, and in 1630 he purchased 4,000 acres of low-lying land on Sedgemoor in Somerset.
    In 1629 Vermuyden embarked on his most important work, that of draining the Great Level in the fenlands of East Anglia. Francis Russell, 4th Earl of Bedford, was given charge of the work, with Vermuyden as Engineer; in this venture they were speculators and partners and were recompensed by a grant of land. The area which contains the Cambridgeshire tributaries of the Great Ouse were subject to severe and usually annual flooding. The works to contain the rivers in their flood period were important. Whilst the rivers were contained with the enclosed flood plain, the land beyond became highly sought-after because of the quality of the soil. The fourteen "adventurers" who eventually came into partnership with the Earl of Bedford and Vermuyden were the financiers of the scheme and also received land in accordance with their input into the scheme. In 1637 the work was claimed to be complete, but this was disputed, with Vermuyden defending himself against criticism in a pamphlet entitled Discourse Touching the Great Fennes (1638; 1642, London). In fact, much remained to be done, and after an interruption due to the Civil War the scheme was finished in 1652. Whilst the process of the Great Level works had closely involved the King, Oliver Cromwell was equally concerned over the success of the scheme. By 1655 Cornelius Vermuyden had ceased to have anything to do with the Great Level. At that stage he was asked to account for large sums granted to him to expedite the work but was unable to do so; most of his assets were seized to cover the deficiency, and from then on he subsided into obscurity and poverty.
    While Cornelius Vermuyden, as a Dutchman, was well versed in the drainage needs of his own country, he developed his skills as a hydraulic engineer in England and drained acres of derelict flooded land.
    [br]
    Principal Honours and Distinctions
    Knighted 1628.
    Further Reading
    L.E.Harris, 1953, Vermuyden and the Fens, London: Cleaver Hume Press. J.Korthals-Altes, 1977, Sir Cornelius Vermuyden: The Lifework of a Great Anglo-
    Dutchman in Land-Reclamation and Drainage, New York: Alto Press.
    KM / LRD

    Biographical history of technology > Vermuyden, Sir Cornelius

  • 57 для

    авиационное топливо для турбореактивных двигателей
    aviation turbine fuel
    ангар для воздушного судна
    aircraft shed
    аэродинамическая труба для испытаний на сваливание в штопор
    spin wind tunnel
    аэродинамическая труба для испытания моделей в натуральную величину
    full-scale wind tunnel
    аэродром для реактивных воздушных судов
    jet aerodrome
    аэродром для самолетов короткого взлета и посадки
    1. STOLport
    2. stolport аэродромная установка для запуска
    ground air starting unit
    база для обслуживания полетов
    air base
    бассейн для гидродинамических испытаний
    towing base
    бокс для испытания
    test box
    бригада для перегонки воздушных судов
    delivery group
    вал для передачи крутящего момента
    torsion shaft
    вентилятор для создания подъемной силы
    lift fan
    визир для определения сноса
    drift sight
    (в полете) воздушное судно для местный авиалиний
    short-range aircraft
    воздушное судно для местных авиалиний
    short-haul transport
    воздушное судно для обслуживания местных авиалиний
    feederliner
    воздушное судно для патрулирования лесных массивов
    forest patrol aircraft
    воздушное судно для полетов на большой высоте
    high-altitude aircraft
    воздушное судно для смешанных перевозок
    combination aircraft
    возрастной предел для пилота
    pilot retirement rule
    ВПП для эксплуатации любых типов воздушных судов
    all-service runway
    ВПП, не оборудованная для посадки по приборам
    noninstrument runway
    ВПП, не оборудованная для точного захода на посадку
    nonprecision approach runway
    ВПП, оборудованная для посадки по приборам
    instrument runway
    ВПП, оборудованная для точного захода на посадку
    precision approach runway
    ВПП, открытая только для взлетов
    takeoff runway
    ВПП, открытая только для посадок
    landing runway
    втулка для установки свечи зажигания
    igniter plug ferrule
    втулка для установки форсунки
    fuel nozzle ferrule
    втулка с устройством для флюгирования
    feathering hub
    выделение канала для связи
    channel assignment
    выемка для ниши колеса
    wheel well cavity
    выруливание на исполнительный старт для взлета
    1. takeoff taxiing
    2. taxiing to takeoff position выставка технического оборудования для обслуживания воздушных судов
    aircraft maintenance engineering exhibition
    галерея для подачи грузов
    loading finder
    гидроподъемник для воздушного судна
    aircraft hydraulic jack
    гидросистема для обслуживания вспомогательных устройств
    utility hydraulic system
    горловина для заправки
    fil opening
    гребень для ограничения пограничного слоя
    boundary-layer fence
    груз для воздушной перевозки
    air cargo
    данные для опознавания
    identification data
    доворот для коррекции направления полета
    flight corrective turn
    домкрат для замены
    change jack
    домкрат для замены колеса
    wheel jack
    заборник воздуха для надува топливных баков от скоростного напора
    ram air assembly
    зажим для установки поршневых колец
    piston ring clamp
    закрытая для полетов ВПП
    idle runway
    закрытая для эксплуатации ВПП
    closed runway
    запас масла для флюгирования
    feathering oil reserve
    запасной люк для выхода
    emergency exit hatch
    запасные части для воздушного судна
    aircraft spare part
    защитная зона для полетов вертолетов
    helicopter protected zone
    зона для транзитных пассажиров
    transit passenger area
    зона ожидания для визуальных полетов
    visual holding point
    информационный сборник для авиационных специалистов
    airman's information manual
    информация для наведения
    guidance information
    камера для хранения багажа
    baggage locker
    карта для прокладывания курса
    plotting chart
    карусель для выдачи
    reclaim unit
    кислород для дыхания
    breathing oxygen
    ключ для стыковки крыла
    wing butting wrench
    количество топлива, требуемое для взлета
    takeoff fuel
    комплект оборудования для заправки и слива топлива
    refuelling unit
    комплект оборудования для удаления воздушного судна
    aircraft recovery kit
    комплект строп для подъема
    hoist slings
    (грузов) контейнер для перевозки грузов и багажа на воздушном судне
    aircraft container
    контейнер для смешанной перевозки
    intermodal container
    контролируемое воздушное пространство предназначенное для полетов по приборам
    instrument restricted airspace
    контрольная точка для определения местоположения
    metering fix
    конфигурация для начального этапа
    initial configuration
    коридор для набора высоты
    climb corridor
    крейсерская скорость для полета максимальной дальности
    long-range cruise speed
    крыло с механизацией для обеспечения большей подъемной силы
    high-lift devices wing
    крышка люка для заправки водой
    water servicing cover plate
    летная полоса, оборудованная для полетов по приборам
    instrument strip
    люк для аварийного покидания
    emergency escape hatch
    люк для бесконтейнерной загрузки
    bulk cargo door
    люк для выхода
    escape
    люк для контейнерной загрузки
    cargo container door
    люк для крепления датчика топливомера
    fuel quantity transmitter hatch
    люк для покидания при посадке на воду
    ditching hatch
    лючок для доступа
    access door
    лючок для подхода к приводу
    actuator access
    маневр для избежания конфликтной ситуации
    resolution manoeuvre
    маневр для опознавания
    identification manoeuvre
    маркер для обозначения запрета
    unserviceability marker
    машина для обслуживания кухни
    1. galley service truck
    2. catering truck машина для очистки ВПП
    runway sweeper
    место для разгрузки
    unloading ramp
    место на крыле для выполнения технического обслуживания
    overwing walkway
    место установки домкрата для подъема воздушного судна
    aircraft jacking point
    механизм для создания условий полета в нестабильной атмосфере
    rough air mechanism
    микрометр для внешних размеров
    external micrometer
    микрометр для внутренних размеров
    internal micrometer
    минимум для взлета
    takeoff minima
    минимум для полетов по кругу
    circling minima
    минимум для посадки
    landing minima
    модель для проведения аэродинамических испытаний
    aerodynamic test vehicle
    моечная установка для воздушных судов
    aircraft washing plant
    мощность, необходимая для набора высоты
    climbing power
    муниципальный аэродром для коммерческой авиации
    municipal commercial aerodrome
    наземная установка для запуска
    ground starting unit
    наземное оборудование для обслуживания
    ground service equipment
    непригодный для эксплуатации
    unserviceable
    нецелесообразно для восстановления
    inadvisable to restore
    ниша для колеса
    1. wheel well
    2. whell recess ниша для трапа
    airstairs bay
    оборудование для аварийного приводнения
    ditching equipment
    оборудование для буксировки планера
    glider tow equipment
    оборудование для демонстрационных полетов
    sign towing equipment
    оборудование для загрузки
    1. cargo-loading equipment
    2. loading equipment оборудование для запуска планера
    glider launch equipment
    оборудование для измерения высоты облачности
    ceiling measurement equipment
    оборудование для испытания
    test facilities
    оборудование для крепления груза
    cargo tie-down device
    оборудование для обеспечения захода на посадку
    approach facilities
    оборудование для обнаружения турбулентности
    turbulence detection equipment
    оборудование для обслуживания воздушного судна
    aircraft servicing equipment
    оборудование для обслуживания грузов
    cargo-handling equipment
    оборудование для обслуживания пассажиров
    passenger-handling equipment
    оборудование для полетов в темное время суток
    night-flying equipment
    оборудование для полетов по приборам
    blind flight equipment
    оборудование для снижения шума
    hush kit
    оборудование для технического обслуживания
    maintenance facilities
    объединение для технического обслуживания
    technical pool
    огонь для предотвращения столкновений
    anticollision light
    ориентир для визуальной ориентировки
    visual pinpoint
    отбойный щит для опробования двигателей
    engine check pad
    отверстие для облегчения веса
    lightening hole
    отверстие для отсоса пограничного слоя на крыле
    boundary layer bleed perforation
    открытая для полетов ВПП
    operational runway
    открытый для полетов
    navigable
    отсек для обеспечения доступа
    access trunk
    очистительная машина для ВПП
    runway cleaner
    паз для поршневого кольца
    piston-ring groove
    патрубок обдува для охлаждения
    blast cooling tube
    пауза для подтверждения
    acknowledgement timeout
    переходник для заправки топливом
    1. fueling adapter
    2. jacking adapter перечень необходимого исправного оборудования для полета
    minimum equipment item
    площадка для взлета вертолета
    hoverway
    площадка для ожидания
    holding apron
    площадка для опробования
    run-up area
    площадка для проверки высотомеров
    1. altimeter check location
    2. altimeter checkpoint площадка для списания девиации компаса
    compass base
    площадка для стоянки
    parking bay
    подвижная шкала для установки нуля
    zero adjusting bezel
    подготовка для полетов по приборам
    instrument flight training
    подготовленная для полетов ВПП
    maintained runway
    полет для выполнения наблюдений с воздуха
    1. aerial survey flight
    2. aerial survey operation полет для выполнения работ
    1. aerial work flight
    2. aerial work operation полет для контроля состояния посевов
    crop control flight
    полет для контроля состояния посевов с воздуха
    crop control operation
    полет для ознакомления с местностью
    orientation flight
    полет для оказания медицинской помощи
    aerial ambulance operation
    полет для проверки летных характеристик
    performance flight
    полет для разведки метеорологической обстановки
    meteorological reconnaissance flight
    полет по приборам, обязательный для данной зоны
    compulsory IFR flight
    помещение для предполетного инструктажа экипажей
    airscrew briefing room
    помещение на аэродроме для размещения дежурных экипажей
    aerodrome alert room
    посадка для выполнения обслуживания
    operating stop
    (воздушного судна) предварительный старт для нескольких воздушных судов
    multiple-holding position
    предметы багажа, запрещенные для перевозки
    restricted articles
    прибор для замера ВПП
    Mu-meter
    прибор для замера силы сцепления
    skiddometer
    (на ВПП) прибор для проверки кабины на герметичность
    cabin tightness testing device
    прибор для проверки систем на герметичность
    system leakage device
    пригодность для полета на местных воздушных линиях
    local availability
    пригодный для перевозок
    good for carriage
    пригодный для полета только в светлое время суток
    available for daylight operation
    приспособление для зарядки авиации
    tire inflation device
    приспособление для захвата объектов в процессе полета
    flight pick-up equipment
    приспособление для крепления груза к полу кабины
    tie-down attachment
    приспособление для обслуживания стабилизатора
    stabilizer servicing device
    приспособление для подъема двигателя
    engine lifting device
    приспособление для съемки
    puller
    приспособление для установки колеса
    wheel installation device
    проблесковый маяк для предупреждения столкновений
    anticollision flash beacon
    проблесковый маяк для предупреждения столкновения
    aircraft safety beacon
    проведение работ по снижению высоты препятствий для полетов
    obstacle clearing
    прогноз для авиации общего назначения
    general aviation forecast
    прогноз для верхнего воздушного пространства
    upper-air forecast
    прогноз для конечного аэропорта
    terminal forecast
    размер багаж для бесплатного провоза
    free baggage
    разъем для слива
    drain connector
    располагаемая дистанция разбега для взлета
    takeoff run available
    раствор для заливки швов
    binder
    расходы, связанные с посадкой для стыковки рейсов
    layover expenses
    реактивное воздушное судно для обслуживания местных авиалиний
    feederjet
    резиновый сердечник для уплотнения троса
    cable rubber core
    рейс для оказания помощи
    relief flight
    решетка для забора воздуха
    air grill
    сбор материалов для расследования авиационного происшествия
    accident inquiry
    световое устройство для определения цветоощущения
    color perception lantern
    светосигнальное оборудование аэродрома для обеспечения безопасности
    aerodrome security lighting
    сводка для взлета
    report for takeoff
    сводка погоды для авиалинии
    airway weather report
    связь для управления полетами
    control communication
    серьга для швартовки
    picketing shackle
    (воздушного судна) система бортовых огней для предупреждения столкновения
    anticollision lights system
    скидка для группы
    group discount
    совковый патрубок для забора
    scoop inlet
    создавать опасность для воздушного судна
    endanger the aircraft
    спасательный бортовой канат для пассажиров
    passenger rope
    справочное бюро для пассажиров
    well-care office
    стандарт по шуму для дозвуковых самолетов
    subsonic noise standard
    стапель для сборки воздушного судна
    aircraft fixture
    стационарная установка для обслуживания воздушного судна
    aircraft servicing installation
    створка закрылка для реактивной струи
    flap exhaust gate
    стенд для испытания двигателей
    engine test bench
    стенд для проверки пневмосистемы
    pneumatic test rig
    стойка для обмена валюты
    currency exchange desk
    стремянка для технического обслуживания
    maintenance stand
    таблица для пересчета высоты
    altitude-conversion table
    тариф для беженцев
    refugee fare
    тариф для младенцев
    infant fare
    тариф для моряков
    seaman's fare
    тариф для навалочных грузов
    bulk unitization rate
    тариф для отдельного участка полета
    sectorial fare
    тариф для пары пассажиров
    two-in-one fare
    тариф для перевозки с неподтвержденным бронированием
    standby fare
    тариф для переселенцев
    migrant fare
    тариф для полета в одном направлении
    single fare
    тариф для полетов внутри одной страны
    cabotage fare
    тариф для рабочих
    worker fare
    тариф для специализированной группы
    affinity group fare
    тариф для супружеской пары
    spouse fare
    тариф для членов экипажей морских судов
    ship's crew fare
    тариф для эмигрантов
    emigrant fare
    тариф за перевозку грузов в специальном приспособлении для комплектования
    unit load device rate
    тележка для грузовых поддонов
    pallet dolly
    тележка для заправки гидросистемы
    hydraulic servicing trolley
    тележка для самообслуживания
    self-help trolley
    тележка для транспортировки двигателей
    engine dolly
    топливо для реактивных двигателей
    jet fuel
    транспортные средства для обслуживания воздушного судна
    aircraft service truck's
    трап для посадки
    1. boarding bridge
    2. passenger bridge тренажер для отработки техники пилотирования
    flight procedures trainer
    тренажер для подготовки к полетам по приборам
    instrument flight trainer
    тяга, необходимая для страгивания
    break-away thrust
    унифицированная складирующаяся стремянка для обслуживания
    unified folding maintenance platform
    установка в положение для захода на посадку
    approach setting
    установка для зарядки кислородом
    oxygen charging set
    установка для проверки герметичности кабины
    cabin leak test set
    установка для проверки расходомеров
    flowmeter set
    установка для проверки тахометров
    tachometer test set
    установка для прокачки
    flushing unit
    устройство для взвешивания
    weighting device
    устройство для замера сцепления
    friction test device
    устройство для замера сцепления колес с поверхностью
    surface friction tester
    устройство для измерения воды
    water depth measuring device
    устройство для крепления лопасти
    blade retention mechanism
    устройство для непрерывного замера
    continuous measuring device
    устройство для обнаружения взрывчатых веществ
    explosives detecting device
    устройство для обнаружения оружия
    weapon detecting device
    устройство для перемещения груза
    load transfer device
    устройство для причаливания
    termination device
    устройство для проверки торможения
    braking test device
    устройство для распыления
    dispersion device
    устройство для снижения уровня шума
    noise abatement device
    устройство для создания тяги
    thrust producting device
    устройство для считывания информации
    data reader
    устройство для транспортировки древесины на внешней подвеске
    timber-carrying suspending device
    устройство для уменьшения подъемной силы крыла
    lift dump device
    участок для выруливания
    taxi portion
    флаг для обозначения препятствия
    obstacle flag
    форсажная камера для увеличения тяги
    thrust augmentor
    фрахтование для личных целей
    own-use charter
    центр информации для верхнего района
    upper information center
    цилиндр - подкос для уборки
    retracting strut
    (шасси) чартерный рейс для неспециализированной группы
    nonaffinity group charter
    чартерный рейс для перевозки определенной группы
    closed group charter
    чартерный рейс для перевозки студентов
    student charter
    чартерный рейс для перевозки туристической группы
    travel group charter
    чартерный рейс для перевозки учащихся
    study group charter
    чартерный рейс для специализированной группы
    affinity group charter
    шкала для передачи информации
    reporting scale
    шланг для слива топлива
    defueling hose
    шланг для стравливания воздуха
    air release hose
    шприц для смазки
    oil syringe
    штуцер для проверки наддува на земле
    ground pressurization connection
    штуцер для проверки на земле
    ground testing connection
    щель для отсасывания
    suction slot
    (пограничного слоя) щель для сдува
    blowing slot
    (пограничного слоя) экипаж для перевозки
    ferry crew

    Русско-английский авиационный словарь > для

  • 58 pont

    c black pont [pɔ̃]
    1. masculine noun
       a. bridge
    pont avant/arrière fore/rear deck
    tout le monde sur le pont ! all hands on deck!
    ━━━━━━━━━━━━━━━━━
    The expression faire le pont refers to the practice of taking a Monday or Friday off to make a long weekend if a public holiday falls on a Tuesday or Thursday. The French commonly take an extra day off work to give four consecutive days' holiday at « l'Ascension », « le 14 juillet » and « le 15 août ».
    * * *
    pɔ̃
    1.
    nom masculin
    1) Architecture, Construction, Bâtiment bridge
    2) ( liens) link, tie
    4) Nautisme deck
    5) Automobile axle

    2.
    ponts nom masculin pluriel
    Phrasal Verbs:
    ••

    il coulera beaucoup d'eau sous les ponts avant que... — it will be a long time before...

    * * *
    pɔ̃ nm
    1) (= édifice) bridge
    2) NAVIGATION deck

    Nous faisons le pont pour la Pentecôte. — We're taking a long weekend for Whitsun.

    * * *
    A nm
    1 Archit, Constr bridge; franchir un pont to cross a bridge;
    2 ( liens) fig link (avec with), tie (avec with); couper les ponts to break off all contact; il a coupé les ponts avec sa famille he has broken with his family;
    3 ( vacances) extended weekend (including day(s) between a public holiday and a weekend); faire le pont to make a long weekend of it; lundi je fais le pont I'm taking Monday off;
    4 Naut deck; tout le monde sur le pont! all hands on deck!; pont principal/supérieur main/upper deck; pont avant/pont arrière foredeck/reardeck; bâtiment à deux ponts two-decker;
    5 Aut axle; pont avant/arrière front/rear axle;
    6 Sport crab; faire le pont to do the crab;
    7 Électrotech bridge (circuit).
    B ponts nmpl ponts (et chaussées) highways department; ⇒ école.
    pont aérien airlift; pont aux ânes lit pons asinorum; fig truism; pont basculant bascule bridge; pont de bateaux pontoon bridge; pont à béquilles portal bridge; pont élévateur hydraulic ramp; pont d'envol flight deck; pont flottant pontoon bridge; pont de graissage hydraulic ramp; pont levant vertical-lift bridge; pont mobile movable bridge; pont à péage toll bridge; pont roulant (overhead) travellingGB crane; pont suspendu suspension bridge; pont thermique thermal bridge; pont tournant swing bridge; pont transbordeur transporter bridge; Pont des Soupirs Bridge of Sighs.
    coucher sous les ponts to sleep rough, to be a tramp; il coulera beaucoup d'eau sous les ponts avant que… it will be a long time before…; brûler les ponts derrière soi to burn one's boats ou bridges; faire un pont d'or à qn to offer sb a large sum to accept a job.
    [pɔ̃] nom masculin
    dormir ou vivre sous les ponts to sleep under the arches (UK), to be homeless
    pont mobile/suspendu movable/suspension bridge
    pont à bascule ou basculant bascule ou balance bridge
    a. [routier] swing bridge
    b. [ferroviaire] turntable
    faire/promettre un pont d'or à quelqu'un to offer/to promise somebody a fortune (so that they'll take on a job)
    se porter ou être solide comme le Pont-Neuf to be as fit as a fiddle
    ‘le Pont de la rivière Kwaï’ Lean ‘Bridge On The River Kwai’
    bateau à deux/trois ponts two/three decker
    pont inférieur/principal lower/main deck
    pont arrière aft ou after deck
    pont supérieur upper ou top deck
    a. [levez-vous] everybody up!
    b. [mettez-vous au travail] let's get down to business!
    3. [week-end] long weekend
    le 11 novembre tombe un jeudi, je vais faire le pont the 11th of November is on Thursday, I'll take Friday off (and have a long weekend)
    4. [structure de manutention]
    pont élévateur ou de graissage garage ramp, car lift, elevator platform
    pont roulant gantry ou travelling crane
    Ponts et Chaussées nom masculin pluriel

    Dictionnaire Français-Anglais > pont

  • 59 насосная станция

    Универсальный русско-английский словарь > насосная станция

  • 60 гидросооружение

    1) Engineering: hydraulic works
    2) Construction: hydraulic work
    4) Hydroelectric power stations: hydraulic structure

    Универсальный русско-английский словарь > гидросооружение

См. также в других словарях:

  • Engineering — The Watt steam engine, a major driver in the Industrial Revolution, underscores the importance of engineering in modern history. This model is on display at the main building of the ETSIIM in Madrid, Spain. Engineering is the discipline, art,… …   Wikipedia

  • Hydraulic Launch Assist — TM is a trade name for hydraulic hybrid regenerative braking systems introduced by the Eaton Corporation. It also is referred to as the HLA (reg.) system. [Citation last=Eaton Corporation title= Hydraulic Launch Assist TM (HLA TM)… …   Wikipedia

  • hydraulic power — ▪ engineering also called  Fluid Power,         power transmitted by the controlled circulation of pressurized fluid, usually a water soluble oil or water–glycol mixture, to a motor that converts it into a mechanical output capable of doing work… …   Universalium

  • Hydraulic ram — A hydraulic ram is a cyclic water pump powered by hydropower. It functions as a hydraulic transformer that takes in water at one hydraulic head and flow rate, and outputs water at a different hydraulic head and flow rate. The device utilizes a… …   Wikipedia

  • Hydraulic cylinder — A Hydraulic cylinder (also called a linear hydraulic motor) is a mechanical actuator that is used to give a linear force through a linear stroke. It has many applications, notably in engineering vehicles. Operation Hydraulic cylinders get their… …   Wikipedia

  • Engineering Projects — ▪ 1995 Introduction BRIDGES        Notable Engineering Projects(For Notable Engineering Projects in work, see Table (Notable Engineering Projects).)       As the decade of the 1990s reached its midpoint, the limits to bridge design were being… …   Universalium

  • work, history of the organization of — Introduction       history of the methods by which society structures the activities and labour necessary to its survival. work is essential in providing the basic physical needs of food, clothing, and shelter. But work involves more than the use …   Universalium

  • Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign — Department of Civil and Environmental Engineering University of Illinois at Urbana Champaign Newmark Civil Engineering Laboratory …   Wikipedia

  • Civil engineering — The Petronas Twin Towers, designed by architect Cesar Pelli and Thornton Tomasetti and Ranhill Bersekutu Sdn Bhd engineers, were the world s tallest buildings from 1998 to 2004. Civil engineering is a professional engineering discipline that… …   Wikipedia

  • Military engineering vehicle — The EBG combat engineering vehicle, based on the AMX 30 tank, is used by the engineers of the French Army for a variety of missions …   Wikipedia

  • civil engineering — the work or profession of a civil engineer. * * * Profession of designing and executing structural works that serve the general public, including bridges, canals, dams, harbors, lighthouses, roads, tunnels, and environmental works (e.g., water… …   Universalium

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»