Перевод: с английского на все языки

со всех языков на английский

he+is+well+up+in+that+subject

  • 121 Heilmann, Josué (Joshua)

    SUBJECT AREA: Textiles
    [br]
    b. 1796 Alsace
    d. 1848
    [br]
    Alsatian inventor of the first machine for combing cotton.
    [br]
    Josué Heilmann, of Mulhouse, was awarded 5,000 francs offered by the cotton spinners of Alsace for a machine that would comb cotton. It was a process not hitherto applied to this fibre and, when perfected, enabled finer, smoother and more lustrous yarns to be spun. The important feature of Heilmann's method was to use a grip or nip to hold the end of the sliver that was being combed. Two or more combs passed through the protruding fibres to comb them thoroughly, and a brush cylinder and knife cleared away the noils. The combed section was passed forward so that the part held in the nip could then be combed. The combed fibres were joined up with the length already finished. Heilmann obtained a British patent in 1846, but no machines were put to work until 1851. Six firms of cotton spinners in Lancashire paid £30,000 for the cotton-combing rights and Marshall's of Leeds paid £20,000 for the rights to comb flax. Heilmann's machine was used on the European continent for combing silk as well as flax, wool and cotton, so it proved to be very versatile. Priority of his patent was challenged in England because Lister had patented a combing machine with a gripper or nip in 1843; in 1852 the parties went to litigation and cross-suits were instituted. While Heilmann obtained a verdict of infringement against Lister for certain things, Lister also obtained one against Heilmann for other matters. After this outcome, Heilmann's patent was bought on speculation by Messrs Akroyd and Titus Salt for £30,000, but was afterwards resold to Lister for the same amount. In this way Lister was able to exploit his own patent through suppressing Heilmann's.
    [br]
    Bibliography
    1846, British patent no. 11,103 (cotton-combing machine).
    Further Reading
    For descriptions of his combing machine see: W.English, 1969, The Textile Industry, London; T.K.Derry and T.I.Williams, 1960, A Short History of Technology from the Earliest Times to AD 1900, Oxford; and C.Singer (ed.), 1958, A History of Technology, Vol.
    IV, Oxford: Clarendon Press.
    RLH

    Biographical history of technology > Heilmann, Josué (Joshua)

  • 122 Ilgner, Karl

    SUBJECT AREA: Electricity
    [br]
    b. 27 July 1862 Neisse, Upper Silesia (now Nysa, Poland)
    d. 18 January 1921 Berthelsdorf, Silesia
    [br]
    German electrical engineer, inventor of a transformer for electromotors.
    [br]
    Ilgner graduated from the Gewerbeakademie (the forerunner of the Technical University) in Berlin. As the representative of an electric manufacturing company in Breslau (now Wroclaw, Poland) from 1897, he was confronted with the fact that there were no appropriate drives for hoisting-engines or rolling-plants in steelworks. Two problems prevented the use of high-capacity electric motors in the mining as well as in the iron and steel industry: the reactions of the motors on the circuit at the peak point of stress concentration; and the complicated handling of the control system which raised the risks regarding safety. Having previously been head of the department of electrical power transmission in Hannover, he was concerned with the development of low-speed direct-current motors powered by gas engines.
    It was Harry Ward Leonard's switchgear for direct-current motors (USA, 1891) that permitted sudden and exact changes in the speed and direction of rotation without causing power loss, as demonstrated in the driving of a rolling sidewalk at the Paris World Fair of 1900. Ilgner connected this switchgear to a large and heavy flywheel which accumulated the kinetic energy from the circuit in order to compensate shock loads. With this combination, electric motors did not need special circuits, which were still weak, because they were working continuously and were regulated individually, so that they could be used for driving hoisting-engines in mines, rolling-plants in steelworks or machinery for producing tools and paper. Ilgner thus made a notable advance in the general progress of electrification.
    His transformer for hoisting-engines was patented in 1901 and was commercially used inter alia by Siemens \& Halske of Berlin. Their first electrical hoisting-engine for the Zollern II/IV mine in Dortmund gained international reputation at the Düsseldorf exhibition of 1902, and is still preserved in situ in the original machine hall of the mine, which is now a national monument in Germany. Ilgner thereafter worked with several companies to pursue his conception, became a consulting engineer in Vienna and Breslau and had a government post after the First World War in Brussels and Berlin until he retired for health reasons in 1919.
    [br]
    Bibliography
    1901, DRP no. 138, 387 1903, "Der elektrische Antrieb von Reversier-Walzenstraßen", Stahl und Eisen 23:769– 71.
    Further Reading
    W.Kroker, "Karl Ilgner", Neue Deutsche Biographie, Vol. X, pp. 134–5. W.Philippi, 1924, Elektrizität im Bergbau, Leipzig (a general account).
    K.Warmbold, 1925, "Der Ilgner-Umformer in Förderanlagen", Kohle und Erz 22:1031–36 (a detailed description).
    WK

    Biographical history of technology > Ilgner, Karl

  • 123 Kirkaldy, David

    [br]
    b. 4 April 1820 Mayfield, Dundee, Scotland
    d. 25 January 1897 London, England
    [br]
    Scottish engineer and pioneer in materials testing.
    [br]
    The son of a merchant of Dundee, Kirkaldy was educated there, then at Merchiston Castle School, Edinburgh, and at Edinburgh University. For a while he worked in his father's office, but with a preference for engineering, in 1843 he commenced an apprenticeship at the Glasgow works of Robert Napier. After four years in the shops he was transferred to the drawing office and in a very few years rose to become Chief. Here Kirkaldy demonstrated a remarkable talent both for the meticulous recording of observations and data and for technical drawing. His work also had an aesthetic appeal and four of his drawings of Napier steamships were shown at the Paris Exhibition of 1855, earning both Napier and Kirkaldy a medal. His "as fitted" set of drawings of the Cunard Liner Persia, which had been built in 1855, is now in the possession of the National Maritime Museum at Greenwich, London; it is regarded as one of the finest examples of its kind in the world, and has even been exhibited at the Royal Academy in London.
    With the impending order for the Royal Naval Ironclad Black Prince (sister ship to HMS Warrior, now preserved at Portsmouth) and for some high-pressure marine boilers and engines, there was need for a close scientific analysis of the physical properties of iron and steel. Kirkaldy, now designated Chief Draughtsman and Calculator, was placed in charge of this work, which included comparisons of puddled steel and wrought iron, using a simple lever-arm testing machine. The tests lasted some three years and resulted in Kirkaldy's most important publication, Experiments on Wrought Iron and Steel (1862, London), which gained him wide recognition for his careful and thorough work. Napier's did not encourage him to continue testing; but realizing the growing importance of materials testing, Kirkaldy resigned from the shipyard in 1861. For the next two and a half years Kirkaldy worked on the design of a massive testing machine that was manufactured in Leeds and installed in premises in London, at The Grove, Southwark.
    The works was open for trade in January 1866 and engineers soon began to bring him specimens for testing on the great machine: Joseph Cubitt (son of William Cubitt) brought him samples of the materials for the new Blackfriars Bridge, which was then under construction. Soon The Grove became too cramped and Kirkaldy moved to 99 Southwark Street, reopening in January 1874. In the years that followed, Kirkaldy gained a worldwide reputation for rigorous and meticulous testing and recording of results, coupled with the highest integrity. He numbered the most distinguished engineers of the time among his clients.
    After Kirkaldy's death, his son William George, whom he had taken into partnership, carried on the business. When the son died in 1914, his widow took charge until her death in 1938, when the grandson David became proprietor. He sold out to Treharne \& Davies, chemical consultants, in 1965, but the works finally closed in 1974. The future of the premises and the testing machine at first seemed threatened, but that has now been secured and the machine is once more in working order. Over almost one hundred years of trading in South London, the company was involved in many famous enquiries, including the analysis of the iron from the ill-fated Tay Bridge (see Bouch, Sir Thomas).
    [br]
    Principal Honours and Distinctions
    Institution of Engineers and Shipbuilders in Scotland Gold Medal 1864.
    Bibliography
    1862, Results of an Experimental Inquiry into the Tensile Strength and Other Properties of Wrought Iron and Steel (originally presented as a paper to the 1860–1 session of the Scottish Shipbuilders' Association).
    Further Reading
    D.P.Smith, 1981, "David Kirkaldy (1820–97) and engineering materials testing", Transactions of the Newcomen Society 52:49–65 (a clear and well-documented account).
    LRD / FMW

    Biographical history of technology > Kirkaldy, David

  • 124 Morland, Sir Samuel

    [br]
    b. 1625 Sulhampton, near Reading, Berkshire, England
    d. 26 December 1695 Hammersmith, near London, England
    [br]
    English mathematician and inventor.
    [br]
    Morland was one of several sons of the Revd Thomas Morland and was probably initially educated by his father. He went to Winchester School from 1639 to 1644 and then to Magdalene College, Cambridge, where he graduated BA in 1648 and MA in 1652. He was appointed a tutor there in 1650. In 1653 he went to Sweden in the ambassadorial staff of Bulstrode Whitelocke and remained there until 1654. In that year he was appointed Clerk to Mr Secretary Thurloe, and in 1655 he was accredited by Oliver Cromwell to the Duke of Savoy to appeal for the Waldenses. In 1657 he married Susanne de Milleville of Boissy, France, with whom he had three children. In 1660 he went over to the Royalists, meeting King Charles at Breda, Holland. On 20 May, the King knighted him, creating him baron, for revealing a conspiracy against the king's life. He was also granted a pension of£500 per year. In 1661, at the age of 36, he decided to devote himself to mathematics and invention. He devised a mechanical calculator, probably based on the pattern of Blaise Pascal, for adding and subtracting: this was followed in 1666 by one for multiplying and other functions. A Perpetual Calendar or Almanack followed; he toyed with the idea of a "gunpowder engine" for raising water; he developed a range of speaking trum-pets, said to have a range of 1/2 to 1 mile (0.8–1.6 km) or more; also iron stoves for use on board ships, and improvements to barometers.
    By 1675 he had started selling a range of pumps for private houses, for mines or deep wells, for ships, for emptying ponds or draining low ground as well as to quench fire or wet the sails of ships. The pumps cost from £5 to £63, and the great novelty was that he used, instead of packing around the cylinder sealing against the bore of the cylinder, a neck-gland or seal around the outside diameter of the piston or piston-rod. This revolutionary step avoided the necessity of accurately boring the cylinder, replacing it with the need to machine accurately the outside diameter of the piston or rod, a much easier operation. Twenty-seven variations of size and materials were included in his schedule of'Pumps or Water Engines of Isaac Thompson of Great Russel Street', the maker of Morland's design. In 1681 the King made him "Magister mechanicorum", or Master of Machines. In that year he sailed for France to advise Louis XIV on the waterworks being built at Marly to supply the Palace of Versailles. About this time he had shown King Charles plans for a pumping engine "worked by fire alone". He petitioned for a patent for this, but did not pursue the matter.
    In 1692 he went blind. In all, he married five times. While working for Cromwell he became an expert in ciphers, in opening sealed letters and in their rapid copying.
    [br]
    Principal Honours and Distinctions
    Knighted 1660.
    Bibliography
    Further Reading
    H.W.Dickinson, 1970, Sir Samuel Morland: Diplomat and Inventor, Cambridge: Newcomen Society/Heffers.
    IMcN

    Biographical history of technology > Morland, Sir Samuel

  • 125 Napier (Neper), John

    [br]
    b. 1550 Merchiston Castle, Edinburgh, Scotland
    d. 4 April 1617 Merchiston Castle, Edinburgh, Scotland
    [br]
    Scottish mathematician and theological writer noted for his discovery of logarithms, a powerful aid to mathematical calculations.
    [br]
    Born into a family of Scottish landowners, at the early age of 13 years Napier went to the University of St Andrews in Fife, but he apparently left before taking his degree. An extreme Protestant, he was active in the struggles with the Roman Catholic Church and in 1594 he dedicated to James VI of Scotland his Plaine Discovery of the Whole Revelation of St John, an attempt to promote the Protestant case in the guise of a learned study. About this time, as well as being involved in the development of military equipment, he devoted much of his time to finding methods of simplifying the tedious calculations involved in astronomy. Eventually he realized that by representing numbers in terms of the power to which a "base" number needed to be raised to produce them, it was possible to perform multiplication and division and to find roots, by the simpler processes of addition, substraction and integer division, respectively.
    A description of the principle of his "logarithms" (from the Gk. logos, reckoning, and arithmos, number), how he arrived at the idea and how they could be used was published in 1614 under the title Mirifici Logarithmorum Canonis Descriptio. Two years after his death his Mirifici Logarithmorum Canonis Constructio appeared, in which he explained how to calculate the logarithms of numbers and gave tables of them to eight significant figures, a novel feature being the use of the decimal point to distinguish the integral and fractional parts of the logarithm. As originally conceived, Napier's tables of logarithms were calculated using the natural number e(=2.71828…) as the base, not directly, but in effect according to the formula: Naperian logx= 107(log e 107-log e x) so that the original Naperian logarithm of a number decreased as the number increased. However, prior to his death he had readily acceded to a suggestion by Henry Briggs that it would greatly facilitate their use if logarithms were simply defined as the value to which the decimal base 10 needed to be raised to realize the number in question. He was almost certainly also aware of the work of Joost Burgi.
    No doubt as an extension of his ideas of logarithms, Napier also devised a means of manually performing multiplication and division by means of a system of rods known as Napier's Bones, a forerunner of the modern slide-rule, which evolved as a result of successive developments by Edmund Gunther, William Oughtred and others. Other contributions to mathematics by Napier include important simplifying discoveries in spherical trigonometry. However, his discovery of logarithms was undoubtedly his greatest achievement.
    [br]
    Bibliography
    Napier's "Descriptio" and his "Constructio" were published in English translation as Description of the Marvelous Canon of Logarithms (1857) and W.R.MacDonald's Construction of the Marvelous Canon of Logarithms (1889), which also catalogues all his works. His Rabdologiae, seu Numerationis per Virgulas Libri Duo (1617) was published in English as Divining Rods, or Two Books of Numbering by Means of Rods (1667).
    Further Reading
    D.Stewart and W.Minto, 1787, An Account of the Life Writings and Inventions of John Napier of Merchiston (an early account of Napier's work).
    C.G.Knott (ed.), 1915, Napier Tercentenary Memorial Volume (the fullest account of Napier's work).
    KF

    Biographical history of technology > Napier (Neper), John

  • 126 Otis, Elijah Graves

    [br]
    b. 3 August 1811 Halifax, Vermont, USA
    d. 8 April 1861 Yonkers, New York, USA
    [br]
    American mechanic and inventor of the safety passenger elevator.
    [br]
    Otis was educated in public schools and worked in a variety of jobs in the trucking and construction industries as well as in a machine shop, a carriage makers, a grist mill, and a saw mill and in a bedstead factory. It was when supervisor of construction of a new bedstead factory at Yonkers in 1852 that he developed the innovative safety features of an elevator that was to be the foundation of his later success. If the ropes or cables of a hoist should break, springs would force pawls on the lift cage to engage the ratcheted guide rails fitted into the sides of the shaft and so stop the lift. In 1853 he was planning to leave his job to join the California Gold Rush but representatives of two New York City firms who had seen his Safety Elevator and were impressed with the safety devices requested that he make them replicas. He purchased space in the Yonkers plant and began manufacture of the lifts. Demand was small at first until in 1854 he exhibited at the American Institute Fair in New York City with an impressive performance. Standing on top of the lift cage, he ordered the rope supporting it to be cut. The safety pawls engaged and the cage stopped its downward movement. From then on orders gradually increased and in 1857 he installed the first safety lift for passengers in the Haughtwout Store in New York City. The invention immediately became popular and started a revolution in architecture and the construction industry, leading to the design and building of skyscrapers, as previously buildings were limited to six or seven storeys, because of the stairs people had to climb. Otis patented several other devices, the most important of which was for a steam elevator which established the future of the Otis Elevator Company. He died at Yonkers in 1861, leaving his business to his sons.
    [br]
    Further Reading
    Scribner's and Webster's Dictionaries of Biography.
    IMcN / DY

    Biographical history of technology > Otis, Elijah Graves

  • 127 Ransome, Robert

    [br]
    b. 1753 Wells, Norfolk, England
    d. 1830 England
    [br]
    English inventor of a self-sharpening ploughshare and all-metal ploughs with interchangeable pans.
    [br]
    The son of a Quaker schoolmaster, Ransome served his apprenticeship with a Norfolk iron manufacturer and then went into business on his own in the same town, setting up one of the first brass and iron foundries in East Anglia. At an early stage of his career he was selling into Norfolk and Suffolk, well beyond the boundaries to be expected from a local craftsman. He achieved this through the use of forty-seven agents acting on his behalf. In 1789, with one employee and £200 capital, he transferred to Ipswich, where the company was to remain and where there was easier access to both raw materials and his markets. It was there that he discovered that cooling one part of a metal share during its casting could result in a self-sharpening share, and he patented the process in 1785.
    Ransome won a number of awards at the early Bath and West shows, a fact which demonstrates the extent of his markets. In 1808 he patented an all-metal plough made up of interchangeable parts, and the following year was making complete ploughs for sale. With interchangeable parts he was able to make composite ploughs suitable for a wide variety of conditions and therefore with potential markets all over the country.
    In 1815 he was joined by his son James, and at about the same time by William Cubitt. With the expertise of the latter the firm moved into bridge building and millwrighting, and was therefore able to withstand the agricultural depression which began to affect other manufacturers from about 1815. In 1818, under Cubitt's direction, Ransome built the gas-supply system for the town of Ipswich. In 1830 his grandson James Ransome joined the firm, and it was under his influence that the agricultural side was developed. There was a great expansion in the business after 1835.
    [br]
    Further Reading
    J.E.Ransome, 1865, Ploughs and Ploughing at the Royal Agricultural College at Cirencester in 1865, in which he outlined the accepted theories of the day.
    J.B.Passmore, 1930, The English Plough, Reading: University of Reading (provides a history of plough development from the eighth century to the in ter-war period).
    Ransome's Royal Records 1789–1939, produced by the company; D.R.Grace and D.C.Phillips, 1975, Ransomes of Ipswich, Reading: Institute of Agricultural History, Reading University (both provide information about Ransome in a more general account about the company and its products; Reading University holds the company archives).
    AP

    Biographical history of technology > Ransome, Robert

  • 128 Reichenbach, Georg Friedrich von

    [br]
    b. 24 August 1772 Durlach, Baden, Germany
    d. 21 May 1826 Munich, Germany
    [br]
    German engineer.
    [br]
    While he was attending the Military School at Mannheim, Reichenbach drew attention to himself due to the mathematical instruments that he had designed. On the recommendation of Count Rumford in Munich, the Bavarian government financed a two-year stay in Britain so that Reichenbach could become acquainted with modern mechanical engineering. He returned to Mannheim in 1793, and during the Napoleonic Wars he was involved in the manufacture of arms. In Munich, where he was in the service of the Bavarian state from 1796, he started producing precision instruments in his own time. His basic invention was the design of a dividing machine for circles, produced at the end of the eighteenth century. The astronomic and geodetic instruments he produced excelled all the others for their precision. His telescopes in particular, being perfect in use and of solid construction, soon brought him an international reputation. They were manufactured at the MathematicMechanical Institute, which he had jointly founded with Joseph Utzschneider and Joseph Liebherr in 1804 and which became a renowned training establishment. The glasses and lenses were produced by Joseph Fraunhofer who joined the company in 1807.
    In the same year he was put in charge of the technical reorganization of the salt-works at Reichenhall. After he had finished the brine-transport line from Reichenhall to Traunstein in 1810, he started on the one from Berchtesgaden to Reichenhall which was an extremely difficult task because of the mountainous area that had to be crossed. As water was the only source of energy available he decided to use water-column engines for pumping the brine in the pipes of both lines. Such devices had been in use for pumping purposes in different mining areas since the middle of the eighteenth century. Reichenbach knew about the one constructed by Joseph Karl Hell in Slovakia, which in principle had just been a simple piston-pump driven by water which did not work satisfactorily. Instead he constructed a really effective double-action water-column engine; this was a short time after Richard Trevithick had constructed a similar machine in England. For the second line he improved the system and built a single-action pump. All the parts of it were made of metal, which made them easy to produce, and the pumps proved to be extremely reliable, working for over 100 years.
    At the official opening of the line in 1817 the Bavarian king rewarded him generously. He remained in the state's service, becoming head of the department for roads and waterways in 1820, and he contributed to the development of Bavarian industry as well as the public infrastructure in many ways as a result of his mechanical skill and his innovative engineering mind.
    [br]
    Further Reading
    Bauernfeind, "Georg von Reichenbach" Allgemeine deutsche Biographie 27:656–67 (a reliable nineteenth-century account).
    W.Dyck, 1912, Georg v. Reichenbach, Munich.
    K.Matschoss, 1941, Grosse Ingenieure, Munich and Berlin, 3rd edn. 121–32 (a concise description of his achievements in the development of optical instruments and engineering).
    WK

    Biographical history of technology > Reichenbach, Georg Friedrich von

См. также в других словарях:

  • well — I [[t]we̱l[/t]] DISCOURSE USES ♦ (Well is used mainly in spoken English.) 1) ADV: ADV cl You say well to indicate that you are about to say something. Sylvia shook hands. Well, you go get yourselves some breakfast. ... Well, I don t like the look …   English dictionary

  • well — 1 /wel/ adverb comparative better superlative best 1 SATISFACTORILY in a successful or satisfactory way: Did you sleep well? | James reads well for his age. | fairly/moderately/pretty well (=quite well) | go well (=happen in the way you planned… …   Longman dictionary of contemporary English

  • subject — n 1 *citizen, national Antonyms: sovereign 2 Subject, matter, subject matter, argument, topic, text, theme, motive, motif, leitmotiv can mean the basic idea or the principal object of thought or attention in a discourse or artistic composition.… …   New Dictionary of Synonyms

  • Subject-matter jurisdiction — is the authority of a court to hear cases of a particular type or cases relating to a specific subject matter. For instance, bankruptcy court has the authority to only hear bankruptcy cases.Subject matter jurisdiction must be distinguished from… …   Wikipedia

  • That Peter Kay Thing — Format Sitcom Created by Peter Kay Written by Neil Fitzmaurice Peter Kay Dave Spikey Gareth Hughes Directed by Andrew Gillman Starring …   Wikipedia

  • That — That, pron., a., conj., & adv. [AS. [eth][ae]t, neuter nom. & acc. sing. of the article (originally a demonstrative pronoun). The nom. masc. s[=e], and the nom. fem. se[ o] are from a different root. AS. [eth][ae]t is akin to D. dat, G. das, OHG …   The Collaborative International Dictionary of English

  • Well — Well, adv. [Compar. and superl. wanting, the deficiency being supplied by better and best, from another root.] [OE. wel, AS. wel; akin to OS., OFries., & D. wel, G. wohl, OHG. wola, wela, Icel. & Dan. vel, Sw. v[ a]l, Goth. wa[ i]la; originally… …   The Collaborative International Dictionary of English

  • Well enough — Well Well, adv. [Compar. and superl. wanting, the deficiency being supplied by better and best, from another root.] [OE. wel, AS. wel; akin to OS., OFries., & D. wel, G. wohl, OHG. wola, wela, Icel. & Dan. vel, Sw. v[ a]l, Goth. wa[ i]la;… …   The Collaborative International Dictionary of English

  • Well off — Well Well, adv. [Compar. and superl. wanting, the deficiency being supplied by better and best, from another root.] [OE. wel, AS. wel; akin to OS., OFries., & D. wel, G. wohl, OHG. wola, wela, Icel. & Dan. vel, Sw. v[ a]l, Goth. wa[ i]la;… …   The Collaborative International Dictionary of English

  • Well to do — Well Well, adv. [Compar. and superl. wanting, the deficiency being supplied by better and best, from another root.] [OE. wel, AS. wel; akin to OS., OFries., & D. wel, G. wohl, OHG. wola, wela, Icel. & Dan. vel, Sw. v[ a]l, Goth. wa[ i]la;… …   The Collaborative International Dictionary of English

  • Well to live — Well Well, adv. [Compar. and superl. wanting, the deficiency being supplied by better and best, from another root.] [OE. wel, AS. wel; akin to OS., OFries., & D. wel, G. wohl, OHG. wola, wela, Icel. & Dan. vel, Sw. v[ a]l, Goth. wa[ i]la;… …   The Collaborative International Dictionary of English

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»