Перевод: со всех языков на все языки

со всех языков на все языки

he+has+some+classical+scientific+ideas

  • 1 classical

    'klæsikəl 1. adjective
    1) ((especially of literature, art etc) of ancient Greece and Rome: classical studies.) klassisk
    2) ((of music) having the traditional, established harmony and/or form: He prefers classical music to popular music.) klassisk
    3) ((of literature) considered to be of the highest class.) klassisk
    2. noun
    1) (an established work of literature of high quality: I have read all the classics.) klassiker
    2) ((in plural) the language and literature of Greece and Rome: He is studying classics.) gresk og latin (språk og litteratur)
    adj. \/ˈklæsɪk(ə)l\/
    1) klassisk
    2) tradisjonell

    English-Norwegian dictionary > classical

  • 2 Philosophy

       And what I believe to be more important here is that I find in myself an infinity of ideas of certain things which cannot be assumed to be pure nothingness, even though they may have perhaps no existence outside of my thought. These things are not figments of my imagination, even though it is within my power to think of them or not to think of them; on the contrary, they have their own true and immutable natures. Thus, for example, when I imagine a triangle, even though there may perhaps be no such figure anywhere in the world outside of my thought, nor ever have been, nevertheless the figure cannot help having a certain determinate nature... or essence, which is immutable and eternal, which I have not invented and which does not in any way depend upon my mind. (Descartes, 1951, p. 61)
       Let us console ourselves for not knowing the possible connections between a spider and the rings of Saturn, and continue to examine what is within our reach. (Voltaire, 1961, p. 144)
       As modern physics started with the Newtonian revolution, so modern philosophy starts with what one might call the Cartesian Catastrophe. The catastrophe consisted in the splitting up of the world into the realms of matter and mind, and the identification of "mind" with conscious thinking. The result of this identification was the shallow rationalism of l'esprit Cartesien, and an impoverishment of psychology which it took three centuries to remedy even in part. (Koestler, 1964, p. 148)
       It has been made of late a reproach against natural philosophy that it has struck out on a path of its own, and has separated itself more and more widely from the other sciences which are united by common philological and historical studies. The opposition has, in fact, been long apparent, and seems to me to have grown up mainly under the influence of the Hegelian philosophy, or, at any rate, to have been brought out into more distinct relief by that philosophy.... The sole object of Kant's "Critical Philosophy" was to test the sources and the authority of our knowledge, and to fix a definite scope and standard for the researches of philosophy, as compared with other sciences.... [But Hegel's] "Philosophy of Identity" was bolder. It started with the hypothesis that not only spiritual phenomena, but even the actual world-nature, that is, and man-were the result of an act of thought on the part of a creative mind, similar, it was supposed, in kind to the human mind.... The philosophers accused the scientific men of narrowness; the scientific men retorted that the philosophers were crazy. And so it came about that men of science began to lay some stress on the banishment of all philosophic influences from their work; while some of them, including men of the greatest acuteness, went so far as to condemn philosophy altogether, not merely as useless, but as mischievous dreaming. Thus, it must be confessed, not only were the illegitimate pretensions of the Hegelian system to subordinate to itself all other studies rejected, but no regard was paid to the rightful claims of philosophy, that is, the criticism of the sources of cognition, and the definition of the functions of the intellect. (Helmholz, quoted in Dampier, 1966, pp. 291-292)
       Philosophy remains true to its classical tradition by renouncing it. (Habermas, 1972, p. 317)
       I have not attempted... to put forward any grand view of the nature of philosophy; nor do I have any such grand view to put forth if I would. It will be obvious that I do not agree with those who see philosophy as the history of "howlers" and progress in philosophy as the debunking of howlers. It will also be obvious that I do not agree with those who see philosophy as the enterprise of putting forward a priori truths about the world.... I see philosophy as a field which has certain central questions, for example, the relation between thought and reality.... It seems obvious that in dealing with these questions philosophers have formulated rival research programs, that they have put forward general hypotheses, and that philosophers within each major research program have modified their hypotheses by trial and error, even if they sometimes refuse to admit that that is what they are doing. To that extent philosophy is a "science." To argue about whether philosophy is a science in any more serious sense seems to me to be hardly a useful occupation.... It does not seem to me important to decide whether science is philosophy or philosophy is science as long as one has a conception of both that makes both essential to a responsible view of the world and of man's place in it. (Putnam, 1975, p. xvii)
       What can philosophy contribute to solving the problem of the relation [of] mind to body? Twenty years ago, many English-speaking philosophers would have answered: "Nothing beyond an analysis of the various mental concepts." If we seek knowledge of things, they thought, it is to science that we must turn. Philosophy can only cast light upon our concepts of those things.
       This retreat from things to concepts was not undertaken lightly. Ever since the seventeenth century, the great intellectual fact of our culture has been the incredible expansion of knowledge both in the natural and in the rational sciences (mathematics, logic).
       The success of science created a crisis in philosophy. What was there for philosophy to do? Hume had already perceived the problem in some degree, and so surely did Kant, but it was not until the twentieth century, with the Vienna Circle and with Wittgenstein, that the difficulty began to weigh heavily. Wittgenstein took the view that philosophy could do no more than strive to undo the intellectual knots it itself had tied, so achieving intellectual release, and even a certain illumination, but no knowledge. A little later, and more optimistically, Ryle saw a positive, if reduced role, for philosophy in mapping the "logical geography" of our concepts: how they stood to each other and how they were to be analyzed....
       Since that time, however, philosophers in the "analytic" tradition have swung back from Wittgensteinian and even Rylean pessimism to a more traditional conception of the proper role and tasks of philosophy. Many analytic philosophers now would accept the view that the central task of philosophy is to give an account, or at least play a part in giving an account, of the most general nature of things and of man. (Armstrong, 1990, pp. 37-38)
       8) Philosophy's Evolving Engagement with Artificial Intelligence and Cognitive Science
       In the beginning, the nature of philosophy's engagement with artificial intelligence and cognitive science was clear enough. The new sciences of the mind were to provide the long-awaited vindication of the most potent dreams of naturalism and materialism. Mind would at last be located firmly within the natural order. We would see in detail how the most perplexing features of the mental realm could be supported by the operations of solely physical laws upon solely physical stuff. Mental causation (the power of, e.g., a belief to cause an action) would emerge as just another species of physical causation. Reasoning would be understood as a kind of automated theorem proving. And the key to both was to be the depiction of the brain as the implementation of multiple higher level programs whose task was to manipulate and transform symbols or representations: inner items with one foot in the physical (they were realized as brain states) and one in the mental (they were bearers of contents, and their physical gymnastics were cleverly designed to respect semantic relationships such as truth preservation). (A. Clark, 1996, p. 1)
       Socrates of Athens famously declared that "the unexamined life is not worth living," and his motto aptly explains the impulse to philosophize. Taking nothing for granted, philosophy probes and questions the fundamental presuppositions of every area of human inquiry.... [P]art of the job of the philosopher is to keep at a certain critical distance from current doctrines, whether in the sciences or the arts, and to examine instead how the various elements in our world-view clash, or fit together. Some philosophers have tried to incorporate the results of these inquiries into a grand synoptic view of the nature of reality and our human relationship to it. Others have mistrusted system-building, and seen their primary role as one of clarifications, or the removal of obstacles along the road to truth. But all have shared the Socratic vision of using the human intellect to challenge comfortable preconceptions, insisting that every aspect of human theory and practice be subjected to continuing critical scrutiny....
       Philosophy is, of course, part of a continuing tradition, and there is much to be gained from seeing how that tradition originated and developed. But the principal object of studying the materials in this book is not to pay homage to past genius, but to enrich one's understanding of central problems that are as pressing today as they have always been-problems about knowledge, truth and reality, the nature of the mind, the basis of right action, and the best way to live. These questions help to mark out the territory of philosophy as an academic discipline, but in a wider sense they define the human predicament itself; they will surely continue to be with us for as long as humanity endures. (Cottingham, 1996, pp. xxi-xxii)
       In his study of ancient Greek culture, The Birth of Tragedy, Nietzsche drew what would become a famous distinction, between the Dionysian spirit, the untamed spirit of art and creativity, and the Apollonian, that of reason and self-control. The story of Greek civilization, and all civilizations, Nietzsche implied, was the gradual victory of Apollonian man, with his desire for control over nature and himself, over Dionysian man, who survives only in myth, poetry, music, and drama. Socrates and Plato had attacked the illusions of art as unreal, and had overturned the delicate cultural balance by valuing only man's critical, rational, and controlling consciousness while denigrating his vital life instincts as irrational and base. The result of this division is "Alexandrian man," the civilized and accomplished Greek citizen of the later ancient world, who is "equipped with the greatest forces of knowledge" but in whom the wellsprings of creativity have dried up. (Herman, 1997, pp. 95-96)

    Historical dictionary of quotations in cognitive science > Philosophy

  • 3 Artificial Intelligence

       In my opinion, none of [these programs] does even remote justice to the complexity of human mental processes. Unlike men, "artificially intelligent" programs tend to be single minded, undistractable, and unemotional. (Neisser, 1967, p. 9)
       Future progress in [artificial intelligence] will depend on the development of both practical and theoretical knowledge.... As regards theoretical knowledge, some have sought a unified theory of artificial intelligence. My view is that artificial intelligence is (or soon will be) an engineering discipline since its primary goal is to build things. (Nilsson, 1971, pp. vii-viii)
       Most workers in AI [artificial intelligence] research and in related fields confess to a pronounced feeling of disappointment in what has been achieved in the last 25 years. Workers entered the field around 1950, and even around 1960, with high hopes that are very far from being realized in 1972. In no part of the field have the discoveries made so far produced the major impact that was then promised.... In the meantime, claims and predictions regarding the potential results of AI research had been publicized which went even farther than the expectations of the majority of workers in the field, whose embarrassments have been added to by the lamentable failure of such inflated predictions....
       When able and respected scientists write in letters to the present author that AI, the major goal of computing science, represents "another step in the general process of evolution"; that possibilities in the 1980s include an all-purpose intelligence on a human-scale knowledge base; that awe-inspiring possibilities suggest themselves based on machine intelligence exceeding human intelligence by the year 2000 [one has the right to be skeptical]. (Lighthill, 1972, p. 17)
       4) Just as Astronomy Succeeded Astrology, the Discovery of Intellectual Processes in Machines Should Lead to a Science, Eventually
       Just as astronomy succeeded astrology, following Kepler's discovery of planetary regularities, the discoveries of these many principles in empirical explorations on intellectual processes in machines should lead to a science, eventually. (Minsky & Papert, 1973, p. 11)
       Many problems arise in experiments on machine intelligence because things obvious to any person are not represented in any program. One can pull with a string, but one cannot push with one.... Simple facts like these caused serious problems when Charniak attempted to extend Bobrow's "Student" program to more realistic applications, and they have not been faced up to until now. (Minsky & Papert, 1973, p. 77)
       What do we mean by [a symbolic] "description"? We do not mean to suggest that our descriptions must be made of strings of ordinary language words (although they might be). The simplest kind of description is a structure in which some features of a situation are represented by single ("primitive") symbols, and relations between those features are represented by other symbols-or by other features of the way the description is put together. (Minsky & Papert, 1973, p. 11)
       [AI is] the use of computer programs and programming techniques to cast light on the principles of intelligence in general and human thought in particular. (Boden, 1977, p. 5)
       The word you look for and hardly ever see in the early AI literature is the word knowledge. They didn't believe you have to know anything, you could always rework it all.... In fact 1967 is the turning point in my mind when there was enough feeling that the old ideas of general principles had to go.... I came up with an argument for what I called the primacy of expertise, and at the time I called the other guys the generalists. (Moses, quoted in McCorduck, 1979, pp. 228-229)
       9) Artificial Intelligence Is Psychology in a Particularly Pure and Abstract Form
       The basic idea of cognitive science is that intelligent beings are semantic engines-in other words, automatic formal systems with interpretations under which they consistently make sense. We can now see why this includes psychology and artificial intelligence on a more or less equal footing: people and intelligent computers (if and when there are any) turn out to be merely different manifestations of the same underlying phenomenon. Moreover, with universal hardware, any semantic engine can in principle be formally imitated by a computer if only the right program can be found. And that will guarantee semantic imitation as well, since (given the appropriate formal behavior) the semantics is "taking care of itself" anyway. Thus we also see why, from this perspective, artificial intelligence can be regarded as psychology in a particularly pure and abstract form. The same fundamental structures are under investigation, but in AI, all the relevant parameters are under direct experimental control (in the programming), without any messy physiology or ethics to get in the way. (Haugeland, 1981b, p. 31)
       There are many different kinds of reasoning one might imagine:
        Formal reasoning involves the syntactic manipulation of data structures to deduce new ones following prespecified rules of inference. Mathematical logic is the archetypical formal representation. Procedural reasoning uses simulation to answer questions and solve problems. When we use a program to answer What is the sum of 3 and 4? it uses, or "runs," a procedural model of arithmetic. Reasoning by analogy seems to be a very natural mode of thought for humans but, so far, difficult to accomplish in AI programs. The idea is that when you ask the question Can robins fly? the system might reason that "robins are like sparrows, and I know that sparrows can fly, so robins probably can fly."
        Generalization and abstraction are also natural reasoning process for humans that are difficult to pin down well enough to implement in a program. If one knows that Robins have wings, that Sparrows have wings, and that Blue jays have wings, eventually one will believe that All birds have wings. This capability may be at the core of most human learning, but it has not yet become a useful technique in AI.... Meta- level reasoning is demonstrated by the way one answers the question What is Paul Newman's telephone number? You might reason that "if I knew Paul Newman's number, I would know that I knew it, because it is a notable fact." This involves using "knowledge about what you know," in particular, about the extent of your knowledge and about the importance of certain facts. Recent research in psychology and AI indicates that meta-level reasoning may play a central role in human cognitive processing. (Barr & Feigenbaum, 1981, pp. 146-147)
       Suffice it to say that programs already exist that can do things-or, at the very least, appear to be beginning to do things-which ill-informed critics have asserted a priori to be impossible. Examples include: perceiving in a holistic as opposed to an atomistic way; using language creatively; translating sensibly from one language to another by way of a language-neutral semantic representation; planning acts in a broad and sketchy fashion, the details being decided only in execution; distinguishing between different species of emotional reaction according to the psychological context of the subject. (Boden, 1981, p. 33)
       Can the synthesis of Man and Machine ever be stable, or will the purely organic component become such a hindrance that it has to be discarded? If this eventually happens-and I have... good reasons for thinking that it must-we have nothing to regret and certainly nothing to fear. (Clarke, 1984, p. 243)
       The thesis of GOFAI... is not that the processes underlying intelligence can be described symbolically... but that they are symbolic. (Haugeland, 1985, p. 113)
        14) Artificial Intelligence Provides a Useful Approach to Psychological and Psychiatric Theory Formation
       It is all very well formulating psychological and psychiatric theories verbally but, when using natural language (even technical jargon), it is difficult to recognise when a theory is complete; oversights are all too easily made, gaps too readily left. This is a point which is generally recognised to be true and it is for precisely this reason that the behavioural sciences attempt to follow the natural sciences in using "classical" mathematics as a more rigorous descriptive language. However, it is an unfortunate fact that, with a few notable exceptions, there has been a marked lack of success in this application. It is my belief that a different approach-a different mathematics-is needed, and that AI provides just this approach. (Hand, quoted in Hand, 1985, pp. 6-7)
       We might distinguish among four kinds of AI.
       Research of this kind involves building and programming computers to perform tasks which, to paraphrase Marvin Minsky, would require intelligence if they were done by us. Researchers in nonpsychological AI make no claims whatsoever about the psychological realism of their programs or the devices they build, that is, about whether or not computers perform tasks as humans do.
       Research here is guided by the view that the computer is a useful tool in the study of mind. In particular, we can write computer programs or build devices that simulate alleged psychological processes in humans and then test our predictions about how the alleged processes work. We can weave these programs and devices together with other programs and devices that simulate different alleged mental processes and thereby test the degree to which the AI system as a whole simulates human mentality. According to weak psychological AI, working with computer models is a way of refining and testing hypotheses about processes that are allegedly realized in human minds.
    ... According to this view, our minds are computers and therefore can be duplicated by other computers. Sherry Turkle writes that the "real ambition is of mythic proportions, making a general purpose intelligence, a mind." (Turkle, 1984, p. 240) The authors of a major text announce that "the ultimate goal of AI research is to build a person or, more humbly, an animal." (Charniak & McDermott, 1985, p. 7)
       Research in this field, like strong psychological AI, takes seriously the functionalist view that mentality can be realized in many different types of physical devices. Suprapsychological AI, however, accuses strong psychological AI of being chauvinisticof being only interested in human intelligence! Suprapsychological AI claims to be interested in all the conceivable ways intelligence can be realized. (Flanagan, 1991, pp. 241-242)
        16) Determination of Relevance of Rules in Particular Contexts
       Even if the [rules] were stored in a context-free form the computer still couldn't use them. To do that the computer requires rules enabling it to draw on just those [ rules] which are relevant in each particular context. Determination of relevance will have to be based on further facts and rules, but the question will again arise as to which facts and rules are relevant for making each particular determination. One could always invoke further facts and rules to answer this question, but of course these must be only the relevant ones. And so it goes. It seems that AI workers will never be able to get started here unless they can settle the problem of relevance beforehand by cataloguing types of context and listing just those facts which are relevant in each. (Dreyfus & Dreyfus, 1986, p. 80)
       Perhaps the single most important idea to artificial intelligence is that there is no fundamental difference between form and content, that meaning can be captured in a set of symbols such as a semantic net. (G. Johnson, 1986, p. 250)
        18) The Assumption That the Mind Is a Formal System
       Artificial intelligence is based on the assumption that the mind can be described as some kind of formal system manipulating symbols that stand for things in the world. Thus it doesn't matter what the brain is made of, or what it uses for tokens in the great game of thinking. Using an equivalent set of tokens and rules, we can do thinking with a digital computer, just as we can play chess using cups, salt and pepper shakers, knives, forks, and spoons. Using the right software, one system (the mind) can be mapped into the other (the computer). (G. Johnson, 1986, p. 250)
        19) A Statement of the Primary and Secondary Purposes of Artificial Intelligence
       The primary goal of Artificial Intelligence is to make machines smarter.
       The secondary goals of Artificial Intelligence are to understand what intelligence is (the Nobel laureate purpose) and to make machines more useful (the entrepreneurial purpose). (Winston, 1987, p. 1)
       The theoretical ideas of older branches of engineering are captured in the language of mathematics. We contend that mathematical logic provides the basis for theory in AI. Although many computer scientists already count logic as fundamental to computer science in general, we put forward an even stronger form of the logic-is-important argument....
       AI deals mainly with the problem of representing and using declarative (as opposed to procedural) knowledge. Declarative knowledge is the kind that is expressed as sentences, and AI needs a language in which to state these sentences. Because the languages in which this knowledge usually is originally captured (natural languages such as English) are not suitable for computer representations, some other language with the appropriate properties must be used. It turns out, we think, that the appropriate properties include at least those that have been uppermost in the minds of logicians in their development of logical languages such as the predicate calculus. Thus, we think that any language for expressing knowledge in AI systems must be at least as expressive as the first-order predicate calculus. (Genesereth & Nilsson, 1987, p. viii)
        21) Perceptual Structures Can Be Represented as Lists of Elementary Propositions
       In artificial intelligence studies, perceptual structures are represented as assemblages of description lists, the elementary components of which are propositions asserting that certain relations hold among elements. (Chase & Simon, 1988, p. 490)
       Artificial intelligence (AI) is sometimes defined as the study of how to build and/or program computers to enable them to do the sorts of things that minds can do. Some of these things are commonly regarded as requiring intelligence: offering a medical diagnosis and/or prescription, giving legal or scientific advice, proving theorems in logic or mathematics. Others are not, because they can be done by all normal adults irrespective of educational background (and sometimes by non-human animals too), and typically involve no conscious control: seeing things in sunlight and shadows, finding a path through cluttered terrain, fitting pegs into holes, speaking one's own native tongue, and using one's common sense. Because it covers AI research dealing with both these classes of mental capacity, this definition is preferable to one describing AI as making computers do "things that would require intelligence if done by people." However, it presupposes that computers could do what minds can do, that they might really diagnose, advise, infer, and understand. One could avoid this problematic assumption (and also side-step questions about whether computers do things in the same way as we do) by defining AI instead as "the development of computers whose observable performance has features which in humans we would attribute to mental processes." This bland characterization would be acceptable to some AI workers, especially amongst those focusing on the production of technological tools for commercial purposes. But many others would favour a more controversial definition, seeing AI as the science of intelligence in general-or, more accurately, as the intellectual core of cognitive science. As such, its goal is to provide a systematic theory that can explain (and perhaps enable us to replicate) both the general categories of intentionality and the diverse psychological capacities grounded in them. (Boden, 1990b, pp. 1-2)
       Because the ability to store data somewhat corresponds to what we call memory in human beings, and because the ability to follow logical procedures somewhat corresponds to what we call reasoning in human beings, many members of the cult have concluded that what computers do somewhat corresponds to what we call thinking. It is no great difficulty to persuade the general public of that conclusion since computers process data very fast in small spaces well below the level of visibility; they do not look like other machines when they are at work. They seem to be running along as smoothly and silently as the brain does when it remembers and reasons and thinks. On the other hand, those who design and build computers know exactly how the machines are working down in the hidden depths of their semiconductors. Computers can be taken apart, scrutinized, and put back together. Their activities can be tracked, analyzed, measured, and thus clearly understood-which is far from possible with the brain. This gives rise to the tempting assumption on the part of the builders and designers that computers can tell us something about brains, indeed, that the computer can serve as a model of the mind, which then comes to be seen as some manner of information processing machine, and possibly not as good at the job as the machine. (Roszak, 1994, pp. xiv-xv)
       The inner workings of the human mind are far more intricate than the most complicated systems of modern technology. Researchers in the field of artificial intelligence have been attempting to develop programs that will enable computers to display intelligent behavior. Although this field has been an active one for more than thirty-five years and has had many notable successes, AI researchers still do not know how to create a program that matches human intelligence. No existing program can recall facts, solve problems, reason, learn, and process language with human facility. This lack of success has occurred not because computers are inferior to human brains but rather because we do not yet know in sufficient detail how intelligence is organized in the brain. (Anderson, 1995, p. 2)

    Historical dictionary of quotations in cognitive science > Artificial Intelligence

  • 4 Pliny the Elder (Gaius Plinius Secundus)

    SUBJECT AREA: Metallurgy
    [br]
    b. c. 23 AD Como, Italy
    d. 25 August 79 AD near Pompeii, Italy
    [br]
    Roman encyclopedic writer on the natural world.
    [br]
    Pliny was well educated in Rome, and for ten years or so followed a military career with which he was able to combine literary work, writing especially on historical subjects. He completed his duties c. 57 AD and concentrated on writing until he resumed his official career in 69 AD with administrative duties. During this last phase he began work on his only extant work, the thirty-seven "books" of his Historia Naturalis (Natural History), each dealing with a broad subject such as astronomy, geography, mineralogy, etc. His last post was the command of the fleet based at Misenum, which came to an end when he sailed too near Vesuvius during the eruption that engulfed Pompeii and he was overcome by the fumes.
    Pliny developed an insatiable curiosity about the natural world. Unlike the Greeks, the Romans made few original contributions to scientific thought and observation, but some made careful compilations of the learning and observations of Greek scholars. The most notable and influential of these was the Historia Naturalis. To the ideas about the natural world gleaned from earlier Greek authors, he added information about natural history, mineral resources, crafts and some technological processes, such as the extraction of metals from their ores, reported to him from the corners of the Empire. He added a few observations of his own, noted during travels on his official duties. Not all the reports were reliable, and the work often presents a tangled web of fact and fable. Gibbon described it as an immense register in which the author has "deposited the discoveries, the arts, and the errors of mankind". Pliny was indefatigable in his relentless note-taking, even dictating to his secretary while dining.
    During the Dark Ages and early Middle Ages in Western Europe, Pliny's Historia Naturalis was the largest known collection of facts about the natural world and was drawn upon freely by a succession of later writers. Its influence survived the influx into Western Europe, from the twelfth century, of translations of the works of Greek and Arab scholars. After the invention of printing in the middle of the fifteenth century, Pliny was the first work on a scientific subject to be printed, in 1469. Many editions followed and it may still be consulted with profit for its insights into technical knowledge and practice in the ancient world.
    [br]
    Bibliography
    The standard Latin text with English translation is that edited by H.Rackham et al.(1942– 63, Loeb Classical Library, London: Heinemann, 10 vols). The French version is by A.
    Ernout et al. (1947–, Belles Lettres, Paris).
    Further Reading
    The editions mentioned above include useful biographical and other details. For special aspects of Pliny, see K.C.Bailey, 1929–32, The Elder Pliny's Chapters on Chemical Subjects, London, 2 vols.
    LRD

    Biographical history of technology > Pliny the Elder (Gaius Plinius Secundus)

См. также в других словарях:

  • Scientific method — …   Wikipedia

  • Scientific revolution — This article is about a period in the history of science. For the process of scientific progress via revolution, proposed by Thomas Kuhn, see Paradigm shift …   Wikipedia

  • Classical guitar making — A person who is specialized in the making of stringed instruments such as guitars, lutes and violins is called a luthier. Contents 1 Skills 1.1 Shaping of wood with acoustics and resonance aims 1.2 Sound characteristics (Timbre) …   Wikipedia

  • Scientific Revolution — The period which many historians of science call the Scientific Revolution can be roughly dated as having begun in 1543, the year in which Nicolaus Copernicus published his De revolutionibus orbium coelestium (On the Revolutions of the Heavenly… …   Wikipedia

  • Scientific racism — denotes the use of scientific, or ostensibly scientific, findings and methods to support or validate racist attitudes and worldviews. It is based on belief in the existence and significance of racial categories, but extends this into a hierarchy… …   Wikipedia

  • Scientific foreknowledge in sacred texts — is the belief that certain sacred texts document an awareness of the natural world that was later discovered by technology and science. This includes the belief that the sacred text grants a higher awareness of the natural world, like those views …   Wikipedia

  • Classical Marxism — refers to the social theory expounded by Karl Marx and Friedrich Engels, as contrasted with later developments in Marxism. Contents 1 Karl Marx 1.1 Early influences 1.1.1 German Philosophy …   Wikipedia

  • Scientific management — Taylorism redirects here. For other uses, see Taylorism (disambiguation). Frederick Taylor (1856 1915), lead developer of scientific management Scientific management, also called Taylorism,[1] was a theory of management that …   Wikipedia

  • classical scholarship — Introduction       the study, in all its aspects, of ancient Greece (ancient Greek civilization) and Rome (ancient Rome). In continental Europe the field is known as “classical philology,” but the use, in some circles, of “philology” to denote… …   Universalium

  • Classical liberalism — Liberalism …   Wikipedia

  • Classical mechanics — This article is about the physics sub field. For the book written by Herbert Goldstein and others, see Classical Mechanics (book). Classical mechanics …   Wikipedia

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»