Перевод: со всех языков на английский

с английского на все языки

he+became+famous

  • 121 Brown, Andrew

    SUBJECT AREA: Ports and shipping
    [br]
    b. October 1825 Glasgow, Scotland
    d. 6 May 1907 Renfrew, Scotland
    [br]
    Scottish engineer and specialist shipbuilder, dredge-plant authority and supplier.
    [br]
    Brown commenced his apprenticeship on the River Clyde in the late 1830s, working for some of the most famous marine engineering companies and ultimately with the Caledonian Railway Company. In 1850 he joined the shipyard of A. \& J.Inglis Ltd of Partick as Engineering Manager; during his ten years there he pioneered the fitting of link-motion valve gear to marine engines. Other interesting engines were built, all ahead of their time, including a three-cylinder direct-acting steam engine.
    His real life's work commenced in 1860 when he entered into partnership with the Renfrew shipbuilder William Simons. Within one year he had designed the fast Clyde steamer Rothesay Castle, a ship less than 200 ft (61 m) long, yet which steamed at c.20 knots and subsequently became a notable American Civil War blockade runner. At this time the company also built the world's first sailing ship with wire-rope rigging. Within a few years of joining the shipyard on the Cart (a tributary of the Clyde), he had designed the first self-propelled hopper barges built in the United Kingdom. He then went on to design, patent and supervise the building of hopper dredges, bucket ladder dredges and sand dredges, which by the end of the century had capacity of 10,000 tons per hour. In 1895 they built an enclosed hopper-type ship which was the prototype of all subsequent sewage-dumping vessels. Typical of his inventions was the double-ended screw-elevating deck ferry, a ship of particular value in areas where there is high tidal range. Examples of this design are still to be found in many seaports of the world. Brown ultimately became Chairman of Simons shipyard, and in his later years took an active part in civic affairs, serving for fifteen years as Provost of Renfrew. His influence in establishing Renfrew as one of the world's centres of excellence in dredge design and building was considerable, and he was instrumental in bringing several hundred ship contracts of a specialist nature to the River Clyde.
    [br]
    Principal Honours and Distinctions
    Vice-President, Institution of Engineers and Shipbuilders in Scotland.
    Bibliography
    A Century of Shipbuilding 1810 to 1910, Renfrew: Wm Simons.
    Further Reading
    F.M.Walker, 1984, Song of the Clyde. A History of Clyde Shipbuilding, Cambridge.
    FMW

    Biographical history of technology > Brown, Andrew

  • 122 Focke, E.H.Heinrich

    SUBJECT AREA: Aerospace
    [br]
    b. October 1890 Bremen, Germany
    d. February 1979 Bremen, Germany
    [br]
    German aircraft designer who was responsible for the first practical helicopter, in 1936.
    [br]
    Between 1911 and 1914 Heinrich Focke and Georg Wulf built a monoplane and some years later, in 1924, they founded the Focke-Wulf company. They designed and built a variety of civil and military aircraft including the F 19Ente, a tail-first design of 1927. This canard layout was thought to be safer than conventional designs but, unfortunately, it crashed, killing Wulf. Around 1930 Focke became interested in rotary-wing aircraft, and in 1931 he set up a company with Gerd Achgelis to conduct research in this field. The Focke-Wulf company took out a licence to build Cierva autogiros. Focke designed an improved autogiro, the Fw 186, which flew in 1938; it was entered for a military competition, but it was beaten by a fixed-wing aircraft, the Fieseler Storch. In May 1935 Focke resigned from Focke-Wulf to concentrate on helicopter development with the Focke-Achgelis company. His first design was the Fa 61 helicopter, which utilized the fuselage and engine of a conventional aeroplane but instead of wings had two out-riggers, each carrying a rotor. The engine drove these rotors in opposite directions to counteract the adverse torque effect (with a single rotor the fuselage tends to rotate in the opposite direction to the rotor). Following its first flight on 26 June 1936, the Fa 61 went on to break several world records. However, it attracted more public attention when it was flown inside the huge Deutschlandhalle in Berlin by the famous female test pilot Hanna Reitsch in February 1938. Focke continued to develop his helicopter projects for the Focke-Achgelis company and produced the Fa 223 Drache in 1940. This used twin contra-rotating rotors, like the Fa 61, but could carry six people. Its production was hampered by allied bombing of the factory. During the Second World War Focke- Achgelis also produced a rotor kite which could be towed behind a U-boat to provide a flying "crow's nest", as well as designs for an advanced convertiplane (part aeroplane, part helicopter). After the war, Focke worked in France, the Netherlands and Brazil, then in 1954 he became Professor of Aeroplane and Helicopter Design at the University of Stuttgart.
    [br]
    Principal Honours and Distinctions
    Wissenschaftliche, Gesellschaft für Luftfahrt Lilienthal Medal, Prandtl-Ring.
    Bibliography
    1965, "German thinking on rotary-wing development", Journal of the Royal Aeronautical Society, (May).
    Further Reading
    W.Gunston and J.Batchelor, 1977, Helicopters 1900–1960, London.
    J.R.Smith, 1973, Focke-Wulf: An Aircraft Album, London (primarily a picture book). R.N.Liptrot, 1948, Rotating Wing Activities in Germany during the Period 1939–45, London.
    K.von Gersdorff and K.Knobling, 1982, Hubschrauber und Tragschrauber, Munich (a more recent publication, in German).
    JDS

    Biographical history of technology > Focke, E.H.Heinrich

  • 123 Kirkaldy, David

    [br]
    b. 4 April 1820 Mayfield, Dundee, Scotland
    d. 25 January 1897 London, England
    [br]
    Scottish engineer and pioneer in materials testing.
    [br]
    The son of a merchant of Dundee, Kirkaldy was educated there, then at Merchiston Castle School, Edinburgh, and at Edinburgh University. For a while he worked in his father's office, but with a preference for engineering, in 1843 he commenced an apprenticeship at the Glasgow works of Robert Napier. After four years in the shops he was transferred to the drawing office and in a very few years rose to become Chief. Here Kirkaldy demonstrated a remarkable talent both for the meticulous recording of observations and data and for technical drawing. His work also had an aesthetic appeal and four of his drawings of Napier steamships were shown at the Paris Exhibition of 1855, earning both Napier and Kirkaldy a medal. His "as fitted" set of drawings of the Cunard Liner Persia, which had been built in 1855, is now in the possession of the National Maritime Museum at Greenwich, London; it is regarded as one of the finest examples of its kind in the world, and has even been exhibited at the Royal Academy in London.
    With the impending order for the Royal Naval Ironclad Black Prince (sister ship to HMS Warrior, now preserved at Portsmouth) and for some high-pressure marine boilers and engines, there was need for a close scientific analysis of the physical properties of iron and steel. Kirkaldy, now designated Chief Draughtsman and Calculator, was placed in charge of this work, which included comparisons of puddled steel and wrought iron, using a simple lever-arm testing machine. The tests lasted some three years and resulted in Kirkaldy's most important publication, Experiments on Wrought Iron and Steel (1862, London), which gained him wide recognition for his careful and thorough work. Napier's did not encourage him to continue testing; but realizing the growing importance of materials testing, Kirkaldy resigned from the shipyard in 1861. For the next two and a half years Kirkaldy worked on the design of a massive testing machine that was manufactured in Leeds and installed in premises in London, at The Grove, Southwark.
    The works was open for trade in January 1866 and engineers soon began to bring him specimens for testing on the great machine: Joseph Cubitt (son of William Cubitt) brought him samples of the materials for the new Blackfriars Bridge, which was then under construction. Soon The Grove became too cramped and Kirkaldy moved to 99 Southwark Street, reopening in January 1874. In the years that followed, Kirkaldy gained a worldwide reputation for rigorous and meticulous testing and recording of results, coupled with the highest integrity. He numbered the most distinguished engineers of the time among his clients.
    After Kirkaldy's death, his son William George, whom he had taken into partnership, carried on the business. When the son died in 1914, his widow took charge until her death in 1938, when the grandson David became proprietor. He sold out to Treharne \& Davies, chemical consultants, in 1965, but the works finally closed in 1974. The future of the premises and the testing machine at first seemed threatened, but that has now been secured and the machine is once more in working order. Over almost one hundred years of trading in South London, the company was involved in many famous enquiries, including the analysis of the iron from the ill-fated Tay Bridge (see Bouch, Sir Thomas).
    [br]
    Principal Honours and Distinctions
    Institution of Engineers and Shipbuilders in Scotland Gold Medal 1864.
    Bibliography
    1862, Results of an Experimental Inquiry into the Tensile Strength and Other Properties of Wrought Iron and Steel (originally presented as a paper to the 1860–1 session of the Scottish Shipbuilders' Association).
    Further Reading
    D.P.Smith, 1981, "David Kirkaldy (1820–97) and engineering materials testing", Transactions of the Newcomen Society 52:49–65 (a clear and well-documented account).
    LRD / FMW

    Biographical history of technology > Kirkaldy, David

  • 124 Marconi, Marchese Guglielmo

    [br]
    b. 25 April 1874 Bologna, Italy
    d. 20 July 1937 Rome, Italy
    [br]
    Italian radio pioneer whose inventiveness and business skills made radio communication a practical proposition.
    [br]
    Marconi was educated in physics at Leghorn and at Bologna University. An avid experimenter, he worked in his parents' attic and, almost certainly aware of the recent work of Hertz and others, soon improved the performance of coherers and spark-gap transmitters. He also discovered for himself the use of earthing and of elevated metal plates as aerials. In 1895 he succeeded in transmitting telegraphy over a distance of 2 km (1¼ miles), but the Italian Telegraph authority rejected his invention, so in 1896 he moved to England, where he filed the first of many patents. There he gained the support of the Chief Engineer of the Post Office, and by the following year he had achieved communication across the Bristol Channel.
    The British Post Office was also slow to take up his work, so in 1897 he formed the Wireless Telegraph \& Signal Company to work independently. In 1898 he sold some equipment to the British Army for use in the Boer War and established the first permanent radio link from the Isle of Wight to the mainland. In 1899 he achieved communication across the English Channel (a distance of more than 31 miles or 50 km), the construction of a wireless station at Spezia, Italy, and the equipping of two US ships to report progress in the America's Cup yacht race, a venture that led to the formation of the American Marconi Company. In 1900 he won a contract from the British Admiralty to sell equipment and to train operators. Realizing that his business would be much more successful if he could offer his customers a complete radio-communication service (known today as a "turnkey" deal), he floated a new company, the Marconi International Marine Communications Company, while the old company became the Marconi Wireless Telegraph Company.
    His greatest achievement occurred on 12 December 1901, when Morse telegraph signals from a transmitter at Poldhu in Cornwall were received at St John's, Newfoundland, a distance of some 2,100 miles (3,400 km), with the use of an aerial flown by a kite. As a result of this, Marconi's business prospered and he became internationally famous, receiving many honours for his endeavours, including the Nobel Prize for Physics in 1909. In 1904, radio was first used to provide a daily bulletin at sea, and in 1907 a transatlantic wireless telegraphy service was inaugurated. The rescue of 1,650 passengers from the shipwreck of SS Republic in 1909 was the first of many occasions when wireless was instrumental in saving lives at sea, most notable being those from the Titanic on its maiden voyage in April 1912; more lives would have been saved had there been sufficient lifeboats. Marconi was one of those who subsequently pressed for greater safety at sea. In 1910 he demonstrated the reception of long (8 km or 5 miles) waves from Ireland in Buenos Aires, but after the First World War he began to develop the use of short waves, which were more effectively reflected by the ionosphere. By 1918 the first link between England and Australia had been established, and in 1924 he was awarded a Post Office contract for short-wave communication between England and the various parts of the British Empire.
    With his achievements by then recognized by the Italian Government, in 1915 he was appointed Radio-Communications Adviser to the Italian armed forces, and in 1919 he was an Italian delegate to the Paris Peace Conference. From 1921 he lived on his yacht, the Elettra, and although he joined the Fascist Party in 1923, he later had reservations about Mussolini.
    [br]
    Principal Honours and Distinctions
    Nobel Prize for Physics (jointly with K.F. Braun) 1909. Russian Order of S t Anne. Commander of St Maurice and St Lazarus. Grand Cross of the Order of the Crown (i.e. Knight) of Italy 1902. Freedom of Rome 1903. Honorary DSc Oxford. Honorary LLD Glasgow. Chevalier of the Civil Order of Savoy 1905. Royal Society of Arts Albert Medal. Honorary knighthood (GCVO) 1914. Institute of Electrical and Electronics Engineers Medal of Honour 1920. Chairman, Royal Society of Arts 1924. Created Marquis (Marchese) 1929. Nominated to the Italian Senate 1929. President, Italian Academy 1930. Rector, University of St Andrews, Scotland, 1934.
    Bibliography
    1896, "Improvements in transmitting electrical impulses and in apparatus thereof", British patent no. 12,039.
    1 June 1898, British patent no. 12,326 (transformer or "jigger" resonant circuit).
    1901, British patent no. 7,777 (selective tuning).
    1904, British patent no. 763,772 ("four circuit" tuning arrangement).
    Further Reading
    D.Marconi, 1962, My Father, Marconi.
    W.J.Baker, 1970, A History of the Marconi Company, London: Methuen.
    KF

    Biographical history of technology > Marconi, Marchese Guglielmo

  • 125 Sopwith, Sir Thomas (Tommy) Octave Murdoch

    SUBJECT AREA: Aerospace
    [br]
    b. 18 January 1888 London, England
    d. 27 January 1989 Stockbridge, Hampshire, England
    [br]
    English aeronautical engineer and industrialist.
    [br]
    Son of a successful mining engineer, Sopwith did not shine at school and, having been turned down by the Royal Navy as a result, attended an engineering college. His first interest was motor cars and, while still in his teens, he set up a business in London with a friend in order to sell them; he also took part in races and rallies.
    Sopwith's interest in aviation came initially through ballooning, and in 1906 he purchased his own balloon. Four years later, inspired by the recent flights across the Channel to France and after a joy-ride at Brooklands, he bought an Avis monoplane, followed by a larger biplane, and taught himself to fly. He was awarded the Royal Aero Society's Aviator Certificate No. 31 on 21 November 1910, and he quickly distinguished himself in flying competitions on both sides of the Atlantic and started his own flying school. In his races he was ably supported by his friend Fred Sigrist, a former motor engineer. Among the people Sopwith taught to fly were an Australian, Harry Hawker, and Major Hugh Trenchard, who later became the "father" of the RAF.
    In 1912, depressed by the poor quality of the aircraft on trial for the British Army, Sopwith, in conjunction with Hawker and Sigrist, bought a skating rink in Kingston-upon-Thames and, assisted by Fred Sigrist, started to design and build his first aircraft, the Sopwith Hybrid. He sold this to the Royal Navy in 1913, and the following year his aviation manufacturing company became the Sopwith Aviation Company Ltd. That year a seaplane version of his Sopwith Tabloid won the Schneider Trophy in the second running of this speed competition. During 1914–18, Sopwith concentrated on producing fighters (or "scouts" as they were then called), with the Pup, the Camel, the 1½ Strutter, the Snipe and the Sopwith Triplane proving among the best in the war. He also pioneered several ideas to make flying easier for the pilot, and in 1915 he patented his adjustable tailplane and his 1 ½ Strutter was the first aircraft to be fitted with air brakes. During the four years of the First World War, Sopwith Aviation designed thirty-two different aircraft types and produced over 16,000 aircraft.
    The end of the First World War brought recession to the aircraft industry and in 1920 Sopwith, like many others, put his company into receivership; none the less, he immediately launched a new, smaller company with Hawker, Sigrist and V.W.Eyre, which they called the H.G. Hawker Engineering Company Ltd to avoid any confusion with the former company. He began by producing cars and motor cycles under licence, but was determined to resume aircraft production. He suffered an early blow with the death of Hawker in an air crash in 1921, but soon began supplying aircraft to the Royal Air Force again. In this he was much helped by taking on a new designer, Sydney Camm, in 1923, and during the next decade they produced a number of military aircraft types, of which the Hart light bomber and the Fury fighter, the first to exceed 200 mph (322 km/h), were the best known. In the mid-1930s Sopwith began to build a large aviation empire, acquiring first the Gloster Aircraft Company and then, in quick succession, Armstrong-Whitworth, Armstrong-Siddeley Motors Ltd and its aero-engine counterpart, and A.V.Roe, which produced Avro aircraft. Under the umbrella of the Hawker Siddeley Aircraft Company (set up in 1935) these companies produced a series of outstanding aircraft, ranging from the Hawker Hurricane, through the Avro Lancaster to the Gloster Meteor, Britain's first in-service jet aircraft, and the Hawker Typhoon, Tempest and Hunter. When Sopwith retired as Chairman of the Hawker Siddeley Group in 1963 at the age of 75, a prototype jump-jet (the P-1127) was being tested, later to become the Harrier, a for cry from the fragile biplanes of 1910.
    Sopwith also had a passion for yachting and came close to wresting the America's Cup from the USA in 1934 when sailing his yacht Endeavour, which incorporated a number of features years ahead of their time; his greatest regret was that he failed in his attempts to win this famous yachting trophy for Britain. After his retirement as Chairman of the Hawker Siddeley Group, he remained on the Board until 1978. The British aviation industry had been nationalized in April 1977, and Hawker Siddeley's aircraft interests merged with the British Aircraft Corporation to become British Aerospace (BAe). Nevertheless, by then the Group had built up a wide range of companies in the field of mechanical and electrical engineering, and its board conferred on Sopwith the title Founder and Life President.
    [br]
    Principal Honours and Distinctions
    Knighted 1953. CBE 1918.
    Bibliography
    1961, "My first ten years in aviation", Journal of the Royal Aeronautical Society (April) (a very informative and amusing paper).
    Further Reading
    A.Bramson, 1990, Pure Luck: The Authorized Biography of Sir Thomas Sopwith, 1888– 1989, Wellingborough: Patrick Stephens.
    B.Robertson, 1970, Sopwith. The Man and His Aircraft, London (a detailed publication giving plans of all the Sopwith aircraft).
    CM / JDS

    Biographical history of technology > Sopwith, Sir Thomas (Tommy) Octave Murdoch

  • 126 Thévénin, Léon Charles

    SUBJECT AREA: Electricity
    [br]
    b. 30 March 1857 Paris, France
    d. 21 September 1926 Paris, France
    [br]
    French telegraph engineer who extended Ohm's Law to the analysis of complex electrical circuits.
    [br]
    Following a basic education, Thévénin entered the Ecole Polytechnique in Paris, graduating in 1876. In 1878 he joined the Corps of Telegraph Engineers (which subsequently became the French PTT). There he initially worked on the development of long-distance underground telegraph lines, but he later switched to working on power lines. Appointed a teaching inspector at the Ecole Supérieure in 1882, he became increasingly interested in the problems of measurement in electrical circuits. As a result of studying Kirchoff's Laws, which were essentially derived from Ohm's Law, he developed his now-famous theorem which made it possible to calculate the currents in more complex electrical circuits.
    As well as becoming Head of the Bureau des Lignes, up until his death he also found time for teaching other subjects outside the Ecole, including a course in mechanics at the Institut National Agronomique. In 1896 he was appointed Director of the Telegraph Engineering School, then, in 1901, Engineer-in-Chief of the telegraph workshops. He retired in 1914.
    [br]
    Bibliography
    1883, "Extension of Ohm's Law to complex electrical circuits", Comptes rendus 97:159 (describes Thévénin's Theorem).
    Further Reading
    F.E.Terman, 1943, Radio Engineers'Handbook, New York: McGraw-Hill, Section 3 (summarizes the relevant circuit theory).
    KF

    Biographical history of technology > Thévénin, Léon Charles

  • 127 Б-94

    БОГ ЗНАЕТ (ВЕСТЬ) кто, что, как, какой, где, куда, откуда, почему, отчего, сколько coll VP subj. these forms only fixed WO
    1. ( usu. the main clause in a complex sent
    when foil. by an Adv, may be used as adv
    no one knows (who, what, how etc): God ((the) Lord, heaven, goodness) (only) knows (who (what, how etc)).
    Выкопали всё, разузнали его (Чичикова) прежнюю историю. Бог весть, откуда всё это пронюхали... (Гоголь 3). Everything was dug up and all the past history of his (Chichikov's) life became known. God only knows how they got on the scent of it... (3a).
    Бог весть, почему нервничали встречавшие (Свирский 1). Heaven knows why the reception party should have been so nervous (1a).
    Дом Обломовых был когда-то богат и знаменит в своей стороне, но потом, бог знает отчего, всё беднел, мельчал... (Гончаров 1). The Oblomov family had once been rich and famous in its part of the country, but afterwards, goodness only knows why, it had grown poorer, lost all its influence... (1a).
    2. (used as NP (when foil. by кто, что), AdjP (when foil. by какой), or AdvP (when foil. by где, куда etc)) used to express a strong emotional reaction-anger, indignation, bewilderment etc: God ((the) Lord, heaven, goodness) (only) knows (who, what, how etc))!
    what sort (kind) of (a) NP is he (she, that etc)! (in limited contexts, said with ironic intonation) some NP (I must say)!
    «Да ведь она тоже мне двоюродная тётка». - «Она вам тётка ещё бог знает какая: с мужниной стороны...» (Гоголь 3). "But, you know, she is a cousin of mine." "What sort of a cousin is she to you...only on your husband's side..." (3d).

    Большой русско-английский фразеологический словарь > Б-94

  • 128 С-475

    АТТИЧЕСКАЯ СОЛЬ lit NP sing only fixed WO
    subtle, delicate wit or an elegant joke: Attic salt (wit, humor).
    From Attica, the name of a region in ancient Greece famous for the wit of its inhabitants. Attic Greek became the standard language of classical Greek literature in the 5th and 4th cents. B.C.

    Большой русско-английский фразеологический словарь > С-475

См. также в других словарях:

  • became famous — became a celebrity, became well known …   English contemporary dictionary

  • Famous Studios — Famous Studios, renamed Paramount Cartoon Studios in 1956, was the animation division of the Hollywood film studio Paramount Pictures from 1942 to 1967. Famous was founded as a successor company to Fleischer Studios, after Paramount acquired… …   Wikipedia

  • became a star — became a celebrity, became famous …   English contemporary dictionary

  • famous — 01. Michael Jordan is probably the most [famous] basketball player in the world. 02. She gained [fame] through her acting career, but many people didn t realize that she was also an excellent athlete. 03. Don Mee s Restaurant is [famous] for its… …   Grammatical examples in English

  • famous */*/*/ — UK [ˈfeɪməs] / US adjective Other ways of saying famous: well known fairly famous: a well known local reporter legendary very famous and greatly admired: Laurel and Hardy, the legendary comedy duo eminent famous, and respected for their… …   English dictionary

  • famous — adj. VERBS ▪ be ▪ become ▪ make sb/sth ▪ The school was made famous by its association with Charles Dickens. ADVERB ▪ …   Collocations dictionary

  • famous — fa|mous [ feıməs ] adjective *** 1. ) if someone or something is famous, a lot of people know their name or have heard about them: He dreamed of becoming a famous actor. famous for: The town of Gouda is famous for its cheese. Alexander Fleming,… …   Usage of the words and phrases in modern English

  • famous*/*/*/ — [ˈfeɪməs] adj if someone or something is famous, a lot of people know their name or have heard about them He dreamed of becoming a famous footballer.[/ex] The town of Gouda is famous for its cheese.[/ex] She became famous as a teacher and a… …   Dictionary for writing and speaking English

  • became a legend — came to be renowned, became famous …   English contemporary dictionary

  • Famous Monsters of Filmland — was a genre specific film magazine started in 1958 by publisher James Warren (see Warren Publishing) and editor Forrest J Ackerman. Magazine History (1958–1983) Famous Monsters of Filmland (which quickly became known to fans as simply FMFact|date …   Wikipedia

  • Famous Footwear — The 2005 2011 Logo Type Wholly owned subsidiary Industry Retailing Founded Madison, Wisconsin (1960) Founder(s) Neil …   Wikipedia

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»