-
1 form description program
Dictionary English-German Informatics > form description program
-
2 FDP
-
3 Artificial Intelligence
In my opinion, none of [these programs] does even remote justice to the complexity of human mental processes. Unlike men, "artificially intelligent" programs tend to be single minded, undistractable, and unemotional. (Neisser, 1967, p. 9)Future progress in [artificial intelligence] will depend on the development of both practical and theoretical knowledge.... As regards theoretical knowledge, some have sought a unified theory of artificial intelligence. My view is that artificial intelligence is (or soon will be) an engineering discipline since its primary goal is to build things. (Nilsson, 1971, pp. vii-viii)Most workers in AI [artificial intelligence] research and in related fields confess to a pronounced feeling of disappointment in what has been achieved in the last 25 years. Workers entered the field around 1950, and even around 1960, with high hopes that are very far from being realized in 1972. In no part of the field have the discoveries made so far produced the major impact that was then promised.... In the meantime, claims and predictions regarding the potential results of AI research had been publicized which went even farther than the expectations of the majority of workers in the field, whose embarrassments have been added to by the lamentable failure of such inflated predictions....When able and respected scientists write in letters to the present author that AI, the major goal of computing science, represents "another step in the general process of evolution"; that possibilities in the 1980s include an all-purpose intelligence on a human-scale knowledge base; that awe-inspiring possibilities suggest themselves based on machine intelligence exceeding human intelligence by the year 2000 [one has the right to be skeptical]. (Lighthill, 1972, p. 17)4) Just as Astronomy Succeeded Astrology, the Discovery of Intellectual Processes in Machines Should Lead to a Science, EventuallyJust as astronomy succeeded astrology, following Kepler's discovery of planetary regularities, the discoveries of these many principles in empirical explorations on intellectual processes in machines should lead to a science, eventually. (Minsky & Papert, 1973, p. 11)5) Problems in Machine Intelligence Arise Because Things Obvious to Any Person Are Not Represented in the ProgramMany problems arise in experiments on machine intelligence because things obvious to any person are not represented in any program. One can pull with a string, but one cannot push with one.... Simple facts like these caused serious problems when Charniak attempted to extend Bobrow's "Student" program to more realistic applications, and they have not been faced up to until now. (Minsky & Papert, 1973, p. 77)What do we mean by [a symbolic] "description"? We do not mean to suggest that our descriptions must be made of strings of ordinary language words (although they might be). The simplest kind of description is a structure in which some features of a situation are represented by single ("primitive") symbols, and relations between those features are represented by other symbols-or by other features of the way the description is put together. (Minsky & Papert, 1973, p. 11)[AI is] the use of computer programs and programming techniques to cast light on the principles of intelligence in general and human thought in particular. (Boden, 1977, p. 5)The word you look for and hardly ever see in the early AI literature is the word knowledge. They didn't believe you have to know anything, you could always rework it all.... In fact 1967 is the turning point in my mind when there was enough feeling that the old ideas of general principles had to go.... I came up with an argument for what I called the primacy of expertise, and at the time I called the other guys the generalists. (Moses, quoted in McCorduck, 1979, pp. 228-229)9) Artificial Intelligence Is Psychology in a Particularly Pure and Abstract FormThe basic idea of cognitive science is that intelligent beings are semantic engines-in other words, automatic formal systems with interpretations under which they consistently make sense. We can now see why this includes psychology and artificial intelligence on a more or less equal footing: people and intelligent computers (if and when there are any) turn out to be merely different manifestations of the same underlying phenomenon. Moreover, with universal hardware, any semantic engine can in principle be formally imitated by a computer if only the right program can be found. And that will guarantee semantic imitation as well, since (given the appropriate formal behavior) the semantics is "taking care of itself" anyway. Thus we also see why, from this perspective, artificial intelligence can be regarded as psychology in a particularly pure and abstract form. The same fundamental structures are under investigation, but in AI, all the relevant parameters are under direct experimental control (in the programming), without any messy physiology or ethics to get in the way. (Haugeland, 1981b, p. 31)There are many different kinds of reasoning one might imagine:Formal reasoning involves the syntactic manipulation of data structures to deduce new ones following prespecified rules of inference. Mathematical logic is the archetypical formal representation. Procedural reasoning uses simulation to answer questions and solve problems. When we use a program to answer What is the sum of 3 and 4? it uses, or "runs," a procedural model of arithmetic. Reasoning by analogy seems to be a very natural mode of thought for humans but, so far, difficult to accomplish in AI programs. The idea is that when you ask the question Can robins fly? the system might reason that "robins are like sparrows, and I know that sparrows can fly, so robins probably can fly."Generalization and abstraction are also natural reasoning process for humans that are difficult to pin down well enough to implement in a program. If one knows that Robins have wings, that Sparrows have wings, and that Blue jays have wings, eventually one will believe that All birds have wings. This capability may be at the core of most human learning, but it has not yet become a useful technique in AI.... Meta- level reasoning is demonstrated by the way one answers the question What is Paul Newman's telephone number? You might reason that "if I knew Paul Newman's number, I would know that I knew it, because it is a notable fact." This involves using "knowledge about what you know," in particular, about the extent of your knowledge and about the importance of certain facts. Recent research in psychology and AI indicates that meta-level reasoning may play a central role in human cognitive processing. (Barr & Feigenbaum, 1981, pp. 146-147)Suffice it to say that programs already exist that can do things-or, at the very least, appear to be beginning to do things-which ill-informed critics have asserted a priori to be impossible. Examples include: perceiving in a holistic as opposed to an atomistic way; using language creatively; translating sensibly from one language to another by way of a language-neutral semantic representation; planning acts in a broad and sketchy fashion, the details being decided only in execution; distinguishing between different species of emotional reaction according to the psychological context of the subject. (Boden, 1981, p. 33)Can the synthesis of Man and Machine ever be stable, or will the purely organic component become such a hindrance that it has to be discarded? If this eventually happens-and I have... good reasons for thinking that it must-we have nothing to regret and certainly nothing to fear. (Clarke, 1984, p. 243)The thesis of GOFAI... is not that the processes underlying intelligence can be described symbolically... but that they are symbolic. (Haugeland, 1985, p. 113)14) Artificial Intelligence Provides a Useful Approach to Psychological and Psychiatric Theory FormationIt is all very well formulating psychological and psychiatric theories verbally but, when using natural language (even technical jargon), it is difficult to recognise when a theory is complete; oversights are all too easily made, gaps too readily left. This is a point which is generally recognised to be true and it is for precisely this reason that the behavioural sciences attempt to follow the natural sciences in using "classical" mathematics as a more rigorous descriptive language. However, it is an unfortunate fact that, with a few notable exceptions, there has been a marked lack of success in this application. It is my belief that a different approach-a different mathematics-is needed, and that AI provides just this approach. (Hand, quoted in Hand, 1985, pp. 6-7)We might distinguish among four kinds of AI.Research of this kind involves building and programming computers to perform tasks which, to paraphrase Marvin Minsky, would require intelligence if they were done by us. Researchers in nonpsychological AI make no claims whatsoever about the psychological realism of their programs or the devices they build, that is, about whether or not computers perform tasks as humans do.Research here is guided by the view that the computer is a useful tool in the study of mind. In particular, we can write computer programs or build devices that simulate alleged psychological processes in humans and then test our predictions about how the alleged processes work. We can weave these programs and devices together with other programs and devices that simulate different alleged mental processes and thereby test the degree to which the AI system as a whole simulates human mentality. According to weak psychological AI, working with computer models is a way of refining and testing hypotheses about processes that are allegedly realized in human minds.... According to this view, our minds are computers and therefore can be duplicated by other computers. Sherry Turkle writes that the "real ambition is of mythic proportions, making a general purpose intelligence, a mind." (Turkle, 1984, p. 240) The authors of a major text announce that "the ultimate goal of AI research is to build a person or, more humbly, an animal." (Charniak & McDermott, 1985, p. 7)Research in this field, like strong psychological AI, takes seriously the functionalist view that mentality can be realized in many different types of physical devices. Suprapsychological AI, however, accuses strong psychological AI of being chauvinisticof being only interested in human intelligence! Suprapsychological AI claims to be interested in all the conceivable ways intelligence can be realized. (Flanagan, 1991, pp. 241-242)16) Determination of Relevance of Rules in Particular ContextsEven if the [rules] were stored in a context-free form the computer still couldn't use them. To do that the computer requires rules enabling it to draw on just those [ rules] which are relevant in each particular context. Determination of relevance will have to be based on further facts and rules, but the question will again arise as to which facts and rules are relevant for making each particular determination. One could always invoke further facts and rules to answer this question, but of course these must be only the relevant ones. And so it goes. It seems that AI workers will never be able to get started here unless they can settle the problem of relevance beforehand by cataloguing types of context and listing just those facts which are relevant in each. (Dreyfus & Dreyfus, 1986, p. 80)Perhaps the single most important idea to artificial intelligence is that there is no fundamental difference between form and content, that meaning can be captured in a set of symbols such as a semantic net. (G. Johnson, 1986, p. 250)Artificial intelligence is based on the assumption that the mind can be described as some kind of formal system manipulating symbols that stand for things in the world. Thus it doesn't matter what the brain is made of, or what it uses for tokens in the great game of thinking. Using an equivalent set of tokens and rules, we can do thinking with a digital computer, just as we can play chess using cups, salt and pepper shakers, knives, forks, and spoons. Using the right software, one system (the mind) can be mapped into the other (the computer). (G. Johnson, 1986, p. 250)19) A Statement of the Primary and Secondary Purposes of Artificial IntelligenceThe primary goal of Artificial Intelligence is to make machines smarter.The secondary goals of Artificial Intelligence are to understand what intelligence is (the Nobel laureate purpose) and to make machines more useful (the entrepreneurial purpose). (Winston, 1987, p. 1)The theoretical ideas of older branches of engineering are captured in the language of mathematics. We contend that mathematical logic provides the basis for theory in AI. Although many computer scientists already count logic as fundamental to computer science in general, we put forward an even stronger form of the logic-is-important argument....AI deals mainly with the problem of representing and using declarative (as opposed to procedural) knowledge. Declarative knowledge is the kind that is expressed as sentences, and AI needs a language in which to state these sentences. Because the languages in which this knowledge usually is originally captured (natural languages such as English) are not suitable for computer representations, some other language with the appropriate properties must be used. It turns out, we think, that the appropriate properties include at least those that have been uppermost in the minds of logicians in their development of logical languages such as the predicate calculus. Thus, we think that any language for expressing knowledge in AI systems must be at least as expressive as the first-order predicate calculus. (Genesereth & Nilsson, 1987, p. viii)21) Perceptual Structures Can Be Represented as Lists of Elementary PropositionsIn artificial intelligence studies, perceptual structures are represented as assemblages of description lists, the elementary components of which are propositions asserting that certain relations hold among elements. (Chase & Simon, 1988, p. 490)Artificial intelligence (AI) is sometimes defined as the study of how to build and/or program computers to enable them to do the sorts of things that minds can do. Some of these things are commonly regarded as requiring intelligence: offering a medical diagnosis and/or prescription, giving legal or scientific advice, proving theorems in logic or mathematics. Others are not, because they can be done by all normal adults irrespective of educational background (and sometimes by non-human animals too), and typically involve no conscious control: seeing things in sunlight and shadows, finding a path through cluttered terrain, fitting pegs into holes, speaking one's own native tongue, and using one's common sense. Because it covers AI research dealing with both these classes of mental capacity, this definition is preferable to one describing AI as making computers do "things that would require intelligence if done by people." However, it presupposes that computers could do what minds can do, that they might really diagnose, advise, infer, and understand. One could avoid this problematic assumption (and also side-step questions about whether computers do things in the same way as we do) by defining AI instead as "the development of computers whose observable performance has features which in humans we would attribute to mental processes." This bland characterization would be acceptable to some AI workers, especially amongst those focusing on the production of technological tools for commercial purposes. But many others would favour a more controversial definition, seeing AI as the science of intelligence in general-or, more accurately, as the intellectual core of cognitive science. As such, its goal is to provide a systematic theory that can explain (and perhaps enable us to replicate) both the general categories of intentionality and the diverse psychological capacities grounded in them. (Boden, 1990b, pp. 1-2)Because the ability to store data somewhat corresponds to what we call memory in human beings, and because the ability to follow logical procedures somewhat corresponds to what we call reasoning in human beings, many members of the cult have concluded that what computers do somewhat corresponds to what we call thinking. It is no great difficulty to persuade the general public of that conclusion since computers process data very fast in small spaces well below the level of visibility; they do not look like other machines when they are at work. They seem to be running along as smoothly and silently as the brain does when it remembers and reasons and thinks. On the other hand, those who design and build computers know exactly how the machines are working down in the hidden depths of their semiconductors. Computers can be taken apart, scrutinized, and put back together. Their activities can be tracked, analyzed, measured, and thus clearly understood-which is far from possible with the brain. This gives rise to the tempting assumption on the part of the builders and designers that computers can tell us something about brains, indeed, that the computer can serve as a model of the mind, which then comes to be seen as some manner of information processing machine, and possibly not as good at the job as the machine. (Roszak, 1994, pp. xiv-xv)The inner workings of the human mind are far more intricate than the most complicated systems of modern technology. Researchers in the field of artificial intelligence have been attempting to develop programs that will enable computers to display intelligent behavior. Although this field has been an active one for more than thirty-five years and has had many notable successes, AI researchers still do not know how to create a program that matches human intelligence. No existing program can recall facts, solve problems, reason, learn, and process language with human facility. This lack of success has occurred not because computers are inferior to human brains but rather because we do not yet know in sufficient detail how intelligence is organized in the brain. (Anderson, 1995, p. 2)Historical dictionary of quotations in cognitive science > Artificial Intelligence
-
4 job
(a) (employment, post) travail m, emploi m;∎ to look for a job chercher du travail ou un emploi;∎ to lose one's job perdre son emploi;∎ to be out of a job être sans travail ou emploiAmerican job action action f revendicative;job advertisement offre f d'emploi;ADMINISTRATION job analysis analyse f des tâches;job application demande f d'emploi;job application form formulaire m de candidature;job assignment assignation f des tâches;job classification classification f des emplois;job creation création f d'emplois;job creation scheme programme m de création d'emplois;job description description f de poste;job enlargement élargissement m des tâches;job enrichment enrichissement m des tâches;job evaluation évaluation f des tâches;job hunter demandeur m d'emploi;job hunting recherche f d'un emploi;∎ to go/be job hunting aller/être à la recherche d'un emploi;job interview entretien m d'embauche;job losses suppressions f pl d'emploi;job market marché m de l'emploi;job offer offre d'emploi;job opportunities débouchés m pl, perspectives f pl d'emploi;job prospects perspectives de carrière;job protection protection f de l'emploi;job rotation rotation f des postes;job satisfaction satisfaction f professionnelle;∎ although the pay is quite low, there is a high level of job satisfaction bien que le salaire soit assez bas, c'est un poste qui procure une grande satisfaction;job security sécurité f d'emploi;∎ talks of a merger caused speculation about job security les rumeurs de fusion ont nourri les conjectures quant à la sécurité des emplois concernés;job seeker demandeur(euse) m, f d'emploi;job sharing partage m de poste;job specification description f de l'emploi;job title fonction f;job vacancy poste m à pourvoir(b) (piece of work, task) tâche f, travail m;∎ to do a job faire un travail∎ to buy sth as a job lot acheter qch en lot;∎ they sold off the surplus as a job lot ils ont vendu tout l'excédent en un seul lotProfessionals in this program also participate in ongoing job enrichment and professional development activities designed to increase competence and confidence and to provide a forum for group information sharing and problem solving.
sous-traiter;∎ they jobbed out the work to three different firms ils ont confié le travail à trois sous-traitants -
5 PIF
1) Компьютерная техника: Process Interchange Format, Programmable Initialization File2) Медицина: Pupil Intake Factor3) Военный термин: Processing and Interpretation Facility, Project Investment Fund, Provisions for Industrial Facilities, Punjab Irregular Force, personnel indentification feature, photographic interpretation facility, pilot's information file, point initiating fuze5) Сельское хозяйство: prolactin-inhibiting factor6) Бухгалтерия: Pay It Forward, Payment In Full7) Телевидение: picture intermediate frequency8) Сокращение: Paid In Full, Personal Identification Feature, Photo-Interpretation Facility, Pilotage en Force (Missile manoeuvrability, side force pyrotechnical control (France))9) Вычислительная техника: Parity Inner Failure (DVD)10) Иммунология: polymorphonuclear leukocyte inhibitory factor11) Дерматология: photo irritancy factor12) СМИ: Print Image Framer13) Деловая лексика: Product Information File, Production Investment And Financing14) Нефтепромысловый: эксплуатационное окно (Blade Energy Partners terminology), коэффициент повышения производительности (сокр. от Productivity Improvement Factor)15) Сетевые технологии: Peripheral Interface File16) Расширение файла: Picture Interchange Format File, Post Index Filename, Program Information File, Vector graphics GDF format (IBM mainframe computers), Graphics metafile (OS/2), OS/2 graphics metafile (PICVIEW.EXE), Program Information File (Windows 3.x), Windows run-style description file17) Нефть и газ: устройство внедрения в трубопровод, pipeline intervention frame18) Майкрософт: файл PIF19) NYSE. Insured Municipal Income Fund -
6 job
1. кадр. робота; праця; 2. посада; місце роботи (служби); 3. ком. замовлення; операція1. виконання певних обов'язків чи послуг або виготовлення яких-небудь товарів (goods) на якомусь підприємстві чи в організації, установі як джерело заробітку; 2. службовий обов'язок, службове місце; 3. специфічний план чи проект, який доручає кому-небудь виготовити якийсь товар або виконати завдання═════════■═════════blue-collar job робота робітника; bonus job відрядна робота; commercial job комерційне замовлення; component job окрема виробнича операція; contract job замовлення на виробництво продукції • замовлення на послуги • продукція, вироблена на замовлення; dummy job несправжня операція • фіктивна операція; extra job додаткова робота; full-time job робота на повний робочий день • робота на повній ставці • робота протягом повного робочого дня; high-paid job високооплатна робота; individual job окрема робота; key job основна робота; low-paid job низькооплатна робота; odd job випадкова робота • нерегулярна робота; off-season job несезонна робота; part-time job робота на неповний робочий день • робота на неповній ставці • робота на півставки; permanent job постійна робота; piecework job відрядна робота • акордна робота; restricted job регламентована робота; rush job термінова робота; temporary job тимчасова робота; unrestricted job нерегламентована робота; white-collar job робота службовця або інженерно-технічного працівника═════════□═════════job applicant особа, що подає заяву на роботу; job application form бланк для заяви на роботу; job card робочий наряд • облікова (калькуляційна) картка замовлень; job centre бюро працевлаштування; job change просування по службі; job classification класифікація робочих завдань • класифікація основних ставок заробітної плати; job costing; job cost system; job creation створення робочих місць; job creation program програма створення робочих місць; job creation scheme план створення робочих місць • програма створення робочих місць; job definition опис робочого завдання; job demand попит на робочі місця; job description опис робочого завдання; job design проектування роботи; job enlargement • укрупнення технологічних операцій • збільшення кількості робочих завдань • надання більшої важливості завданням, що виконуються; job enrichment підвищення різноманітності роботи; job estimate оцінка вартості роботи; job evaluation оцінка робочого завдання • оцінка складності роботи • визначення кваліфікації; job factor фактор роботи • характеристика роботи; job grading класифікація робочих завдань за складністю; job hunting гонитва за високооплачуваною роботою; job interview співбесіда з кандидатом на робоче місце; job migration міграція робочих місць • міграція виробництва; job offer пропозиція роботи; job opening відкриття вакансії; job order costing; job order costing system; job prospects перспективи на одержання роботи; job ranking method методика класифікації робочих завдань; — requirements вимоги до робочого завдання; job responsibilities посадові обов'язки; job retraining program програма перекваліфікації; job rotation ротація робіт • ротація робочих місць • ротація посад; job satisfaction задоволення роботою; job search пошук роботи; job security гарантія збереження робочого місця; job sharing розподіл робочих завдань • розподіл робочих годин; job title назва посади; to be out of a job бути без роботи; to carry out a job виконувати/виконати замовлення; to complete a job виконувати/виконати замовлення; to finish a job виконувати/виконати замовлення; to give a job давати/дати роботу; to give up a job відмовлятися/відмовитися від роботи; to have a job мати роботу; to look for a job шукати роботу; to lose a job втрачати/втратити роботу • бути звільненим з посади (роботи); to need a job потребувати роботи; to retire from a job залишати/залишити посаду (роботу) • іти/піти у відставку • іти/вийти на пенсіюjob:: position:: employment▹▹ employment -
7 object
объект, предмет, изображение объекта, конечный, выходной, объектный
– object approach
– object classification
– object data
– object description
– object file
– object form
– object identification
– object level control
– object presentation
– object program
– object region
– object structure
– object transfer
– object type
– object vertex
– object-centered coordinate frame
– object-level knowledge
– object-oriented programming language
– object-related misconception
-
8 cut
1. n порез; разрезcut set — разрез; сечение
2. n резаная рана3. n резаниеresultant cut surface — поверхность, обработанная резанием
4. n глубина резания5. n спец. разрез; пропил; выемка6. n спец. канал; кювет7. n спец. насечка8. n спец. сильный удар9. n спец. отрезанный кусок; вырезка; срезa cut from the joint — вырезка, филей
10. n спец. настриг11. n спец. отрез12. n спец. отрезок13. n спец. очертание, абрис, контур14. n спец. профиль15. n спец. покрой16. n спец. стрижка, фасон стрижкиcrew cut — мужская короткая стрижка «ёжик»
poodle cut — короткая женская стрижка «пудель»
17. n спец. сокращение, снижение; уменьшениеtax cut — сокращение налогов; уменьшение налоговых ставок
18. n спец. сокращение; вырезка части текста; купюраcut out — вырезать; делать вырезки
to cut down — отрезать, нарезать на части
19. n спец. путь напрямик, кратчайший путьto take a short cut — пойти кратчайшим оскорбление, выпад; насмешка; удар
to cut off a corner — срезать угол, пойти напрямик
20. n спец. разг. прекращение знакомства21. n спец. разг. пропускattendance was compulsory, and no cuts were allowed — посещение было обязательным, и никакие пропуски не разрешались
22. n спец. разг. доля23. n спец. разг. отдельный номер на долгоиграющей пластинке24. n проф. грамзапись25. n проф. сеанс грамзаписи26. n проф. гравюра на дереве27. n проф. карт. снятие28. n проф. кино монтажный кадр29. n проф. пролёт моста30. n проф. хим. погон, фракция31. n проф. захват32. n проф. ж. -д. отцеп33. n проф. горн. выруб34. n проф. эл. отключение нагрузки35. n проф. австрал. новозел. отделённая часть стада36. n проф. австрал. новозел. разг. телесное наказание37. n спорт. удар мяча на правую сторону поля38. n спорт. срезка мячаa cut and thrust — пикировка, оживлённый спор
39. a разрезанный; срезанный; порезанныйcut in strips — разрезать на полосы; разрезанный на полосы
40. a скроенный41. a шлифованный; гранёный42. a сниженный, уменьшенныйcut down — выторговать; убедить снизить цену
43. a кастрированный44. a разг. подвыпивший45. a сл. разведённый, разбавленный; с примесями, нечистый46. v резать, разрезать47. v нанести резаную рану48. v резатьсяthe butter was frozen hard and did not cut easily — масло сильно замёрзло, и его трудно было резать
49. v срезать, отрезатьto cut off — отрезать, обрезать
50. v нарезать51. v стричь, подстригать52. v сокращать, снижать; уменьшать53. v сокращать путь, брать наперерезcut by half — сокращать наполовину; сокращенный наполовину
54. v сокращать, урезывать; делать купюру55. v вырезатьcut and paste — "вырезать и вставлять"
56. v кроить57. v ударить; причинить острую боль58. v огорчать, обижать; ранить59. v пересекать, перекрещивать60. v перегрызать, прогрызать61. v разг. удирать, убегать62. v разг. резко изменить направление, побежать в другую сторону63. v разг. переставать, прекращать64. v разг. амер. лишать политической поддержки; голосовать против, вычеркнуть кандидатуру65. v разг. разг. не замечать, не узнавать, игнорироватьI took off my hat to her but he cut me dead — я поклонился ей, но она сделала вид, что не замечает меня
66. v разг. карт. сниматьto cut for deal — снимать колоду для того, чтобы определить, кто должен сдавать
67. v разг. делать антраша68. v разг. жив. выделяться, выступать слишком резкоcolours that cut — цвета, которые режут глаз
69. v разг. новозел. разг. кончать, заканчивать, докончить70. v тех. обрабатывать режущим инструментом, снимать стружку71. v тех. полигр. обрезать книжный блокcut off — обрезать, отрезать, отрубать, отсекать
72. v тех. сверлить, бурить73. v тех. стр. тесать, стёсывать74. v тех. эл. отключать, отсоединять75. v тех. радио76. v тех. отстраиваться77. v тех. переключать с одной программы на другуюподрубать, делать вруб
78. v тех. вет. засекаться79. n редк. жребийСинонимический ряд:1. thin (adj.) dilute; diluted; thin; watered-down; watery; weak2. abatement (noun) abatement; curtailment; decrease; reduction3. fashion (noun) fashion; form; garb; kind; mode; sort; stamp; style4. furrow (noun) ditch; furrow; hollow; trench5. incision (noun) channel; incision; nip; passage; pierce; rent; stab; trim; wound6. part (noun) division; member; moiety; parcel; part; piece; portion; section; segment7. share (noun) allotment; allowance; bite; lot; partage; quota; share8. slice (noun) gash; slash; slice; slit; split9. slight (noun) rebuff; slight; snub10. type (noun) breed; cast; caste; character; class; description; feather; ilk; kidney; manner; mold; mould; nature; order; persuasion; species; stripe; type; variety; way11. bisect (verb) bisect; cross; divide; intersect12. carve (verb) carve; cleave; dissect; dissever; sever; split; sunder13. carved (verb) carved; cleaved or clove/cleaved; dissected; dissevered; severed; sundered14. clipped (verb) clipped; cropped; lowered; marked down; mowed/mowed or mown; pared; pruned; reduced; shaved/shaved or shaven; sheared/sheared or shorn; trimmed15. cold-shoulder (verb) cold-shoulder; ostracize; snob; snub16. cut off (verb) crop; cut off; guillotine; lop; lop off; truncate17. delete (verb) delete; omit18. diluted (verb) diluted; thinned; weakened19. fell (verb) chop; fell; hew; hewed20. felled (verb) chopped; felled; hewed/hewed or hewn21. gashed (verb) gashed; incised; pierced; slashed; sliced22. harvest (verb) harvest; mow; reap23. hollow out (verb) dig; disembowel; eviscerate; excavate; excise; hollow out24. insult (verb) hurt; insult; move; slight; touch; wound25. make (verb) facet; fashion; make; sculpt; whittle26. operate (verb) open up; operate27. operated (verb) opened up; operated28. ostracized (verb) ostracized; snubbed29. penetrate (verb) claw; gash; incise; lance; penetrate; pierce; score; scratch; slash; slit30. reduce (verb) cut down; diminish; lessen; lopped; lower; mark down; pare; reduce; shave; shorn31. sheer (verb) sheer; skew; slue; swerve; veer; yawed32. shorten (verb) abbreviate; abridge; bob; condense; curtail; cut back; retrench; shorten33. shortened (verb) abbreviated; abridged; curtailed; retrenched; shortened34. shun (verb) rebuff; shun; spurn35. skip (verb) skip36. slice (verb) chisel; haggle; mangle; rive; slice37. thin (verb) attenuate; dilute; dissolve; thin; water; water down; weaken38. trim (verb) clip; prune; shear; skive; snip; trimАнтонимический ряд:expand; include; increase
См. также в других словарях:
Program evaluation — is a formalized approach to studying the goals, processes, and impacts of projects, policies and programs. Program evaluation is used in the public and private sector and is taught in numerous universities. Evaluation became particularly relevant … Wikipedia
Description logic — (DL) is a family of formal knowledge representation languages. It is more expressive than propositional logic but has more efficient decision problems than first order predicate logic. DL is used in artificial intelligence for formal reasoning on … Wikipedia
Program music — Programme music is a form of art music intended to evoke extra musical ideas, images in the mind of the listener by musically representing a scene, image or mood [http://www.encyclopedia.com/html/p1/progrmus.asp] . By contrast, absolute music… … Wikipedia
program music — music intended to convey an impression of a definite series of images, scenes, or events. Cf. absolute music. [1880 85] * * * instrumental music that carries some extramusical meaning, some “program” of literary idea, legend, scenic… … Universalium
Program optimization — For algorithms to solve other optimization problems, see Optimization (mathematics). In computer science, program optimization or software optimization is the process of modifying a software system to make some aspect of it work more efficiently… … Wikipedia
List of program music — Program music is a term usually applied to orchestral music in the classical music tradition in which the piece is designed according to some preconceived narrative, or is designed to evoke a specific concrete idea. This is distinct from the more … Wikipedia
Hardware description language — In electronics, a hardware description language or HDL is any language from a class of computer languages and/or programming languages for formal description of electronic circuits. It can describe the circuit s operation, its design and… … Wikipedia
People to People Student Ambassador Program — Infobox Organization name = People to People Student Ambassador Program image border = size = 150px caption = People to People Seal and logo formation = 1956 type = Youth Peace Ambassador/Travel headquarters = Spokane, Washington location = Motto … Wikipedia
Audio description — refers to an additional narration track for blind and visually impaired consumers of visual media (including television and film, dance, opera, and visual art). It consists of a narrator talking through the presentation, describing what is… … Wikipedia
Congressional response to the NSA warrantless surveillance program — Congressional inquiries and investigations Three days after news broke about the Terrorist Surveillance Program, a bipartisan group of Senators Democrats Dianne Feinstein of California, Carl Levin of Michigan, Ron Wyden of Oregon and Republicans… … Wikipedia
Compiler Description Language — Compiler Description Language, or CDL, is a Computer language based on affix grammars. It is very similar to Backus–Naur form(BNF) notation. It was designed for the development of compilers. It is very limited in its capabilities and control… … Wikipedia