Перевод: со всех языков на английский

с английского на все языки

gas+family

  • 61 Langen, Eugen

    [br]
    b. 1839 Germany
    d. 1895 Germany
    [br]
    German engineer and businessmen.
    [br]
    A sound engineering training combined with an inherited business sense were credentials that Langen put to good use in his association with internal-combustion engines. The sight of a working engine built by N.A. Otto in 1864 convinced Langen that this was a means to provide power in industry. Shortly afterwards, assisted by members of his family, he formed the company N.A.Otto and Cie, Cologne, the world's first engine factory. At the Paris Exhibition of 1867, the new Otto-Langen Atmospheric Gas Engine was awarded a Gold Medal, and in 1870 Crossley Bros of Manchester was appointed sole agent and manufacturer in Britain. Under Langen's guidance, the firm grew, and in 1872 it was renamed Die Gasmotoren Fabrik, employing Gottlieb Daimler and Wilhelm Maybach. Apart from running the business, Langen often played peacemaker when differences arose between Daimler and Otto. The success of the firm, known today as Klockner-Humboldt-Deutz, owed much to Langen's business and technical skills. Langen was a strong supporter of Otto's constant efforts to produce a better engine, and his confidence was justified by the appearance, in 1876, of Otto's four-stroke engine. The two men remained close friends until Otto's death in 1892.
    [br]
    Further Reading
    Friederick Sass, 1962, Geschichte des deutschen Verbrennungsmotorenbaues von 1860 bis 1918, Berlin: Springen Verlag (a detailed account).
    Gustav Goldbeck, 1964, Kraft für die Welt: 100 Jahre Klockner-Humboldt-Deutz AG, Dusseldorf (an account of the history and development of Klockner Humboldt).
    KAB

    Biographical history of technology > Langen, Eugen

  • 62 McKay, Hugh Victor

    [br]
    b. c. 1866 Drummartin, Victoria, Australia
    d. 21 May 1926 Australia
    [br]
    Australian inventor and manufacturer of harvesting and other agricultural equipment.
    [br]
    A farmer's son, at the age of 17 McKay developed modifications to the existing stripper harvester and created a machine that would not only strip the seed from standing corn, but was able to produce a threshed, winnowed and clean sample in one operation. The prototype was produced in 1884 and worked well on the two acres of wheat that had been set aside on the family farm. By arrangement with a Melbourne plough maker, five machines were made and sold for the 1885 season. In 1886 the McKay Harvester Company was formed, with offices at Ballarat, from which the machines, built by various companies, were sold. The business expanded quickly, selling sixty machines in 1888, and eventually rising to the production of nearly 2,000 harvesters in 1905. The name "Sunshine" was given to the harvester, and the "Sun" prefix was to appear on all other implements produced by the company as it diversified its production interests. In 1902 severe drought reduced machinery sales and left 2,000 harvesters unsold. McKay was forced to look to export markets to dispose of his surplus machines. By 1914 a total of 10,000 machines were being exported annually. During the First World War McKay was appointed to the Business Board of the Defence Department. Increases in the scale of production resulted in the company moving to Melbourne, where it was close to the port of entry of raw materials and was able to export the finished article more readily. In 1909 McKay produced one of the first gas-engined harvesters, but its cost prevented it from being more than an experimental prototype. By this time McKay was the largest agricultural machinery manufacturer in the Southern hemisphere, producing a wide range of implements, including binders. In 1916 McKay hired Headlie Taylor, who had developed a machine capable of harvesting fallen crops. The jointly developed machine was a major success, coming as it did in what would otherwise have been a disastrous Australian harvest. Further developments included the "Sun Auto-header" in 1923, the first of the harvesting machines to adopt the "T" configuration to be seen on modern harvesters. The Australian market was expanding fast and a keen rivalry developed between McKay and Massey Harris. Confronted by the tariff regulations with which the Australian Government had protected its indigenous machinery industry since 1906, Massey Harris sold all its Australian assets to the H.V. McKay company in 1930. Twenty-three years later Massey Ferguson acquired the old Sunshine works and was still operating from there in the 1990s.
    Despite a long-running history of wage disputes with his workforce, McKay established a retiring fund as well as a self-help fund for distressed cases. Before his death he created a charitable trust and requested that some funds should be made available for the "aerial experiments" which were to lead to the establishment of the Flying Doctor Service.
    [br]
    Principal Honours and Distinctions
    CBE.
    Further Reading
    Graeme Quick and Wesley Buchele, 1978, The Grain Harvesters, American Society of Agricultural Engineers (devotes a chapter to the unique development of harvesting machinery which took place in Australia).
    AP

    Biographical history of technology > McKay, Hugh Victor

  • 63 Priestman, William Dent

    [br]
    b. 23 August 1847 Sutton, Hull, England
    d. 7 September 1936 Hull, England
    [br]
    English oil engine pioneer.
    [br]
    William was the second son and one of eleven children of Samuel Priestman, who had moved to Hull after retiring as a corn miller in Kirkstall, Leeds, and who in retirement had become a director of the North Eastern Railway Company. The family were strict Quakers, so William was sent to the Quaker School in Bootham, York. He left school at the age of 17 to start an engineering apprenticeship at the Humber Iron Works, but this company failed so the apprenticeship was continued with the North Eastern Railway, Gateshead. In 1869 he joined the hydraulics department of Sir William Armstrong \& Company, Newcastle upon Tyne, but after a year there his father financed him in business at a small, run down works, the Holderness Foundry, Hull. He was soon joined by his brother, Samuel, their main business being the manufacture of dredging equipment (grabs), cranes and winches. In the late 1870s William became interested in internal combustion engines. He took a sublicence to manufacture petrol engines to the patents of Eugène Etève of Paris from the British licensees, Moll and Dando. These engines operated in a similar manner to the non-compression gas engines of Lenoir. Failure to make the two-stroke version of this engine work satisfactorily forced him to pay royalties to Crossley Bros, the British licensees of the Otto four-stroke patents.
    Fear of the dangers of petrol as a fuel, reflected by the associated very high insurance premiums, led William to experiment with the use of lamp oil as an engine fuel. His first of many patents was for a vaporizer. This was in 1885, well before Ackroyd Stuart. What distinguished the Priestman engine was the provision of an air pump which pressurized the fuel tank, outlets at the top and bottom of which led to a fuel atomizer injecting continuously into a vaporizing chamber heated by the exhaust gases. A spring-loaded inlet valve connected the chamber to the atmosphere, with the inlet valve proper between the chamber and the working cylinder being camoperated. A plug valve in the fuel line and a butterfly valve at the inlet to the chamber were operated, via a linkage, by the speed governor; this is believed to be the first use of this method of control. It was found that vaporization was only partly achieved, the higher fractions of the fuel condensing on the cylinder walls. A virtue was made of this as it provided vital lubrication. A starting system had to be provided, this comprising a lamp for preheating the vaporizing chamber and a hand pump for pressurizing the fuel tank.
    Engines of 2–10 hp (1.5–7.5 kW) were exhibited to the press in 1886; of these, a vertical engine was installed in a tram car and one of the horizontals in a motor dray. In 1888, engines were shown publicly at the Royal Agricultural Show, while in 1890 two-cylinder vertical marine engines were introduced in sizes from 2 to 10 hp (1.5–7.5 kW), and later double-acting ones up to some 60 hp (45 kW). First, clutch and gearbox reversing was used, but reversing propellers were fitted later (Priestman patent of 1892). In the same year a factory was established in Philadelphia, USA, where engines in the range 5–20 hp (3.7–15 kW) were made. Construction was radically different from that of the previous ones, the bosses of the twin flywheels acting as crank discs with the main bearings on the outside.
    On independent test in 1892, a Priestman engine achieved a full-load brake thermal efficiency of some 14 per cent, a very creditable figure for a compression ratio limited to under 3:1 by detonation problems. However, efficiency at low loads fell off seriously owing to the throttle governing, and the engines were heavy, complex and expensive compared with the competition.
    Decline in sales of dredging equipment and bad debts forced the firm into insolvency in 1895 and receivers took over. A new company was formed, the brothers being excluded. However, they were able to attend board meetings, but to exert no influence. Engine activities ceased in about 1904 after over 1,000 engines had been made. It is probable that the Quaker ethics of the brothers were out of place in a business that was becoming increasingly cut-throat. William spent the rest of his long life serving others.
    [br]
    Further Reading
    C.Lyle Cummins, 1976, Internal Fire, Carnot Press.
    C.Lyle Cummins and J.D.Priestman, 1985, "William Dent Priestman, oil engine pioneer and inventor: his engine patents 1885–1901", Proceedings of the Institution of
    Mechanical Engineers 199:133.
    Anthony Harcombe, 1977, "Priestman's oil engine", Stationary Engine Magazine 42 (August).
    JB

    Biographical history of technology > Priestman, William Dent

  • 64 Ricardo, Sir Harry Ralph

    [br]
    b. 26 January 1885 London, England
    d. 18 May 1974 Graffham, Sussex, England
    [br]
    English mechanical engineer; researcher, designer and developer of internal combustion engines.
    [br]
    Harry Ricardo was the eldest child and only son of Halsey Ricardo (architect) and Catherine Rendel (daughter of Alexander Rendel, senior partner in the firm of consulting civil engineers that later became Rendel, Palmer and Tritton). He was educated at Rugby School and at Cambridge. While still at school, he designed and made a steam engine to drive his bicycle, and by the time he went up to Cambridge in 1903 he was a skilled craftsman. At Cambridge, he made a motor cycle powered by a petrol engine of his own design, and with this he won a fuel-consumption competition by covering almost 40 miles (64 km) on a quart (1.14 1) of petrol. This brought him to the attention of Professor Bertram Hopkinson, who invited him to help with research on turbulence and pre-ignition in internal combustion engines. After leaving Cambridge in 1907, he joined his grandfather's firm and became head of the design department for mechanical equipment used in civil engineering. In 1916 he was asked to help with the problem of loading tanks on to railway trucks. He was then given the task of designing and organizing the manufacture of engines for tanks, and the success of this enterprise encouraged him to set up his own establishment at Shoreham, devoted to research on, and design and development of, internal combustion engines.
    Leading on from the work with Hopkinson were his discoveries on the suppression of detonation in spark-ignition engines. He noted that the current paraffinic fuels were more prone to detonation than the aromatics, which were being discarded as they did not comply with the existing specifications because of their high specific gravity. He introduced the concepts of "highest useful compression ratio" (HUCR) and "toluene number" for fuel samples burned in a special variable compression-ratio engine. The toluene number was the proportion of toluene in heptane that gave the same HUCR as the fuel sample. Later, toluene was superseded by iso-octane to give the now familiar octane rating. He went on to improve the combustion in side-valve engines by increasing turbulence, shortening the flame path and minimizing the clearance between piston and head by concentrating the combustion space over the valves. By these means, the compression ratio could be increased to that used by overhead-valve engines before detonation intervened. The very hot poppet valve restricted the advancement of all internal combustion engines, so he turned his attention to eliminating it by use of the single sleeve-valve, this being developed with support from the Air Ministry. By the end of the Second World War some 130,000 such aero-engines had been built by Bristol, Napier and Rolls-Royce before the piston aero-engine was superseded by the gas turbine of Whittle. He even contributed to the success of the latter by developing a fuel control system for it.
    Concurrent with this was work on the diesel engine. He designed and developed the engine that halved the fuel consumption of London buses. He invented and perfected the "Comet" series of combustion chambers for diesel engines, and the Company was consulted by the vast majority of international internal combustion engine manufacturers. He published and lectured widely and fully deserved his many honours; he was elected FRS in 1929, was President of the Institution of Mechanical Engineers in 1944–5 and was knighted in 1948. This shy and modest, though very determined man was highly regarded by all who came into contact with him. It was said that research into internal combustion engines, his family and boats constituted all that he would wish from life.
    [br]
    Principal Honours and Distinctions
    Knighted 1948. FRS 1929. President, Institution of Mechanical Engineers 1944–5.
    Bibliography
    1968, Memo \& Machines. The Pattern of My Life, London: Constable.
    Further Reading
    Sir William Hawthorne, 1976, "Harry Ralph Ricardo", Biographical Memoirs of Fellows of the Royal Society 22.
    JB

    Biographical history of technology > Ricardo, Sir Harry Ralph

См. также в других словарях:

  • Gas (comic) — Gas was a British adult comic that was published monthly by Galaxy Publications from 1989 to 1991. Gas was one of many such comics emulating the success of Viz , and like many of its peers (and unlike its upmarket siblings Brain Damage and… …   Wikipedia

  • Gas Works Park — in Seattle, Washington is a 19.1 acre (77,000 m²) public park on the site of the former Seattle Gas Light Company gasification plant, located on the north shore of Lake Union at the south end of the Wallingford neighborhood. Gas Works park… …   Wikipedia

  • Gas gangrene — Classification and external resources Photograph before right leg amputation (hemipelvectomy) of a patient with gas gangrene. The right thigh is swollen, edematous and discoloured with necrotic bullae (large blisters). An impressive crepitation… …   Wikipedia

  • Family Affairs — Final Family Affairs title card Format Soap opera Starring Cast …   Wikipedia

  • Family traditions — or Family tradition, also called Family culture, is defined as aggregate of attitudes, ideas and ideals, and environment, which a person inherits from his/her parents and ancestors. Modern studies of family traditions The study of Family… …   Wikipedia

  • Family office — Saltar a navegación, búsqueda Durante los últimos años el concepto de Multi Family Office se ha extendido mundialmente a tal punto de que muchas bancas privadas han reconvertido sus estrategias de marketing publicitándose como Multi Family Office …   Wikipedia Español

  • gas plant — n. a perennial plant (Dictamnus albus) of the rue family, with fragrant white, pink, or purple flowers that on hot nights give off a flammable gas …   English World dictionary

  • gas plant — gas′ plant n. pln a plant, Dictamnus albus, of the rue family, native to Eurasia, having clusters of flowers and strong smelling foliage that emits a flammable vapor Also called fraxinella,dittany …   From formal English to slang

  • Gas, Kansas — Infobox Settlement official name = City of Gas settlement type = City nickname = motto = imagesize = 250px image caption = Watertower in Gas image image mapsize = 250px map caption = Location of Gas, Kansas mapsize1 = map caption1 = subdivision… …   Wikipedia

  • Gas (film) — Infobox Film name = Gas director = Henry Chan producer = Claude Brooks, James Tripp Haith, Marvin Hayes, Ralph Farquhar, Tony Smith writer = Mark Swinton Michael Haran starring = Flex Alexander Khalil Kain Gina Ravera Jo Marie Payton Noble Sticky …   Wikipedia

  • Gas City, Indiana — Infobox Settlement official name = City of Gas City, Indiana settlement type = City nickname = imagesize = image caption = image imagesize = image caption = image mapsize = 250x200px map caption = Location in the state of Indiana mapsize1 = map… …   Wikipedia

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»