Перевод: со всех языков на английский

с английского на все языки

franklin+institute

  • 1 Kettering, Charles Franklin

    [br]
    b. 29 August 1876 near Londonsville, Ohio, USA
    d. 25 November 1958 Dayton, Ohio, USA
    [br]
    American engineer and inventor.
    [br]
    Kettering gained degrees in mechanical and electrical engineering from Ohio State University. He was employed by the National Construction Register (NCR) of Dayton, Ohio, where he devised an electric motor for use in cash registers. He became Head of the Inventions Department of that company but left in 1909 to form, with the former Works Manager of NCR, Edward A. Deeds, the Dayton Engineering Laboratories (later called Delco), to develop improved lighting and ignition systems for automobiles. In the first two years of the new company he produced not only these but also the first self-starter, both of which were fitted to the Cadillac, America's leading luxury car. In 1914 he founded Dayton Metal Products and the Dayton Wright Airplane Company. Two years later Delco was bought by General Motors. In 1925 the independent research facilities of Delco were moved to Detroit and merged with General Motors' laboratories to form General Motors Research Corporation, of which Kettering was President and General Manager. (He had been Vice-President of General Motors since 1920.) In that position he headed investigations into methods of achieving maximum engine performance as well as into the nature of friction and combustion. Many other developments in the automobile field were made under his leadership, such as engine coolers, variable-speed transmissions, balancing machines, the two-way shock absorber, high-octane fuel, leaded petrol or gasoline, fast-drying lacquers, crank-case ventilators, chrome plating, and the high-compression automobile engine. Among his other activities were the establishment of the Charles Franklin Kettering Foundation for the Study of Chlorophyll and Photosynthesis at Antioch College, and the founding of the Sloan- Kettering Institute for Cancer Research in New York City. He sponsored the Fever Therapy Research Project at Miami Valley Hospital at Dayton, which developed the hypertherm, or artificial fever machine, for use in the treatment of disease. He resigned from General Motors in 1947.
    IMcN

    Biographical history of technology > Kettering, Charles Franklin

  • 2 Bilgram, Hugo

    [br]
    b. 13 January 1847 Memmingen, Bavaria, Germany
    d. 27 August 1932 Moylan, Pennsylvania, USA
    [br]
    German (naturalized American) mechanical engineer, inventor of bevel-gear generator and economist.
    [br]
    Hugo Bilgram studied mechanical engineering at the Augsburg Maschinenbau Schule and graduated in 1865. He worked as a machinist and draughtsman for several firms in Germany before going to the United States in 1869.
    In America he first worked for L.B.Flanders Company and Southwark Foundry \& Machine Company in Philadelphia, designing instruments and machines. In the 1870s he also assisted in an evening class in drawing at The Franklin Institute. He devised the Bilgram Valve Diagram for analysing the action of steam engine slide valves and he developed a method of drawing accurate outlines of gear teeth. This led him to design a machine for cutting the teeth of gear wheels, particularly bevel wheels, which he patented in 1884. He was in charge of the American branch of Brehmer Brothers Company from 1879 and in 1884 became the sole owner of the company, which was later incorporated as the Bilgram Machine Works. He was responsible for several other inventions and developments in gear manufacture.
    Bilgram was a member of the Franklin Institute, the American Academy of Political and Social Science, the Philadelphia Technische Verein and the Philadelphia Engineer's Club, and was elected a member of the American Society of Mechanical Engineers in 1885. He was also an amateur botanist, keenly interested in microscopic work.
    [br]
    Principal Honours and Distinctions
    Franklin Institute Elliott Cresson Gold Medal. City of Philadelphia John Scott Medal.
    Bibliography
    Hugo Bilgram was granted several patents and was the author of: 1877, Slide Valve Gears.
    1889, Involuntary Idleness.
    1914, The Cause of Business Depression.
    1928, The Remedy for Overproduction and Unemployment.
    Further Reading
    Robert S.Woodbury, 1958, History of the Gear-cutting Machine, Cambridge, Mass, (describes Bilgram's bevel-gear generating machine).
    RTS

    Biographical history of technology > Bilgram, Hugo

  • 3 Sellers, William

    [br]
    b. 19 September 1824 Upper Darby, Pennsylvania, USA
    d. 24 January 1905 Philadelphia, Pennsylvania, USA
    [br]
    American mechanical engineer and inventor.
    [br]
    William Sellers was educated at a private school that had been established by his father and other relatives for their children, and at the age of 14 he was apprenticed for seven years to the machinist's trade with his uncle. At the end of his apprenticeship in 1845 he took charge of the machine shop of Fairbanks, Bancroft \& Co. in Providence, Rhode Island. In 1848 he established his own factory manufacturing machine tools and mill gearing in Philadelphia, where he was soon joined by Edward Bancroft, the firm becoming Bancroft \& Sellers. After Bancroft's death the name was changed in 1856 to William Sellers \& Co. and Sellers served as President until the end of his life. His machine tools were characterized by their robust construction and absence of decorative embellishments. In 1868 he formed the Edgemoor Iron Company, of which he was President. This company supplied the structural ironwork for the Centennial Exhibition buildings and much of the material for the Brooklyn Bridge. In 1873 he reorganized the William Butcher Steel Works, renaming it the Midvale Steel Company, and under his presidency it became a leader in the production of heavy ordnance. It was at the Midvale Steel Company that Frederick W. Taylor began, with the encouragement of Sellers, his experiments on cutting tools.
    In 1860 Sellers obtained the American rights of the patent for the Giffard injector for feeding steam boilers. He later invented his own improvements to the injector, which numbered among his many other patents, most of which related to machine tools. Probably Sellers's most important contribution to the engineering industry was his proposal for a system of screw threads made in 1864 and later adopted as the American national standard.
    Sellers was a founder member in 1880 of the American Society of Mechanical Engineers and was also a member of many other learned societies in America and other countries, including, in Britain, the Institution of Mechanical Engineers and the Iron and Steel Institute.
    [br]
    Principal Honours and Distinctions
    Chevalier de la Légion d'honneur 1889. President, Franklin Institute 1864–7.
    Further Reading
    J.W.Roe, 1916, English and American Tool Builders, New Haven; reprinted 1926, New York, and 1987, Bradley, Ill. (describes Sellers's work on machine tools).
    Bruce Sinclair, 1969, "At the turn of a screw: William Sellers, the Franklin Institute, and a standard American thread", Technology and Culture 10:20–34 (describes his work on screw threads).
    RTS

    Biographical history of technology > Sellers, William

  • 4 Sprague, Frank Julian

    [br]
    b. 25 July 1857 Milford, Connecticut, USA
    d. 25 October 1934 New York, USA
    [br]
    American electrical engineer and inventor, a leading innovator in electric propulsion systems for urban transport.
    [br]
    Graduating from the United States Naval Academy, Annapolis, in 1878, Sprague served at sea and with various shore establishments. In 1883 he resigned from the Navy and obtained employment with the Edison Company; but being convinced that the use of electricity for motive power was as important as that for illumination, in 1884 he founded the Sprague Electric Railway and Motor Company. Sprague began to develop reliable and efficient motors in large sizes, marketing 15 hp (11 kW) examples by 1885. He devised the method of collecting current by using a wooden, spring-loaded rod to press a roller against the underside of an overhead wire. The installation by Sprague in 1888 of a street tramway on a large scale in Richmond, Virginia, was to become the prototype of the universally adopted trolley system with overhead conductor and the beginning of commercial electric traction. Following the success of the Richmond tramway the company equipped sixty-seven other railways before its merger with Edison General Electric in 1890. The Sprague traction motor supported on the axle of electric streetcars and flexibly mounted to the bogie set a pattern that was widely adopted for many years.
    Encouraged by successful experiments with multiple-sheave electric elevators, the Sprague Elevator Company was formed and installed the first set of high-speed passenger cars in 1893–4. These effectively displaced hydraulic elevators in larger buildings. From experience with control systems for these, he developed his system of multiple-unit control for electric trains, which other engineers had considered impracticable. In Sprague's system, a master controller situated in the driver's cab operated electrically at a distance the contactors and reversers which controlled the motors distributed down the train. After years of experiment, Sprague's multiple-unit control was put into use for the first time in 1898 by the Chicago South Side Elevated Railway: within fifteen years multiple-unit operation was used worldwide.
    [br]
    Principal Honours and Distinctions
    President, American Institute of Electrical Engineers 1892–3. Franklin Institute Elliot Cresson Medal 1904, Franklin Medal 1921. American Institute of Electrical Engineers Edison Medal 1910.
    Bibliography
    1888, "The solution of municipal rapid transit", Trans. AIEE 5:352–98. See "The multiple unit system for electric railways", Cassiers Magazine, (1899) London, repub. 1960, 439–460.
    1934, "Digging in “The Mines of the Motor”", Electrical Engineering 53, New York: 695–706 (a short autobiography).
    Further Reading
    Lionel Calisch, 1913, Electric Traction, London: The Locomotive Publishing Co., Ch. 6 (for a near-contemporary view of Sprague's multiple-unit control).
    D.C.Jackson, 1934, "Frank Julian Sprague", Scientific Monthly 57:431–41.
    H.C.Passer, 1952, "Frank Julian Sprague: father of electric traction", in Men of Business, ed. W. Miller, Cambridge, Mass., pp. 212–37 (a reliable account).
    ——1953, The Electrical Manufacturers: 1875–1900, Cambridge, Mass. P.Ransome-Wallis (ed.), 1959, The Concise Encyclopaedia of World Railway
    Locomotives, London: Hutchinson, p. 143..
    John Marshall, 1978, A Biographical Dictionary of Railway Engineers, Newton Abbot: David \& Charles.
    GW / PJGR

    Biographical history of technology > Sprague, Frank Julian

  • 5 Talbot, Benjamin

    SUBJECT AREA: Metallurgy
    [br]
    b. 19 September 1864 Wellington, Shropshire, England
    d. 16 December 1947 Solberge Hall, Northallerton, Yorkshire, England
    [br]
    Talbot, William Henry Fox English steelmaker and businessman who introduced a technique for producing steel "continuously" in large tilting basic-lined open-hearth furnaces.
    [br]
    After spending some years at his father's Castle Ironworks and at Ebbw Vale Works, Talbot travelled to the USA in 1890 to become Superintendent of the Southern Iron and Steel Company of Chattanooga, Tennessee, where he initiated basic open-hearth steelmaking and a preliminary slag washing to remove silicon. In 1893 he moved to Pennsylvania as Steel Superintendent at the Pencoyd works; there, six years later, he began his "continuous" steelmaking process. Returning to Britain in 1900, Talbot marketed the technique: after ten years it was in successful use in Britain, continental Europe and the USA; it promoted the growth of steel production.
    Meanwhile its originator had joined the Cargo Fleet Iron Company Limited on Teesside, where he was made Managing Director in 1907. Twelve years later he assumed, in addition, the same position in the allied South Durham Steel and Iron Company Limited. While remaining Managing Director, he was appointed Deputy Chairman of both companies in 1925, and Chairman in 1940. The companies he controlled survived the depressed 1920s and 1930s and were significant contributors to British steel output, with a capacity of more than half a million tonnes per year.
    [br]
    Principal Honours and Distinctions
    President, Iron and Steel Institute 1928, and (British) National Federation of Iron and Steel Manufacturers. Iron and Steel Institute (London) Bessemer Gold Medal 1908. Franklin Institute (Philadelphia), Elliott Cresson Gold Medal, and John Scott Medal 1908.
    Bibliography
    1900, "The open-hearth continuous steel process", Journal of the Iron and Steel Institute 57 (1):33–61.
    1903, "The development of the continuous open-hearth process", Journal of the Iron and Steel Institute 63(1):57–73.
    1905, "Segregation in steel ingots", Journal of the Iron and Steel Institute 68(2):204–23. 1913, "The production of sound steel by lateral compression of the ingot whilst its centre is liquid", Journal of the Iron and Steel Institute 87(1):30–55.
    Further Reading
    G.Boyce, 1986, entry in Dictionary of Business Biography, Vol. V, ed. J.Jeremy, Butterworth.
    W.G.Willis, 1969, South Durham Steel and Iron Co. Ltd, South Durham Steel and Iron Company Ltd (includes a few pages specifically on Talbot, and a portrait photo). J.C.Carr and W.Taplin, 1962, History of the British Steel Industry, Cambridge, Mass.: Harvard University Press (mentions Talbot's business attitudes).
    JKA

    Biographical history of technology > Talbot, Benjamin

  • 6 Pierce, John Robinson

    [br]
    b. 27 March 1910 Des Moines, Iowa, USA
    [br]
    American scientist and communications engineer said to be the "father" of communication satellites.
    [br]
    From his high-school days, Pierce showed an interest in science and in science fiction, writing under the pseudonym of J.J.Coupling. After gaining Bachelor's, Master's and PhD degrees at the California Institute of Technology (CalTech) in Pasadena in 1933, 1934 and 1936, respectively, Pierce joined the Bell Telephone Laboratories in New York City in 1936. There he worked on improvements to the travelling-wave tube, in which the passage of a beam of electrons through a helical transmission line at around 7 per cent of the speed of light was made to provide amplification at 860 MHz. He also devised a new form of electrostatically focused electron-multiplier which formed the basis of a sensitive detector of radiation. However, his main contribution to electronics at this time was the invention of the Pierce electron gun—a method of producing a high-density electron beam. In the Second World War he worked with McNally and Shepherd on the development of a low-voltage reflex klystron oscillator that was applied to military radar equipment.
    In 1952 he became Director of Electronic Research at the Bell Laboratories' establishment, Murray Hill, New Jersey. Within two years he had begun work on the possibility of round-the-world relay of signals by means of communication satellites, an idea anticipated in his early science-fiction writings (and by Arthur C. Clarke in 1945), and in 1955 he published a paper in which he examined various possibilities for communications satellites, including passive and active satellites in synchronous and non-synchronous orbits. In 1960 he used the National Aeronautics and Space Administration 30 m (98 1/2 ft) diameter, aluminium-coated Echo 1 balloon satellite to reflect telephone signals back to earth. The success of this led to the launching in 1962 of the first active relay satellite (Telstar), which weighed 170 lb (77 kg) and contained solar-powered rechargeable batteries, 1,000 transistors and a travelling-wave tube capable of amplifying the signal 10,000 times. With a maximum orbital height of 3,500 miles (5,600 km), this enabled a variety of signals, including full bandwidth television, to be relayed from the USA to large receiving dishes in Europe.
    From 1971 until his "retirement" in 1979, Pierce was Professor of Electrical Engineering at CalTech, after which he became Chief Technologist at the Jet Propulsion Laboratories, also in Pasadena, and Emeritus Professor of Engineering at Stanford University.
    [br]
    Principal Honours and Distinctions
    Institute of Electrical and Electronics Engineers Morris N.Liebmann Memorial Award 1947; Edison Medal 1963; Medal of Honour 1975. Franklin Institute Stuart Ballantine Award 1960. National Medal of Science 1963. Danish Academy of Science Valdemar Poulsen Medal 1963. Marconi Award 1974. National Academy of Engineering Founders Award 1977. Japan Prize 1985. Arthur C.Clarke Award 1987. Honorary DEng Newark College of Engineering 1961. Honorary DSc Northwest University 1961, Yale 1963, Brooklyn Polytechnic Institute 1963. Editor, Proceedings of the Institute of Radio Engineers 1954–5.
    Bibliography
    23 October 1956, US patent no. 2,768,328 (his development of the travelling-wave tube, filed on 5 November 1946).
    1947, with L.M.Field, "Travelling wave tubes", Proceedings of the Institute of Radio
    Engineers 35:108 (describes the pioneering improvements to the travelling-wave tube). 1947, "Theory of the beam-type travelling wave tube", Proceedings of the Institution of
    Radio Engineers 35:111. 1950, Travelling Wave Tubes.
    1956, Electronic Waves and Messages. 1962, Symbols, Signals and Noise.
    1981, An Introduction to Information Theory: Symbols, Signals and Noise: Dover Publications.
    1990, with M.A.Knoll, Signals: Revolution in Electronic Communication: W.H.Freeman.
    KF

    Biographical history of technology > Pierce, John Robinson

  • 7 Ives, Herbert Eugene

    [br]
    b. 1882 USA
    d. 1953
    [br]
    American physicist find television pioneer.
    [br]
    Ives gained his PhD in physics from Johns Hopkins University, Baltimore, Maryland, and subsequently served in the US Signal Corps, eventually gaining experience in aerial photography. He then joined the Western Electric Engineering Department (later Bell Telephone Laboratories), c.1920 becoming leader of a group concerned with television-image transmission over telephone lines. In 1927, using a Nipkow disc, he demonstrated 50-line, 18 frames/sec pictures that could be displayed as either 2 in.×2 1/2 in. (5.1 cm×6.4 cm) images suitable for a "wirephone", or 2 ft ×2 1/2 ft (61 cm×76 cm) images for television viewing. Two years later, using a single-spiral disc and three separately modulated light sources, he was able to produce full-colour images.
    [br]
    Bibliography
    1915, "The transformation of colour mixture equations", Journal of the Franklin Institute 180:673.
    1923, "do—Pt II", Journal of the Franklin Institute 195–23.
    1925, "Telephone picture transmission", Transactions of the Society of Motion Picture and Television Engineers 23:82.
    1929, "Television in colour", Bell Laboratories Record 7:439.
    1930, with A.L.Johnsrul, "Television in colour by a beam-scanning method", Journal of the Optical Society of America 20:11.
    Further Reading
    J.H.Udelson, 1982, The Great Television Race: History of the Television Industry 1925– 41: University of Alabama Press.
    KF

    Biographical history of technology > Ives, Herbert Eugene

  • 8 Warren, Henry Ellis

    SUBJECT AREA: Horology
    [br]
    b. 21 May 1872 Boston, Massachusetts, USA
    d. 21 September 1957 Ashland, Massachusetts, USA
    [br]
    American electrical engineer who invented the mains electric synchronous clock.
    [br]
    Warren studied electrical engineering at the Boston Institute of Technology (later to become the Massachusetts Institute of Technology) and graduated in 1894. In 1912 he formed the Warren Electric Clock Company to make a battery-powered clock that he had patented a few years earlier. The name was changed to the Warren Telechron (time at a distance) Company after he had started to produce synchronous clocks.
    In 1840 Charles Wheatstone had produced an electric master clock that produced an alternating current with a frequency of one cycle per second and which was used to drive slave dials. This system was not successful, but when Ferranti introduced the first alternating current power generator at Deptford in 1895 Hope-Jones saw in it a means of distributing time. This did not materialize immediately because the power generators did not control the frequency of the current with sufficient accuracy, and a reliable motor whose speed was related to this frequency was not available. In 1916 Warren solved both problems: he produced a reliable self-starting synchronous electric motor and he also made a master clock which could be used at the power station to control accurately the frequency of the supply. Initially the power-generating companies were reluctant to support the synchronous clock because it imposed a liability to control the frequency of the supply and the gain was likely to be small because it was very frugal in its use of power. However, with the advent of the grid system, when several generators were connected together, it became imperative to control the frequency; it was realized that although the power consumption of individual clocks was small, collectively it could be significant as they ran continuously. By the end of the 1930s more than half the clocks sold in the USA were of the synchronous type. The Warren synchronous clock was introduced into Great Britain in 1927, following the setting up of a grid system by the Electricity Commission.
    [br]
    Principal Honours and Distinctions
    Franklin Institute John Price Wetherill Medal. American Institute of Electrical Engineers Lamme Medal.
    Bibliography
    The patents for the synchronous motor are US patent nos. 1,283,432, 1,283,433 and 1,283,435, and those for the master clock are 1,283,431, 1,409,502 and 1,502,493 of 29 October 1918 onwards.
    1919, "Utilising the time characteristics of alternating current", Transactions of the American Institute of Electrical Engineers 38:767–81 (Warren's first description of his system).
    Further Reading
    J.M.Anderson, 1991, "Henry Ellis Warren and his master clocks", National Association of Watch and Clock Collectors Bulletin 33:375–95 (provides biographical and technical details).
    DV

    Biographical history of technology > Warren, Henry Ellis

  • 9 Kompfner, Rudolph

    [br]
    b. 16 May 1909 Vienna, Austria
    d. 3 December 1977 Stanford, California, USA
    [br]
    Austrian (naturalized English in 1949, American in 1957) electrical engineer primarily known for his invention of the travelling-wave tube.
    [br]
    Kompfner obtained a degree in engineering from the Vienna Technische Hochschule in 1931 and qualified as a Diplom-Ingenieur in Architecture two years later. The following year, with a worsening political situation in Austria, he moved to England and became an architectural apprentice. In 1936 he became Managing Director of a building firm owned by a relative, but at the same time he was avidly studying physics and electronics. His first patent, for a television pick-up device, was filed in 1935 and granted in 1937, but was not in fact taken up. In June 1940 he was interned on the Isle of Man, but as a result of a paper previously sent by him to the Editor of Wireless Engineer he was released the following December and sent to join the group at Birmingham University working on centimetric radar. There he worked on klystrons, with little success, but as a result of the experience gained he eventually invented the travelling-wave tube (TWT), which was based on a helical transmission line. After disbandment of the Birmingham team, in 1946 Kompfner moved to the Clarendon Laboratory at Oxford and in 1947 he became a British subject. At the Clarendon Laboratory he met J.R. Pierce of Bell Laboratories, who worked out the theory of operation of the TWT. After gaining his DPhil at Oxford in 1951, Kompfner accepted a post as Principal Scientific Officer at Signals Electronic Research Laboratories, Baldock, but very soon after that he was invited by Pierce to work at Bell on microwave tubes. There, in 1952, he invented the backward-wave oscillator (BWO). He was appointed Director of Electronics Research in 1955 and Director of Communications Research in 1962, having become a US citizen in 1957. In 1958, with Pierce, he designed Echo 1, the first (passive) satellite, which was launched in August 1960. He was also involved with the development of Telstar, the first active communications satellite, which was launched in 1962. Following his retirement from Bell in 1973, he continued to pursue research, alternately at Stanford, California, and Oxford, England.
    [br]
    Principal Honours and Distinctions
    Physical Society Duddell Medal 1955. Franklin Institute Stuart Ballantine Medal 1960. Institute of Electrical and Electronics Engineers David Sarnoff Award 1960. Member of the National Academy of Engineering 1966. Member of the National Academy of Science 1968. Institute of Electrical and Electronics Engineers Medal of Honour 1973. City of Philadelphia John Scott Award 1974. Roentgen Society Silvanus Thompson Medal 1974. President's National medal of Science 1974. Honorary doctorates Vienna 1965, Oxford 1969.
    Bibliography
    1944, "Velocity modulated beams", Wireless Engineer 17:262.
    1942, "Transit time phenomena in electronic tubes", Wireless Engineer 19:3. 1942, "Velocity modulating grids", Wireless Engineer 19:158.
    1946, "The travelling-wave tube", Wireless Engineer 42:369.
    1964, The Invention of the TWT, San Francisco: San Francisco Press.
    Further Reading
    J.R.Pierce, 1992, "History of the microwave tube art", Proceedings of the Institute of Radio Engineers: 980.
    KF

    Biographical history of technology > Kompfner, Rudolph

  • 10 Schawlow, Arthur Leonard

    [br]
    b. 5 May 1921 Mount Vernon, New York, USA
    [br]
    American physicist involved in laser-spectroscopy research.
    [br]
    When Arthur L.Schawlow was 3 years old his family moved to Canada: it was in Toronto that he received his education, graduating from the University of Toronto with a BA in physics in 1941. He was awarded an MA in 1942, taught classes for military personnel at the University until 1944 and worked for a year on radar equipment. He returned to the University of Toronto in 1945 to carry out research on optical spectroscopy and received his PhD in 1949. From 1949 to 1951 he held a postgraduate fellowship at Columbia University, where he worked with Charles H. Townes on microwave spectroscopy. From 1951 to 1961 he was a research physicist at the Bell Telephone Laboratories, working mainly on superconductivity, but he maintained his association with Townes, who had pioneered the maser (an acronym of microwave amplification by stimulated emission of radiation). In a paper published in Physical Review in December 1958, Townes and Schawlow suggested the possibility of a development into optical frequencies or an optical maser, later known as a laser (an acronym of light amplification by stimulated emission of radiation). In 1960 the first such device was made by Theodore H. Maiman. In 1960 Schawlow returned to Columbia University as a visiting professor and in the following year was appointed Professor of Physics at Stanford University, where he continued his researches in laser spectroscopy. He is a member of the National Academy of Sciences, the American Physical Society, the Optical Society of America and the Institute of Electrical and Electronic Engineers.
    [br]
    Principal Honours and Distinctions
    Nobel Prize for Physics 1981. Franklin Institute Stuart Ballantine Medal 1962. Institute of Physics of London Thomas Young Medal and Prize 1963. Institute of Electrical and Electronics Engineers Morris N.Liebmann Memorial Prize 1964. Optical Society of America Frederick Ives Medal 1976. Honorary degrees from the State University of Ghent, the University of Bradford and the University of Toronto.
    Bibliography
    Schawlow is the author of many scientific papers and, with Charles H.Townes, of
    Microwave Spectroscopy (1955).
    Further Reading
    T.Wasson (ed.), 1987, Nobel Prize Winners, New York, pp. 930–3 (contains a short biography).
    RTS

    Biographical history of technology > Schawlow, Arthur Leonard

  • 11 Watson-Watt, Sir Robert Alexander

    [br]
    b. 13 April 1892 Brechin, Angus, Scotland
    d. 6 December 1973 Inverness, Scotland
    [br]
    Scottish engineer and scientific adviser known for his work on radar.
    [br]
    Following education at Brechin High School, Watson-Watt entered University College, Dundee (then a part of the University of St Andrews), obtaining a BSc in engineering in 1912. From 1912 until 1921 he was Assistant to the Professor of Natural Philosophy at St Andrews, but during the First World War he also held various posts in the Meteorological Office. During. this time, in 1916 he proposed the use of cathode ray oscillographs for radio-direction-finding displays. He joined the newly formed Radio Research Station at Slough when it was opened in 1924, and 3 years later, when it amalgamated with the Radio Section of the National Physical Laboratory, he became Superintendent at Slough. At this time he proposed the name "ionosphere" for the ionized layer in the upper atmosphere. With E.V. Appleton and J.F.Herd he developed the "squegger" hard-valve transformer-coupled timebase and with the latter devised a direction-finding radio-goniometer.
    In 1933 he was asked to investigate possible aircraft counter-measures. He soon showed that it was impossible to make the wished-for radio "death-ray", but had the idea of using the detection of reflected radio-waves as a means of monitoring the approach of enemy aircraft. With six assistants he developed this idea and constructed an experimental system of radar (RAdio Detection And Ranging) in which arrays of aerials were used to detect the reflected signals and deduce the bearing and height. To realize a practical system, in September 1936 he was appointed Director of the Bawdsey Research Station near Felixstowe and carried out operational studies of radar. The result was that within two years the East Coast of the British Isles was equipped with a network of radar transmitters and receivers working in the 7–14 metre band—the so-called "chain-home" system—which did so much to assist the efficient deployment of RAF Fighter Command against German bombing raids on Britain in the early years of the Second World War.
    In 1938 he moved to the Air Ministry as Director of Communications Development, becoming Scientific Adviser to the Air Ministry and Ministry of Aircraft Production in 1940, then Deputy Chairman of the War Cabinet Radio Board in 1943. After the war he set up Sir Robert Watson-Watt \& Partners, an industrial consultant firm. He then spent some years in relative retirement in Canada, but returned to Scotland before his death.
    [br]
    Principal Honours and Distinctions
    Knighted 1942. CBE 1941. FRS 1941. US Medal of Merit 1946. Royal Society Hughes Medal 1948. Franklin Institute Elliot Cresson Medal 1957. LLD St Andrews 1943. At various times: President, Royal Meteorological Society, Institute of Navigation and Institute of Professional Civil Servants; Vice-President, American Institute of Radio Engineers.
    Bibliography
    1923, with E.V.Appleton \& J.F.Herd, British patent no. 235,254 (for the "squegger"). 1926, with J.F.Herd, "An instantaneous direction reading radio goniometer", Journal of
    the Institution of Electrical Engineers 64:611.
    1933, The Cathode Ray Oscillograph in Radio Research.
    1935, Through the Weather Hours (autobiography).
    1936, "Polarisation errors in direction finders", Wireless Engineer 13:3. 1958, Three Steps to Victory.
    1959, The Pulse of Radar.
    1961, Man's Means to his End.
    Further Reading
    S.S.Swords, 1986, Technical History of the Beginnings of Radar, Stevenage: Peter Peregrinus.
    KF

    Biographical history of technology > Watson-Watt, Sir Robert Alexander

  • 12 Holtzapffel, John Jacob

    [br]
    b. June 1836 London, England
    d. 14 October 1897 Eastbourne, Sussex, England
    [br]
    English mechanical engineer and author of several volumes of Turning and Mechanical Manipulation.
    [br]
    John Jacob Holtzapffel was the second son of Charles Holtzapffel and was educated at King's College School, London, and at Cromwell House, Highgate. Following the death of his father in 1847 and of his elder brother, Charles, at the age of 10, he was called on at an early age to take part in the business of lathe-making and turning founded by his grandfather. He made many improvements to the lathe for ornamental turning, but he is now remembered chiefly for the continuation of his father's publication Turning and Mechanical Manipulation. J.J. Holtzapffel produced the fourth volume, on Plain Turning, in 1879, and the fifth, on Ornamental Turning, in 1884. In 1894 he revised and enlarged the third volume, but the intended sixth volume was never completed. J.J.Holtzapffel was admitted to the Turners' Company of London in 1862 and became Master in 1879. He was associated with the establishment of the Turners' Competition to encourage the art of turning and was one of the judges for many years. He was also an examiner for the City and Guilds of London Institute and the British Horological Institute. He was a member of the Society of Arts and a corresponding member of the Franklin Institute of Philadelphia. He was elected an Associate of the Institution of Civil Engineers in 1863 and became an Associate Member after reorganization of the classes of membership in 1878.
    [br]
    Principal Honours and Distinctions
    Master, Turners' Company of London 1879.
    Bibliography
    1879, Turning and Mechanical Manipulation, Vol. IV: Plain Turning, London; 1884, Vol. V: The Principles and Practice of Ornamental or Complex Turning, London; reprinted 1894; reprinted 1973, New York.
    RTS

    Biographical history of technology > Holtzapffel, John Jacob

  • 13 Noyce, Robert

    [br]
    b. 12 December 1927 Burlington, Iowa, USA
    [br]
    American engineer responsible for the development of integrated circuits and the microprocessor chip.
    [br]
    Noyce was the son of a Congregational minister whose family, after a number of moves, finally settled in Grinnell, some 50 miles (80 km) east of Des Moines, Iowa. Encouraged to follow his interest in science, in his teens he worked as a baby-sitter and mower of lawns to earn money for his hobby. One of his clients was Professor of Physics at Grinnell College, where Noyce enrolled to study mathematics and physics and eventually gained a top-grade BA. It was while there that he learned of the invention of the transistor by the team at Bell Laboratories, which included John Bardeen, a former fellow student of his professor. After taking a PhD in physical electronics at the Massachusetts Institute of Technology in 1953, he joined the Philco Corporation in Philadelphia to work on the development of transistors. Then in January 1956 he accepted an invitation from William Shockley, another of the Bell transistor team, to join the newly formed Shockley Transistor Company, the first electronic firm to set up shop in Palo Alto, California, in what later became known as "Silicon Valley".
    From the start things at the company did not go well and eventually Noyce and Gordon Moore and six colleagues decided to offer themselves as a complete development team; with the aid of the Fairchild Camera and Instrument Company, the Fairchild Semiconductor Corporation was born. It was there that in 1958, contemporaneously with Jack K. Wilby at Texas Instruments, Noyce had the idea for monolithic integration of transistor circuits. Eventually, after extended patent litigation involving study of laboratory notebooks and careful examination of the original claims, priority was assigned to Noyce. The invention was most timely. The Apollo Moon-landing programme announced by President Kennedy in May 1961 called for lightweight sophisticated navigation and control computer systems, which could only be met by the rapid development of the new technology, and Fairchild was well placed to deliver the micrologic chips required by NASA.
    In 1968 the founders sold Fairchild Semicon-ductors to the parent company. Noyce and Moore promptly found new backers and set up the Intel Corporation, primarily to make high-density memory chips. The first product was a 1,024-bit random access memory (1 K RAM) and by 1973 sales had reached $60 million. However, Noyce and Moore had already realized that it was possible to make a complete microcomputer by putting all the logic needed to go with the memory chip(s) on a single integrated circuit (1C) chip in the form of a general purpose central processing unit (CPU). By 1971 they had produced the Intel 4004 microprocessor, which sold for US$200, and within a year the 8008 followed. The personal computer (PC) revolution had begun! Noyce eventually left Intel, but he remained active in microchip technology and subsequently founded Sematech Inc.
    [br]
    Principal Honours and Distinctions
    Franklin Institute Stuart Ballantine Medal 1966. National Academy of Engineering 1969. National Academy of Science. Institute of Electrical and Electronics Engineers Medal of Honour 1978; Cledo Brunetti Award (jointly with Kilby) 1978. Institution of Electrical Engineers Faraday Medal 1979. National Medal of Science 1979. National Medal of Engineering 1987.
    Bibliography
    1955, "Base-widening punch-through", Proceedings of the American Physical Society.
    30 July 1959, US patent no. 2,981,877.
    Further Reading
    T.R.Reid, 1985, Microchip: The Story of a Revolution and the Men Who Made It, London: Pan Books.
    KF

    Biographical history of technology > Noyce, Robert

  • 14 Nyquist, Harry

    [br]
    b. 7 February 1889 Nilsby, Sweden
    d. 4 April 1976 Texas, USA
    [br]
    Swedish-American engineer who established the formula for thermal noise in electrical circuits and the stability criterion for feedback amplifiers.
    [br]
    Nyquist (original family name Nykvist) emigrated from Sweden to the USA when he was 18 years old and settled in Minnesota. After teaching for a time, he studied electrical engineering at the University of North Dakota, gaining his first and Master's degrees in 1915 and 1916, and his PhD from Yale in 1917. He then joined the American Telegraph \& Telephone Company, moving to its Bell Laboratories in 1934 and remaining there until his retirement in 1954. A prolific inventor, he made many contributions to communication engineering, including the invention of vestigial-side band transmission. In the late 1920s he analysed the behaviour of analogue and digital signals in communication circuits, and in 1928 he showed that the thermal noise per unit bandwidth is given by 4 kT, where k is Boltzmann's constant and T the absolute temperature. However, he is best known for the Nyquist Criterion, which defines the conditions necessary for the stable, oscillation-free operation of amplifiers with a closed feedback loop. The problem of how to realize these conditions was investigated by his colleague Hendrik Bode.
    [br]
    Principal Honours and Distinctions
    Franklin Institute Medal 1960. Institute of Electrical and Electronics Engineers Medal of Honour 1960; Mervin J.Kelly Award 1961.
    Bibliography
    1924, "Certain factors affecting telegraph speed", Bell System Technical Journal 3:324. 1928, "Certain topics in telegraph transmission theory", Transactions of the American
    Institute of Electrical Engineers 47:617.
    1928, "Thermal agitation of electric charge in conductors", Physical Review 32:110. 1932, "Regeneration theory", Bell System Technical Journal 11:126.
    1940, with K.Pfleger, "Effect of the quadrature component in single-sideband transmission", Bell System Technical Journal 19:63.
    Further Reading
    Bell Telephone Laboratories, 1975, Mission Communications.
    KF

    Biographical history of technology > Nyquist, Harry

  • 15 Varian, Russell Harrison

    [br]
    b. 24 April 1898 Washington, DC, USA
    d. 28 July 1959 Juneau, Alaska, USA
    [br]
    American physicist who, with his brother Sigurd Varian and others, developed the klystron.
    [br]
    After attending schools in Palo Alto and Halcyon, Russell Varian went to Stanford University, gaining his BA in 1925 and his MA in 1927 despite illness and being dyslexic. His family being in need of financial help, he first worked for six months for Bush Electric in San Francisco and then for an oil company in Texas, returning to San Francisco in 1930 to join Farnsworth's Television Laboratory. After a move to Philadelphia, in 1933 the laboratory closed and Russell tried to take up a PhD course at Stanford but was rejected, so he trained as a teacher. However, although he did some teaching at Stanford it was not to be his career, for in 1935 he joined his brothers Sigurd and Eric in the setting up of a home laboratory.
    There, with William Hansen, a former colleague of Russell's at Stanford, they worked on the development of microwave oscillators, based on some of the latter's ideas. By 1937 they had made sufficient progress on an electron velocity-bunching tube, which they called the klystron, to obtain an agreement with the university to provide laboratory facilities in return for a share of any proceeds. By August that year they were able to produce continuous power at a wavelength of 13 cm. Clearly needing greater resources to develop and manufacture the tube, and with a possible war looming, a deal was struck with the Sperry Gyroscope Company to finance the work, which was transferred to the East Coast.
    In 1946, after the death of his first wife, Russell returned to Palo Alto, and in 1948 the brothers and Hansen founded Varian Associates to make microwave tubes for transmitters and linear accelerators and nuclear magnetic-resonance detectors. Subsequent research also resulted in the development of a satellite-borne magnetometer for measuring the earth's magnetic field.
    [br]
    Principal Honours and Distinctions
    Honorary DSc Brooklyn Polytechnic Institute 1943. Franklin Institute Medal.
    Bibliography
    1939, with S.F.Varian, "High frequency oscillator and amplifier", Journal of Applied Physics 10:321 (describes the klystron).
    Further Reading
    J.R.Pierce, 1962, "History of the microwave tube art", Proceedings of the Institute of Radio Engineers 979 (provides background to development of the klystron).
    D.Varian, 1983, The Inventor and the Pilot (biographies of the brothers).
    KF

    Biographical history of technology > Varian, Russell Harrison

  • 16 Weston, Edward

    SUBJECT AREA: Electricity
    [br]
    b. 9 May 1850 Oswestry, England
    d. 20 August 1936 Montclair, New Jersey, USA
    [br]
    English (naturalized American) inventor noted for his contribution to the technology of electrical measurements.
    [br]
    Although he developed dynamos for electroplating and lighting, Weston's major contribution to technology was his invention of a moving-coil voltmeter and the standard cell which bears his name. After some years as a medical student, during which he gained a knowledge of chemistry, he abandoned his studies. Emigrating to New York in 1870, he was employed by a manufacturer of photographic chemicals. There followed a period with an electroplating company during which he built his first dynamo. In 1877 some business associates financed a company to build these machines and, later, arc-lighting equipment. By 1882 the Weston Company had been absorbed into the United States Electric Lighting Company, which had a counterpart in Britain, the Maxim Weston Company. By the time Weston resigned from the company, in 1886, he had been granted 186 patents. He then began the work in which he made his greatest contribution, the science of electrical measurement.
    The Weston meter, the first successful portable measuring instrument with a pivoted coil, was made in 1886. By careful arrangement of the magnet, coil and control springs, he achieved a design with a well-damped movement, which retained its calibration. These instruments were produced commercially on a large scale and the moving-coil principle was soon adopted by many manufacturers. In 1892 he invented manganin, an alloy with a small negative temperature coefficient, for use as resistances in his voltmeters.
    The Weston standard cell was invented in 1892. Using his chemical knowledge he produced a cell, based on mercury and cadmium, which replaced the Clark cell as a voltage reference source. The Weston cell became the recognized standard at the International Conference on Electrical Units and Standards held in London in 1908.
    [br]
    Principal Honours and Distinctions
    President, AIEE 1888–9. Franklin Institute Elliott Cresson Medal 1910, Franklin medal 1924.
    Bibliography
    29 April 1890, British patent no. 6,569 (the Weston moving-coil instrument). 6 February 1892, British patent no. 22,482 (the Weston standard cell).
    Further Reading
    D.O.Woodbury, 1949, A Measure of Greatness. A Short Biography of Edward Weston, New York (a detailed account).
    C.N.Brown, 1988, in Proceedings of the Meeting on the History of Electrical Engineering, IEE, 17–21 (describes Weston's meter).
    H.C.Passer, 1953, The Electrical Manufacturers: 1875–1900, Cambridge, Mass.
    GW

    Biographical history of technology > Weston, Edward

  • 17 Boot, Henry Albert Howard

    [br]
    b. 29 July 1917 Birmingham, England
    d. 8 February 1983 Cambridge, England
    [br]
    English physicist who, with John Randall, invented the cavity magnetron used in radar systems.
    [br]
    After secondary education at King Edward School, Birmingham, Boot studied physics at Birmingham University, obtaining his BSc in 1938 and PhD in 1941. With the outbreak of the Second World War, he became involved with Randall and others in the development of a source of microwave power suitable for use in radar transmitters. Following unsuccessful attempts to use klystrons, they turned to investigation of the magnetron, and by adding cavity resonators they obtained useful power on 21 February 1940 at a wavelength of 9.8 cm. By May a cavity magnetron radar system had been constructed at TRE, Swanage, and in September submarine periscopes were detected at a range of 7 miles (11 km).
    In 1943 the physics department at Birmingham resumed its research in atomic physics and Boot moved to BTH at Rugby to continue development of magnetrons, but in 1945 he returned to Birmingham as Nuffield Research Fellow and helped construct the cyclotron there. Three years later he took up a post as a Principal Scientific Officer (PSO) at the Services Electronic Research Laboratories at Baldock, Hertfordshire, becoming a Senior PSO in 1954. He remained there until his retirement in 1977, variously carrying out research on microwaves, magnetrons, plasma physics and lasers.
    [br]
    Principal Honours and Distinctions
    Royal Society of Arts Thomas Gray Memorial Prize 1943. Royal Commission Inventors Award 1946. Franklin Institute John Price Wetherill Medal 1958. City of Pennsylvania John Scott Award 1959. (All jointly with Randall.)
    Bibliography
    1976, with J.T.Randall, "Historical notes on the cavity magnetron", Transactions of the Institute of Electrical and Electronics Engineers ED-23: 724 (provides an account of their development of the cavity magnetron).
    Further Reading
    E.H.Dix and W.H.Aldous, 1966, Microwave Valves.
    KF

    Biographical history of technology > Boot, Henry Albert Howard

  • 18 Clarke, Arthur Charles

    [br]
    b. 16 December 1917 Minehead, Somerset, England
    [br]
    English writer of science fiction who correctly predicted the use of geo-stationary earth satellites for worldwide communications.
    [br]
    Whilst still at Huish's Grammar School, Taunton, Clarke became interested in both space science and science fiction. Unable to afford a scientific education at the time (he later obtained a BSc at King's College, London), he pursued both interests in his spare time while working in the Government Exchequer and Audit Department between 1936 and 1941. He was a founder member of the British Interplanetary Society, subsequently serving as its Chairman in 1946–7 and 1950–3. From 1941 to 1945 he served in the Royal Air Force, becoming a technical officer in the first GCA (Ground Controlled Approach) radar unit. There he began to produce the first of many science-fiction stories. In 1949–50 he was an assistant editor of Science Abstracts at the Institution of Electrical Engineers.
    As a result of his two interests, he realized during the Second World War that an artificial earth satellite in an equatorial orbital with a radius of 35,000 km (22,000 miles) would appear to be stationary, and that three such geo-stationary, or synchronous, satellites could be used for worldwide broadcast or communications. He described these ideas in a paper published in Wireless World in 1945. Initially there was little response, but within a few years the idea was taken up by the US National Aeronautics and Space Administration and in 1965 the first synchronous satellite, Early Bird, was launched into orbit.
    In the 1950s he moved to Ceylon (now Sri Lanka) to pursue an interest in underwater exploration, but he continued to write science fiction, being known in particular for his contribution to the making of the classic Stanley Kubrick science-fiction film 2001: A Space Odyssey, based on his book of the same title.
    [br]
    Principal Honours and Distinctions
    Clarke received many honours for both his scientific and science-fiction writings. For his satellite communication ideas his awards include the Franklin Institute Gold Medal 1963 and Honorary Fellowship of the American Institute of Aeronautics and Astronautics 1976. For his science-fiction writing he received the UNESCO Kalinga Prize (1961) and many others. In 1979 he became Chancellor of Moratuwa University in Sri Lanka and in 1980 Vikran Scrabhai Professor at the Physical Research Laboratory of the University of Ahmedabad.
    Bibliography
    1945. "Extra-terrestrial relays: can rocket stations give world wide coverage?", Wireless World L1: 305 (puts forward his ideas for geo-stationary communication satellites).
    1946. "Astronomical radar: some future possibilities", Wireless World 52:321.
    1948, "Electronics and space flight", Journal of the British Interplanetary Society 7:49. Other publications, mainly science-fiction novels, include: 1955, Earthlight, 1956, The
    Coast of Coral; 1958, Voice Across the Sea; 1961, Fall of Moondust; 1965, Voices
    from the Sky, 1977, The View from Serendip; 1979, Fountain of Paradise; 1984, Ascent to Orbit: A Scientific Autobiography, and 1984, 2010: Odyssey Two (a sequel to 2001: A Space Odyssey that was also made into a film).
    Further Reading
    1986, Encyclopaedia Britannica.
    1991, Who's Who, London: A. \& C.Black.
    KF

    Biographical history of technology > Clarke, Arthur Charles

  • 19 Farnsworth, Philo Taylor

    [br]
    b. 19 August 1906 Beaver, Utah, USA
    d. 11 March 1971 Salt Lake City, Utah, USA
    [br]
    American engineer and independent inventor who was a pioneer in the development of television.
    [br]
    Whilst still in high school, Farnsworth became interested in the possibility of television and conceived many of the basic features of a practicable system of TV broadcast and reception. Following two years of study at the Brigham Young University in Provo, Utah, in 1926 he cofounded the Crocker Research Laboratories in San Francisco, subsequently Farnsworth Television Inc. (1929) and Farnsworth Radio \& Television Corporation, Fort Wayne, Indiana (1938). There he began a lifetime of research, primarily in the field of television. In 1927, with the backing of the Radio Corporation of America (RCA) and the collaboration of Vladimir Zworykin, he demonstrated the first all-electronic television system, based on his early ideas for an image dissector tube, the first electronic equivalent of the Nipkow disc. With this rudimentary sixty-line system he was able to transmit a recognizable dollar sign and file the first of many TV patents. From then on he contributed to a variety of developments in the fields of vacuum tubes, radar and atomic-power generation, with patents on cathode ray tubes, amplifying and pick-up tubes, electron multipliers and photoelectric materials.
    [br]
    Principal Honours and Distinctions
    Institute of Radio Engineers Morris Leibmann Memorial Prize 1941.
    Bibliography
    1930, British patent nos. 368,309 and 368,721 (for his image dissector).
    1934, "Television by electron image scanning", Journal of the Franklin Institute 218:411 (describes the complete image-dissector system).
    Further Reading
    J.H.Udelson, 1982, The Great Television Race: A History of the American Television Industry 1925–1941, University of Alabama Press.
    O.E.Dunlop Jr, 1944, Radio's 100 Men of Science.
    G.R.M.Garratt \& A.H.Mumford, 1952, "The history of television", Proceedings of the Institution of Electrical Engineers III A Television 99.
    KF

    Biographical history of technology > Farnsworth, Philo Taylor

  • 20 Kao, Charles Kuen

    [br]
    b. 4 November 1933 Shanghai, China
    [br]
    Chinese electrical engineer whose work on optical fibres did much to make optical communications a practical reality.
    [br]
    After the Second World War, Kao moved with his family to Hong Kong, where he went to St Joseph's College. To further his education he then moved to England, taking his "A" Levels at Woolwich Polytechnic. In 1957 he gained a BSc in electrical engineering and then joined Standard Telephones and Cables Laboratory (STL) at Harlow. Following the discovery by others in 1960 of the semiconductor laser, from 1963 Kao worked on the problems of optical communications, in particular that of achieving attenuation in optical cables low enough to make this potentially very high channel capacity form of communication a practical proposition; this problem was solved by suitable cladding of the fibres. In the process he obtained his PhD from University College, London, in 1965. From 1970 until 1974, whilst on leave from STL, he was Professor of Electronics and Department Chairman at the Chinese University of Hong Kong, then in 1982–7 he was Chief Scientist and Director of Engineering with the parent company ITT in the USA. Since 1988 he has been Vice-Chancellor of Hong Kong University.
    [br]
    Principal Honours and Distinctions
    Franklin Institute Stuart Ballantine Medal 1977. Institute of Electrical and Electronic Engineers Morris N.Liebmann Memorial Prize 1978; L.M.Ericsson Prize 1979. Institution of Electrical Engineers A.G.Bell Medal 1985; Faraday Medal 1989. American Physical Society International Prize for New Materials 1989.
    Bibliography
    1966, with G.A.Hockham, "Dielectric fibre surface waveguides for optical frequencies", Proceedings of the Institution of Electrical Engineers 113:1,151 (describes the major step in optical-fibre development).
    1982, Optical Fibre Systems. Technology, Design \& Application, New York: McGraw- Hill.
    1988, Optical Fibre, London: Peter Peregrinus.
    Further Reading
    W.B.Jones, 1988, Introduction to Optical Fibre Communications: R\&W Holt.
    KF

    Biographical history of technology > Kao, Charles Kuen

См. также в других словарях:

  • Franklin Institute — This article is about the science museum in Philadelphia. For the Boston school, see Benjamin Franklin Institute of Technology. Founded in honor of Benjamin Franklin, The Franklin Institute is a museum in Philadelphia, Pennsylvania, and one of… …   Wikipedia

  • Franklin Institute — The Franklin Institute Hauptgebäude Daten Ort Philadelphia im US Bundesstaat Pennsylvania Art …   Deutsch Wikipedia

  • Franklin Institute — ▪ science and technology institution, Philadelphia, Pennsylvania, United States       in Philadelphia, Pennsylvania, U.S., one of the foremost American science and technology centres. Founded in 1824, the institute embraces the Franklin Institute …   Universalium

  • Franklin Institute — Le Franklin Institute Fondé en l honneur de Benjamin Franklin, le Franklin Institute est l un des plus anciens centre pour la promotion des sciences aux Etats Unis. Il abrite également le Benjamin Franklin National Memorial. Il fut fondé en 1824… …   Wikipédia en Français

  • Benjamin Franklin Medal (Franklin Institute) — Benjamin Franklin Medaille Die Benjamin Franklin Medal ist eine hoch dotierte Auszeichnung in den Bereichen Wissenschaft und Technologie, die vom amerikanischen Franklin Institute in Philadelphia, USA, vergeben wird. Inhaltsverzeichnis 1… …   Deutsch Wikipedia

  • Benjamin Franklin Institute of Technology — The Benjamin Franklin Institute of Technology (BFIT) in Boston, Massachusetts is one of New England s oldest colleges of engineering and technologies. The college was established with funds bequethed in Benjamin Franklin s will.HistoryBFIT owes… …   Wikipedia

  • Franklin — often refers to Benjamin Franklin, a Founding Father of the United States. It may also refer to: Franklin (given name) Franklin (surname) Contents 1 Entertainment 2 Places …   Wikipedia

  • Franklin — ist ein englischer Familien und Vorname, siehe Franklin (Name) – dort auch zu Namensträgern die CGS Einheit für die elektrische Ladung, siehe Franklin (Einheit) der Name zweier Inseln, siehe Franklin Insel der Fluss Franklin River in… …   Deutsch Wikipedia

  • Franklin High School (Tennessee) — Infobox School name=Franklin High School (Tennessee) established= 1910 principal= Willie Dickerson enrollment= 1856 type=Public location= 810 Hillsboro Rd Franklin, TN 37064 Williamson County information= (615) 794 3736 website=… …   Wikipedia

  • Franklin Medal — Médaille Franklin La Médaille Franklin est une distinction scientifique décernée par l Institut Franklin en l honneur de Benjamin Franklin. Elle récompense des personnes dont les travaux sont utiles à l humanité, ont fait progresser la science,… …   Wikipédia en Français

  • Franklin G. Reick — (born 1930) is an inventor, industrial engineer, and entrepreneur from New Jersey, who has secured his place at the forefront of lubrication technology in the United States and abroad for more than five decades. Reick founded Fluoramics Inc., [… …   Wikipedia

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»