Перевод: со всех языков на английский

с английского на все языки

french-built

  • 81 Cugnot, Nicolas Joseph

    SUBJECT AREA: Land transport
    [br]
    b. 26 February 1725 Void, Meuse, France
    d. 2 October 1804 Paris, France
    [br]
    French military engineer.
    [br]
    Cugnot studied military engineering in Germany and returned to Paris by 1769, having left the service of Austria, where he taught military engineering. It was while serving in the army of Les Pays Bas that he invented a "fusil" or carbine, which was adopted by the Archduke Charles and put into service in the Uhlan regiments.
    In 1769 he invented a fardier à feu, also called a cabriolet, a steam-driven, heavy three-wheeled vehicle. This tractor, designed to pull artillery pieces, was driven through its single front wheel by two single-acting cylinders which rotated the wheel through ratchets. The ratchet pawls were carried on levers pivoted on the wheel axis, coupled to the piston rods by connecting rods. Links from pivots half-way along the levers connected upwards to a rocking cross-beam fixed on the end of the steam cock so as to pass steam alternately from the undersized boiler to the two cylinders. The tractor had to be stopped whenever it needed stoking, and its maximum speed was 4 mph (6.4 km/h). The difficulty of controlling it led to its early demolition of a wall, after which it was locked away and eventually preserved in the Conservatoire des Arts et Métiers in Paris. This was, in fact, Cugnot's second vehicle: the first model was presented to the due de Choiseul et Guiberuval, who asked for a more robust and powerful machine which was built at the Arsenal at the expense of the state and tested in 1771. Cugnot was granted a pension of 600 livres. After the revolution he tried in vain in 1798 and 1801 to interest Bonaparte in this invention.
    [br]
    Bibliography
    Cugnot published a number of military textbooks, including: 1766, Eléments de l'art militaire.
    Further Reading
    D.J.H.Day, 1980, Engines.
    IMcN

    Biographical history of technology > Cugnot, Nicolas Joseph

  • 82 Fokker, Anthony Herman Gerard

    SUBJECT AREA: Aerospace
    [br]
    b. 6 April 1890 Kediri, Java, Dutch East Indies (now Indonesia)
    d. 23 December 1939 New York, USA
    [br]
    Dutch designer of German fighter aircraft during the First World War and of many successful airliners during the 1920s and 1930s.
    [br]
    Anthony Fokker was born in Java, where his Dutch father had a coffee plantation. The family returned to the Netherlands and, after schooling, young Anthony went to Germany to study aeronautics. With the aid of a friend he built his first aeroplane, the Spin, in 1910: this was a monoplane capable of short hops. By 1911 Fokker had improved the Spin and gained a pilot's licence. In 1912 he set up a company called Fokker Aeroplanbau at Johannistal, outside Berlin, and a series of monoplanes followed.
    When war broke out in 1914 Fokker offered his designs to both sides, and the Germans accepted them. His E I monoplane of 1915 caused a sensation with its manoeuvrability and forward-firing machine gun. Fokker and his collaborators improved on the French deflector system introduced by Raymond Saulnier by fitting an interrupter gear which synchronized the machine gun to fire between the blades of the rotating propeller. The Fokker Dr I triplane and D VII biplane were also outstanding German fighters of the First World War. Fokker's designs were often the work of an employee who received little credit: nevertheless, Fokker was a gifted pilot and a great organizer. After the war, Fokker moved back to the Netherlands and set up the Fokker Aircraft Works in Amsterdam. In 1922, however, he emigrated to the USA and established the Atlantic Aircraft Corporation in New Jersey. His first significant success there came the following year when one of his T-2 monoplanes became the first aircraft to fly non-stop across the USA, from New York to San Diego. He developed a series of civil aircraft using the well-proven method of construction he used for his fighters: fuselages made from steel tubes and thick, robust wooden wings. Of these, probably the most famous was the F VII/3m, a high-wing monoplane with three engines and capable of carrying about ten passengers. From 1925 the F VII/3m airliner was used worldwide and made many record-breaking flights, such as Lieutenant-Commander Richard Byrd's first flight over the North Pole in 1926 and Charles Kingsford-Smith's first transpacific flight in 1928. By this time Fokker had lost interest in military aircraft and had begun to see flight as a means of speeding up global communications and bringing people together. His last years were spent in realizing this dream, and this was reflected in his concentration on the design and production of passenger aircraft.
    [br]
    Principal Honours and Distinctions
    Royal Netherlands Aeronautical Society Gold Medal 1932.
    Bibliography
    1931, The Flying Dutchman: The Life of Anthony Fokker, London: Routledge \& Sons (an interesting, if rather biased, autobiography).
    Further Reading
    A.R.Weyl, 1965, Fokker: The Creative Years, London; reprinted 1988 (a very detailed account of Fokker's early work).
    Thijs Postma, 1979, Fokker: Aircraft Builders to the World, Holland; 1980, English edn, London (a well-illustrated history of Fokker and the company).
    Henri Hegener, 1961, Fokker: The Man and His Aircraft, Letchworth, Herts.
    JDS / CM

    Biographical history of technology > Fokker, Anthony Herman Gerard

  • 83 Freyssinet, Eugène

    [br]
    b. 13 July 1879 Objat, Corrèze, France
    d. 8 June 1962 Saint-Martin Vésubié, France
    [br]
    French civil engineer who is generally recognized as the originator of pre-stressed reinforced concrete.
    [br]
    Eugène Freyssinet was an army engineer during the First World War who pioneered pre-stressed reinforced concrete and experimented with building concrete bridges. After 1918 he formed his own company to develop his ideas. He investigated the possibilities of very high-strength concrete, and in so doing studied shrinkage and creep. He combined high-quality concrete with highly stressed, stretched steel to give top quality results. His work in 1926 on Plougastel Bridge, at that time the longest reinforced concrete bridge, is a notable example of his use of this technique. In 1916 Freyssinet had built his famous airship hangars at Orly, which were destroyed in the Second World War; the hangars were roofed in parabolic sections to a height of about 200 ft. In 1934 he succeeded in saving the Ocean Terminal at Le Havre from sinking into the mud and being covered by the sea by using his pre-stressing techniques. By 1938 he had developed a superior method of pre-stressing with steel which led to widespread adoption of his methods.
    [br]
    Further Reading
    C.C.Stanley, 1979, Highlights in the History of Concrete, Cement and Concrete Association.
    1977, Who's Who in Architecture, Weidenfeld and Nicolson.
    DY

    Biographical history of technology > Freyssinet, Eugène

  • 84 Fulton, Robert

    SUBJECT AREA: Ports and shipping
    [br]
    b. 14 November 1765 Lancaster, Pennsylvania, USA
    d. 24 February 1815 New York, USA
    [br]
    American pioneer of steamships and of North American steam navigation.
    [br]
    The early life of Fulton is documented sparsely; however, it is clear that he was brought up in poor circumstances along with three sisters and one brother by a widowed mother. The War of Independence was raging around them for some years, but despite this it is believed that he spent some time learning the jeweller's trade in Philadelphia and had by then made a name for himself as a miniaturist. Throughout his life he remained skilled with his hands and well able to record technical detail on paper. He witnessed many of the early trials of American steamboats and saw the work of William Henry and John Fitch, and in 1787 he set off for the first time to Europe. For some years he examined steamships in Paris and without doubt saw the Charlotte Dundas on the Forth and Clyde Canal near Glasgow. In 1803 he built a steamship that ran on the Seine at 4 1/2 mph (7.25 km/h), and when it was lost, another to replace it. All his designs were based on principles that had been tried and proved elsewhere, and in this respect he was more of a developer than an inventor. After some time experimenting with submersibles and torpedoes for the British and French governments, in 1806 he returned to the United States. In 1807 he took delivery of the 100 ton displacement paddle steamer Clermont from the yard of Charles Browne of East River, New York. In August of that year it started the passenger services on the Hudson River and this can be claimed as the commencement of world passenger steam navigation. Again the ship was traditional in shape and the machinery was supplied by Messrs Boulton and Watt. This was followed by other ships, including Car of Neptune, Paragon and the world's first steam warship, Demolgos, launched in New York in October 1814 and designed by Fulton for coastal defence and the breaking of the British blockade. His last and finest boat was named Chancellor Livingston after his friend and patron Robert Livingston (1746–1813); the timber hull was launched in 1816, some months after Fulton's death.
    [br]
    Further Reading
    H.P.Spratt, 1958, The Birth of the Steamboat, London: Griffin. J.T.Flexner, 1978, Steamboats Come True, Boston: Little, Brown.
    "Robert Fulton and the centenary of steam navigation", Engineer (16 August 1907).
    FMW

    Biographical history of technology > Fulton, Robert

  • 85 Holden, Sir Isaac

    SUBJECT AREA: Textiles
    [br]
    b. 7 May 1807 Hurlet, between Paisley and Glasgow, Scotland
    d. 13 August 1897
    [br]
    British developer of the wool-combing machine.
    [br]
    Isaac Holden's father, who had the same name, had been a farmer and lead miner at Alston in Cumbria before moving to work in a coal-mine near Glasgow. After a short period at Kilbarchan grammar school, the younger Isaac was engaged first as a drawboy to two weavers and then, after the family had moved to Johnstone, Scotland, worked in a cotton-spinning mill while attending night school to improve his education. He was able to learn Latin and bookkeeping, but when he was about 15 he was apprenticed to an uncle as a shawl-weaver. This proved to be too much for his strength so he returned to scholastic studies and became Assistant to an able teacher, John Kennedy, who lectured on physics, chemistry and history, which he also taught to his colleague. The elder Isaac died in 1826 and the younger had to provide for his mother and younger brother, but in 1828, at the age of 21, he moved to a teaching post in Leeds. He filled similar positions in Huddersfield and Reading, where in October 1829 he invented and demonstrated the lucifer match but did not seek to exploit it. In 1830 he returned because of ill health to his mother in Scotland, where he began to teach again. However, he was recommended as a bookkeeper to William Townend, member of the firm of Townend Brothers, Cullingworth, near Bingley, Yorkshire. Holden moved there in November 1830 and was soon involved in running the mill, eventually becoming a partner.
    In 1833 Holden urged Messrs Townend to introduce seven wool-combing machines of Collier's designs, but they were found to be very imperfect and brought only trouble and loss. In 1836 Holden began experimenting on the machines until they showed reasonable success. He decided to concentrate entirely on developing the combing machine and in 1846 moved to Bradford to form an alliance with Samuel Lister. A joint patent in 1847 covered improvements to the Collier combing machine. The "square motion" imitated the action of the hand-comber more closely and was patented in 1856. Five more patents followed in 1857 and others from 1858 to 1862. Holden recommended that the machines should be introduced into France, where they would be more valuable for the merino trade. This venture was begun in 1848 in the joint partnership of Lister \& Holden, with equal shares of profits. Holden established a mill at Saint-Denis, first with Donisthorpe machines and then with his own "square motion" type. Other mills were founded at Rheims and at Croix, near Roubaix. In 1858 Lister decided to retire from the French concerns and sold his share to Holden. Soon after this, Holden decided to remodel all their machinery for washing and carding the gill machines as well as perfecting the square comb. Four years of excessive application followed, during which time £20,000 was spent in experiments in a small mill at Bradford. The result fully justified the expenditure and the Alston Works was built in Bradford.
    Holden was a Liberal and from 1865 to 1868 he represented Knaresborough in Parliament. Later he became the Member of Parliament for the Northern Division of the Riding, Yorkshire, and then for the town of Keighley after the constituencies had been altered. He was liberal in his support of religious, charitable and political objectives. His house at Oakworth, near Keighley, must have been one of the earliest to have been lit by electricity.
    [br]
    Principal Honours and Distinctions
    Baronet 1893.
    Bibliography
    1847, with Samuel Lister, British patent no. 11,896 (improved Collier combing machine). 1856. British patent no. 1,058 ("square motion" combing machine).
    1857. British patent no. 278 1857, British patent no. 279 1857, British patent no. 280 1857, British patent no. 281 1857, British patent no. 3,177 1858, British patent no. 597 1859, British patent no. 52 1860, British patent no. 810 1862, British patent no. 1,890 1862, British patent no. 3,394
    Further Reading
    J.Hogg (ed.), c.1888, Fortunes Made in Business, London (provides an account of Holden's life).
    Obituary, 1897, Engineer 84.
    Obituary, 1897, Engineering 64.
    E.M.Sigsworth, 1973, "Sir Isaac Holden, Bt: the first comber in Europe", in N.B.Harte and K.G.Ponting (eds), Textile History and Economic History, Essays in Honour of
    Miss Julia de Lacy Mann, Manchester.
    W.English, 1969, The Textile Industry, London (provides a good explanation of the square motion combing machine).
    RLH

    Biographical history of technology > Holden, Sir Isaac

  • 86 Martin, Pierre Emile

    SUBJECT AREA: Metallurgy
    [br]
    b. 18 August 1824 Bourges, France
    d. 23 May 1915 Fourchambault, France
    [br]
    French metallurgist, pioneer of open-hearth steelmaking.
    [br]
    His father Emile owned an iron-and steelworks at Sireuil, near Angoulême, and, through this, Pierre became interested in improving the steelmaking process. In England, C.W. Siemens had developed the regenerative principle of waste-heat recovery that produced a much higher furnace temperature. In 1863, the Martins applied this process in an open-hearth furnace built under licence from Siemens, with the aid of his engineers. They melted a mixture of pig-and wrought iron to produce steel with the required carbon content. Martin exhibited the product at the Paris Exhibition of 1867 and was awarded a gold medal. The open-hearth process was for a long time known as the Siemens-Martin process, but Martin did not share in the profits which others gained from its successful adoption. He had difficulty in obtaining patent rights as it was claimed that the principles of the process were already known and in use. The costs of litigation brought Martin to the brink of poverty, from which relief came only late in life, when in 1907 the Comité des Forges de France opened a subscription for him that was generously supported. A week before his death, the Iron and Steel Institute of London bestowed on him their Bessemer gold medal.
    [br]
    Principal Honours and Distinctions
    Iron and Steel Institute Bessemer Gold Medal 1915.
    Further Reading
    LRD

    Biographical history of technology > Martin, Pierre Emile

  • 87 Montgolfier, Joseph-Michel

    SUBJECT AREA: Aerospace
    [br]
    b. 26 August 1740 Vidalon-lès-Annonay, France
    d. 26 June 1810 Balaruc-les-Bains, France
    [br]
    French ballooning pioneer who, with his brother Jacques-Etienne (b. 6 January 1745 Vidalon-lès-Annonay, France; d. 2 August 1799, Serriers, France), built the first balloon to carry passengers on a "free" flight.
    [br]
    Joseph-Michel and Jacques-Etienne Montgolfier were papermakers of Annonay, near Lyon. Joseph made the first experiments' after studying smoke rising from a fire and assuming that the smoke contained a gas which was lighter than air: of course, this lighter-than-air gas was just hot air. Using fine silk he made a small balloon with an aperture in its base, then, by burning paper beneath this aperture, he filled the balloon with hot air and it rose to the ceiling. Jacques-Etienne joined his brother in further experiments and they progressed to larger hot-air balloons until, by October 1783, they had constructed one large enough to lift two men on tethered ascents. In the same month Joseph-Michel delivered a paper at the University of Lyon on his experiments for a propulsive system by releasing gas through an opening in the side of a balloon; unfortunately, there was not enough pressurefor an effective jet. Then, on 21 November 1783, the scientist Pilâtre de Rozier and the Marquis d'Arlandes ascended on a "free" flight in a Montgolfier balloon. They departed from the grounds of a château in the Bois de Boulogne in Paris on what was to be the world's first aerial journey, covering 9 km (5/2 miles) in 25 minutes.
    Ballooning became a popular spectacle with initial rivalry between the hot-air Montgolfières and the hydrogen-filled Charlières of J.A.C. Charles. Interest in hot-air balloons subsided, but was revived in the 1960s by an American, Paul E. Yost. His propane-gas burner to provide hot-air was a great advance on the straw-burning fire-basket of the Montgolfiers.
    [br]
    Principal Honours and Distinctions
    Légion d'honneur.
    Further Reading
    C.C.Gillispie, 1983, The Montgolfier Brothers and the Invention of Aviation 1783–1784, Princeton, NJ (one of the publications to commemorate the bicentenary of the Montgolfiers).
    L.T.C.Rolt, 1966, The Aeronauts, London (describes the history of balloons). C.Dollfus, 1961, Balloons, London.
    JDS

    Biographical history of technology > Montgolfier, Joseph-Michel

  • 88 Morse, Samuel Finley Breeze

    SUBJECT AREA: Telecommunications
    [br]
    b. 27 April 1791 Charlestown, Massachusetts, USA
    d. 2 April 1872 New York City, New York, USA
    [br]
    American portrait painter and inventor, b est known for his invention of the telegraph and so-called Morse code.
    [br]
    Following early education at Phillips Academy, Andover, at the age of 14 years Morse went to Yale College, where he developed interests in painting and electricity. Upon graduating in 1810 he became a clerk to a Washington publisher and a pupil of Washington Allston, a well-known American painter. The following year he travelled to Europe and entered the London studio of another American artist, Benjamin West, successfully exhibiting at the Royal Academy as well as winning a prize and medal for his sculpture. Returning to Boston and finding little success as a "historical-style" painter, he built up a thriving portrait business, moving in 1818 to Charleston, South Carolina, where three years later he established the (now defunct) South Carolina Academy of Fine Arts. In 1825 he was back in New York, but following the death of his wife and both of his parents that year, he embarked on an extended tour of European art galleries. In 1832, on the boat back to America, he met Charles T.Jackson, who told him of the discovery of the electromagnet and fired his interest in telegraphy to the extent that Morse immediately began to make suggestions for electrical communications and, apparently, devised a form of printing telegraph. Although he returned to his painting and in 1835 was appointed the first Professor of the Literature of Art and Design at the University of New York City, he began to spend more and more time experimenting in telegraphy. In 1836 he invented a relay as a means of extending the cable distance over which telegraph signals could be sent. At this time he became acquainted with Alfred Vail, and the following year, when the US government published the requirements for a national telegraph service, they set out to produce a workable system, with finance provided by Vail's father (who, usefully, owned an ironworks). A patent was filed on 6 October 1837 and a successful demonstration using the so-called Morse code was given on 6 January 1838; the work was, in fact, almost certainly largely that of Vail. As a result of the demonstration a Bill was put forward to Congress for $30,000 for an experimental line between Washington and Baltimore. This was eventually passed and the line was completed, and on 24 May 1844 the first message, "What hath God wrought", was sent between the two cities. In the meantime Morse also worked on the insulation of submarine cables by means of pitch tar and indiarubber.
    With success achieved, Morse offered his invention to the Government for $100,000, but this was declined, so the invention remained in private hands. To exploit it, Morse founded the Magnetic Telephone Company in 1845, amalgamating the following year with the telegraph company of a Henry O'Reilly to form Western Union. Having failed to obtain patents in Europe, he now found himself in litigation with others in the USA, but eventually, in 1854, the US Supreme Court decided in his favour and he soon became very wealthy. In 1857 a proposal was made for a telegraph service across the whole of the USA; this was completed in just over four months in 1861. Four years later work began on a link to Europe via Canada, Alaska, the Aleutian Islands and Russia, but it was abandoned with the completion of the transatlantic cable, a venture in which he also had some involvement. Showered with honours, Morse became a generous philanthropist in his later years. By 1883 the company he had created was worth $80 million and had a virtual monopoly in the USA.
    [br]
    Principal Honours and Distinctions
    LLD, Yale 1846. Fellow of the Academy of Arts and Sciences 1849. Celebratory Banquet, New York, 1869. Statue in New York Central Park 1871. Austrian Gold Medal of Scientific Merit. Danish Knight of the Danneborg. French Légion d'honneur. Italian Knight of St Lazaro and Mauritio. Portuguese Knight of the Tower and Sword. Turkish Order of Glory.
    Bibliography
    E.L.Morse (ed.), 1975, Letters and Journals, New York: Da Capo Press (facsimile of a 1914 edition).
    Further Reading
    J.Munro, 1891, Heroes of the Telegraph (discusses his telegraphic work and its context).
    C.Mabee, 1943, The American Leonardo: A Life of Samuel Morse; reprinted 1969 (a detailed biography).
    KF

    Biographical history of technology > Morse, Samuel Finley Breeze

  • 89 Papin, Denis

    [br]
    b. 22 August 1647 Blois, Loire et Cher, France
    d. 1712 London, England
    [br]
    French mathematician and physicist, inventor of the pressure-cooker.
    [br]
    Largely educated by his father, he worked for some time for Huygens at Ley den, then for a time in London where he assisted Robert Boyle with his experiments on the air pump. He supposedly invented the double-acting air pump. He travelled to Venice and worked there for a time, but was back in London in 1684 before taking up the position of Professor of Mathematics at the University of Marburg (in 1669 or 1670 he became a Doctor of Medicine at Angers), where he remained from 1687 to 1695. Then followed a period at Cassel, where he was employed by the Duke of Hesse. In this capacity he was much involved in the application of steam-power to pumping water for the Duke's garden fountains. Papin finally returned to London in 1707. He is best known for his "digester", none other than the domestic pressure-cooker. John Evelyn describes it in his diary (12 April 1682): "I went this Afternoone to a Supper, with severall of the R.Society, which was all dressed (both fish and flesh) in Monsieur Papins Digestorie; by which the hardest bones of Biefe itself, \& Mutton, were without water, or other liquor, \& with less than 8 ounces of Coales made as soft as Cheeze, produc'd an incredible quantity of Gravie…. This Philosophical Supper raised much mirth among us, \& exceedingly pleased all the Companie." The pressure-cooker depends on the increase in the boiling point of water with increase of pressure. To avoid the risk of the vessel exploding, Papin devised a weight-loaded lever-type safety valve.
    There are those who would claim that Papin preceded Newcomen as the true inventor of the steam engine. There is no doubt that as early as 1690 Papin had the idea of an atmospheric engine, in which a piston in a cylinder is forced upwards by expanding steam and then returned by the weight of the atmosphere upon the piston, but he lacked practical engineering skill such as was necessary to put theory into practice. The story is told of his last trip from Cassel, when returning to England. It is said that he built his own steamboat, intending to make the whole journey by this means, ending with a triumphal journey up the Thames. However, boatmen on the river Weser, thinking that the steamboat threatened their livelihood, attacked it and broke it up. Papin had to travel by more orthodox means. Papin is said to have co-operated with Thomas Savery in the development of the lat-ter's steam engine, on which he was working c. 1705.
    [br]
    Further Reading
    Charles-Armand Klein, 1987, Denis Papin: Illustre savant blaisois, Chambray, France: CLD.
    A.P.M.Fleming and H.R.S.Brocklehurst, 1925, A History of Engineering.
    Sigvar Strandh, 1979, Machines, Mitchell Beazley.
    IMcN

    Biographical history of technology > Papin, Denis

  • 90 Riley, James

    SUBJECT AREA: Metallurgy
    [br]
    b. 1840 Halifax, England
    d. 15 July 1910 Harrogate, England
    [br]
    English steelmaker who promoted the manufacture of low-carbon bulk steel by the open-hearth process for tin plate and shipbuilding; pioneer of nickel steels.
    [br]
    After working as a millwright in Halifax, Riley found employment at the Ormesby Ironworks in Middlesbrough until, in 1869, he became manager of the Askam Ironworks in Cumberland. Three years later, in 1872, he was appointed Blast-furnace Manager at the pioneering Siemens Steel Company's works at Landore, near Swansea in South Wales. Using Spanish ore, he produced the manganese-rich iron (spiegeleisen) required as an additive to make satisfactory steel. Riley was promoted in 1874 to be General Manager at Landore, and he worked with William Siemens to develop the use of the latter's regenerative furnace for the production of open-hearth steel. He persuaded Welsh makers of tin plate to use sheets rolled from lowcarbon (mild) steel instead of from charcoal iron and, partly by publishing some test results, he was instrumental in influencing the Admiralty to build two naval vessels of mild steel, the Mercury and the Iris.
    In 1878 Riley moved north on his appointment as General Manager of the Steel Company of Scotland, a firm closely associated with Charles Tennant that was formed in 1872 to make steel by the Siemens process. Already by 1878, fourteen Siemens melting furnaces had been erected, and in that year 42,000 long tons of ingots were produced at the company's Hallside (Newton) Works, situated 8 km (5 miles) south-east of Glasgow. Under Riley's leadership, steelmaking in open-hearth furnaces was initiated at a second plant situated at Blochairn. Plates and sections for all aspects of shipbuilding, including boilers, formed the main products; the company also supplied the greater part of the steel for the Forth (Railway) Bridge. Riley was associated with technical modifications which improved the performance of steelmaking furnaces using Siemens's principles. He built a gasfired cupola for melting pig-iron, and constructed the first British "universal" plate mill using three-high rolls (Lauth mill).
    At the request of French interests, Riley investigated the properties of steels containing various proportions of nickel; the report that he read before the Iron and Steel Institute in 1889 successfully brought to the notice of potential users the greatly enhanced strength that nickel could impart and its ability to yield alloys possessing substantially lower corrodibility.
    The Steel Company of Scotland paid dividends in the years to 1890, but then came a lean period. In 1895, at the age of 54, Riley moved once more to another employer, becoming General Manager of the Glasgow Iron and Steel Company, which had just laid out a new steelmaking plant at Wishaw, 25 km (15 miles) south-east of Glasgow, where it already had blast furnaces. Still the technical innovator, in 1900 Riley presented an account of his experiences in introducing molten blast-furnace metal as feed for the open-hearth steel furnaces. In the early 1890s it was largely through Riley's efforts that a West of Scotland Board of Conciliation and Arbitration for the Manufactured Steel Trade came into being; he was its first Chairman and then its President.
    In 1899 James Riley resigned from his Scottish employment to move back to his native Yorkshire, where he became his own master by acquiring the small Richmond Ironworks situated at Stockton-on-Tees. Although Riley's 1900 account to the Iron and Steel Institute was the last of the many of which he was author, he continued to contribute to the discussion of papers written by others.
    [br]
    Principal Honours and Distinctions
    President, West of Scotland Iron and Steel Institute 1893–5. Vice-President, Iron and Steel Institute, 1893–1910. Iron and Steel Institute (London) Bessemer Gold Medal 1887.
    Bibliography
    1876, "On steel for shipbuilding as supplied to the Royal Navy", Transactions of the Institute of Naval Architects 17:135–55.
    1884, "On recent improvements in the method of manufacture of open-hearth steel", Journal of the Iron and Steel Institute 2:43–52 plus plates 27–31.
    1887, "Some investigations as to the effects of different methods of treatment of mild steel in the manufacture of plates", Journal of the Iron and Steel Institute 1:121–30 (plus sheets II and III and plates XI and XII).
    27 February 1888, "Improvements in basichearth steel making furnaces", British patent no. 2,896.
    27 February 1888, "Improvements in regenerative furnaces for steel-making and analogous operations", British patent no. 2,899.
    1889, "Alloys of nickel and steel", Journal of the Iron and Steel Institute 1:45–55.
    Further Reading
    A.Slaven, 1986, "James Riley", in Dictionary of Scottish Business Biography 1860–1960, Volume 1: The Staple Industries (ed. A.Slaven and S. Checkland), Aberdeen: Aberdeen University Press, 136–8.
    "Men you know", The Bailie (Glasgow) 23 January 1884, series no. 588 (a brief biography, with portrait).
    J.C.Carr and W.Taplin, 1962, History of the British Steel Industry, Harvard University Press (contains an excellent summary of salient events).
    JKA

    Biographical history of technology > Riley, James

  • 91 Riquet, Pierre Paul

    SUBJECT AREA: Canals, Civil engineering
    [br]
    b. 29 June 1604 Béziers, Hérault, France
    d. 1 October 1680 buried at Toulouse, France
    [br]
    French canal engineer and constructor of the Canal du Midi.
    [br]
    Pierre Paul Riquet was the son of a wealthy lawyer whose ancestors came from Italy. In his education at the Jesuit College in Béziers he showed obvious natural ability in science and mathematics, but he received no formal engineering training. With his own and his wife's fortunes he was able to purchase a château at Verfeil, near Toulouse. In 1630 he was appointed a collector of the salt tax in Languedoc and in a short time became Lessee General (Fermier Général) of this tax for the whole province. This entailed constant travel through the district, with the result that he became very familiar with this part of the country. He also became involved in military contracting. He acquired a vast fortune out of both activities. At this time he pondered the possibility of building a canal from Toulouse to the Mediterranean beyond Béziers and, after further investigation as to possible water supplies, he wrote to Colbert in Paris on 16 November 1662 advocating the construction of the canal. Although the idea proved acceptable it was not until 27 May 1665 that Riquet was authorized to direct operations, and on 14 October 1666 he was given authority to construct the first part of the canal, from Toulouse to Trebes. Work started on 1 January 1667. By 1669 he had between 7,000 and 8,000 men employed on the work. Unhappily, Riquet died just over six months before the canal was completed, the official opening beingon 15 May 1681.
    Although Riquet's fame rightly rests on the Canal du Midi, probably the greatest work of its time in Europe, he was also consulted about and was responsible for other projects. He built an aqueduct on more than 100 arches to lead water into the grounds of the château of his friend the marquis de Castres. The plans for this work, which involved considerable practical difficulties, were finalized in 1670, and water flowed into the château grounds in 1676. Also in 1676, Riquet was commissioned to lead the waters of the river Ourcq into Paris; he drew up plans, but he was too busy to undertake the construction and on his death the work was shelved until Napoleon's time. He was responsible for the creation of the port of Sète on the Mediterranean at the end of the Canal du Midi. He was also consulted on the supply of water to the Palace of Versailles and on a proposed route which later became the Canal de Bourgogne. Riquet was a very remarkable man: when he started the construction of the canal he was well over 60 years old, an age at which most people are retiring, and lived almost to its completion.
    [br]
    Further Reading
    L.T.C.Rolt, 1973, From Sea to Sea, London: Allen Lane; rev. ed. 1994, Bridgwater: Internet Ltd.
    Jean-Denis Bergasse, 1982–7, Le Canal de Midi, 4 vols, Hérault:—Vol. I: Pierre Paul Riquet et le Canal du Midi dans les arts et la littérature; Vol II: Trois Siècles de
    batellerie et de voyage; Vol. III: Des Siècles d'aventures humaine; Vol. IV: Grands Moments et grands sites.
    JHB

    Biographical history of technology > Riquet, Pierre Paul

  • 92 Rolls, The Hon. Charles Stewart

    [br]
    b. 28 August 1877 London, England
    d. 12 July 1910 Bournemouth, Hampshire, England.
    [br]
    English motorist, aviator and automobile manufacturer.
    [br]
    The son of a baron, Rolls drove cars such as Panhards and Mors from 1895. He was educated at Cambridge University, and set up in business selling French and Belgian cars. Henry Royce's third car was built for a director of Royce Ltd, Henry Edwards, who was a friend of Rolls. A meeting was arranged between Royce and Rolls and, in 1904, they formed a partnership. From 1907. Rolls was selling the 40/50 hp RollsRoyce Ghost from his London showroom; in 1908. the factory moved to Derby. Rolls took up flying and crossed the English Channel in a balloon in 1906, and in June 1910 he crossed it by plane. In the following month, he was killed when the plane he was piloting crashed.
    [br]
    Further Reading
    J.J.Fucini and S.Fucini, 1985, Entrepreneurs, Boston: C.K.Hall \& Co.
    IMcN

    Biographical history of technology > Rolls, The Hon. Charles Stewart

  • 93 Saulnier, Raymond

    SUBJECT AREA: Aerospace
    [br]
    b. late eighteenth century France
    d. mid-twentieth century
    [br]
    French designer of aircraft, associated with Louis Blériot and later the Morane- Saulnier company.
    [br]
    When Louis Blériot made his historic flight across the English Channel in 1909, the credit for the success of the flight naturally went to the pilot. Few people thought about the designer of the successful aeroplane, and those who did assumed it was Blériot himself. Blériot did design several of the aeroplanes bearing his name, but the cross- Channel No. XI was mainly designed by his friend Raymond Saulnier, a fact not; broadcast at the time.
    In 1911 the Morane-Saulnier company was founded in Paris by Léon (1885–1918) and Robert (1886–1968) Morane and Raymond Saulnier, who became Chief Designer. Flying a Morane-Saulnier, Roland Garros made a recordbreaking flight to a height of 5,611 m (18,405 ft) in 1912, and the following year he made the first non-stop flight across the Mediterranean. Morane-Saulnier built a series of "parasol" monoplanes which were very widely used during the early years of the First World War. With the wing placed above the fuselage, the pilot had an excellent downward view for observation purposes, but the propeller ruled out a forward-firing machine gun. During 1913–4, Raymond Saulnier was working on an idea for a synchronized machine gun to fire between the blades of the propeller. He could not overcome certain technical problems, so he devised a simple alternative: metal deflector plates were fitted to the propeller, so if a bullet hit the blade it did no harm. Roland Garros, flying a Type L Parasol, tested the device in action during April 1915 and was immediately successful. This opened the era of the true fighter aircraft. Unfortunately, Garros was shot down and the Germans discovered his secret weapon: they improved on the idea with a fully synchronized machine gun fitted to the Fokker E 1 monoplane. The Morane-Saulnier company continued in business until 1963, when it was taken over by the Potez Group.
    [br]
    Further Reading
    Jane's Fighting Aircraft of World War I, 1990, London: Jane's (reprint) (provides plans and details of 1914–18 Morane-Saulnier aeroplanes).
    JDS

    Biographical history of technology > Saulnier, Raymond

См. также в других словарях:

  • French Creek (Allegheny River) — French Creek is a tributary of the Allegheny River in northwestern Pennsylvania and western New York in the United States. Creek is somewhat of a misnomer, as it is generally considered to be a river, which is reflected in earlier names for the… …   Wikipedia

  • French colonial administration of Laos — The French approach to the colonial administration of Laos might be viewed as one of benign neglect , as compared to the contributions of other colonial rulers to their Southeast Asian colonies.French Territorial AdministrationThe French had… …   Wikipedia

  • French submarine Ouessant (S623) — Career …   Wikipedia

  • French protectorate of Cambodia — Protectorat du Cambodge Protectorate of Cambodia កម្ពុជាសម័យអាណានិគម Monarchy, Protectorate of France …   Wikipedia

  • French Colonial — was one of four domestic architectural styles that developed during the colonial period in what would become the United States. The other styles were Colonial Georgian, Dutch Colonial, and Spanish Colonial. French Colonial developed in the… …   Wikipedia

  • French Prairie — is a prairie located in Marion County, Oregon, United States, in the Willamette Valley between the Willamette River and the Pudding River, north of Salem. It was named for some of the earliest settlers of that part of the Oregon Country, French… …   Wikipedia

  • French Texas — was the period of Texas history from 1685 until 1689. During this time, a French colony, Fort Saint Louis, existed near what is now Inez, Texas (USA). Explorer Robert de La Salle intended to found the colony at the mouth of the Mississippi River …   Wikipedia

  • French Azilum — French Azilum, located in Bradford County, Pennsylvania, was a planned settlement for refugees fleeing the French Revolution. Several influential Philadelphians, including Stephen Girard, Robert Morris and John Nicholson, Pennsylvania s… …   Wikipedia

  • French Catholics in the United States — • History and statistics of French Canadian immigration to the United States Catholic Encyclopedia. Kevin Knight. 2006. French Catholics in the United States     French Catholics in the United States …   Catholic encyclopedia

  • French Communist Party — Parti communiste français Leader Pierre Laurent (National Secretary) Founded 1920 (SFIC) 1921 (PCF) …   Wikipedia

  • French philosophy — French philosophy, here taken to mean philosophy in French language, has been extremely diverse and has influenced both the analytic and continental traditions in philosophy for centuries, from René Descartes through Voltaire and Henri Bergson to …   Wikipedia

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»