Перевод: со всех языков на английский

с английского на все языки

for+engines

  • 1 Materials for Advanced Turbine Engines

    Abbreviation: MATE

    Универсальный русско-английский словарь > Materials for Advanced Turbine Engines

  • 2 automatic test equipment for internal combustion engines

    Military: ATE/ICE

    Универсальный русско-английский словарь > automatic test equipment for internal combustion engines

  • 3 Edwards, Humphrey

    [br]
    fl. c.1808–25 London (?), England
    d. after 1825 France (?)
    [br]
    English co-developer of Woolf s compound steam engine.
    [br]
    When Arthur Woolf left the Griffin Brewery, London, in October 1808, he formed a partnership with Humphrey Edwards, described as a millwright at Mill Street, Lambeth, where they started an engine works to build Woolf's type of compound engine. A number of small engines were constructed and other ordinary engines modified with the addition of a high-pressure cylinder. Improvements were made in each succeeding engine, and by 1811 a standard form had been evolved. During this experimental period, engines were made with cylinders side by side as well as the more usual layout with one behind the other. The valve gear and other details were also improved. Steam pressure may have been around 40 psi (2.8 kg/cm2). In an advertisement of February 1811, the partners claimed that their engines had been brought to such a state of perfection that they consumed only half the quantity of coal required for engines on the plan of Messrs Boulton \& Watt. Woolf visited Cornwall, where he realized that more potential for his engines lay there than in London; in May 1811 the partnership was dissolved, with Woolf returning to his home county. Edwards struggled on alone in London for a while, but when he saw a more promising future for the engine in France he moved to Paris. On 25 May 1815 he obtained a French patent, a Brevet d'importation, for ten years. A report in 1817 shows that during the previous two years he had imported into France fifteen engines of different sizes which were at work in eight places in various parts of the country. He licensed a mining company in the north of France to make twenty-five engines for winding coal. In France there was always much more interest in rotative engines than pumping ones. Edwards may have formed a partnership with Goupil \& Cie, Dampierre, to build engines, but this is uncertain. He became a member of the firm Scipion, Perrier, Edwards \& Chappert, which took over the Chaillot Foundry of the Perrier Frères in Paris, and it seems that Edwards continued to build steam engines there for the rest of his life. In 1824 it was claimed that he had made about 100 engines in England and another 200 in France, but this is probably an exaggeration.
    The Woolf engine acquired its popularity in France because its compound design was more economical than the single-cylinder type. To enable it to be operated safely, Edwards first modified Woolf s cast-iron boiler in 1815 by placing two small drums over the fire, and then in 1825 replaced the cast iron with wrought iron. The modified boiler was eventually brought back to England in the 1850s as the "French" or "elephant" boiler.
    [br]
    Further Reading
    Most details about Edwards are to be found in the biographies of his partner, Arthur Woolf. For example, see T.R.Harris, 1966, Arthur Woolf, 1766–1837, The Cornish Engineer, Truro: D.Bradford Barton; Rhys Jenkins, 1932–3, "A Cornish Engineer, Arthur Woolf, 1766–1837", Transactions of the Newcomen Society 13. These use information from the originally unpublished part of J.Farey, 1971, A Treatise on the Steam Engine, Vol. II, Newton Abbot: David \& Charles.
    RLH

    Biographical history of technology > Edwards, Humphrey

  • 4 Sickels, Frederick Ellsworth

    [br]
    b. 20 September 1819 Gloucester County, New Jersey, USA
    d. 8 March 1895 Kansas City, Missouri, USA
    [br]
    American inventor of a steam-inlet cut-off valve mechanism for engines and steam steering apparatus for ships.
    [br]
    Sickels was educated in New York City, where his father was a practising physician. As he showed mechanical aptitude, at the age of 16 he joined the Harlem Railroad as a rod man, and a year later became a machinist in the Allaire Works in New York, studying physics and mechanics in his spare time. He perfected his cut-off mechanism for drop valves in 1841 and patented it the following year. The liberating mechanism allowed the valve to fall quickly onto its seat and so eliminated "wire-drawing" of the steam, and Sickels arranged a dashpot to prevent the valve hitting the seat violently. Through further improvements patented in 1843 and 1845, he gained a considerable fortune, but he subsequently lost it through fighting patent infringements because his valve gear was copied extensively.
    In 1846 he turned his attention to using a steam engine to assist the steering in ships. He filed a patent application in 1849 and completed a machine in 1854, but he could not find any ship owner willing to try it until 1858, when it was fitted to the August. A patent was granted in 1860, but as no American ship owners showed interest Sickels went to England, where he obtained three British patents; once again, however, he found no interest. He returned to the United States in 1867 and continued his fruitless efforts until he was financially ruined. He patented improved compound engines in 1875 and also contributed improvements in sinking pneumatic piles. He turned to civil engineering and engaged in railway and bridge construction in the west. In about 1890 he was made Consulting Engineer to the National Water Works Company of New York and in 1891 became Chief Engineer of its operations at Kansas City.
    [br]
    Further Reading
    Dictionary of American Biography, 1935, Vol. XVII, New York: C.Scribner's Sons. C.T.Porter, 1908, Engineering Reminiscences, reprinted 1985, Bradley, Ill.: Lindsay Publications (comments on his cut-off valve gear).
    H.G.Conway, 1955–6, "Some notes on the origins of mechanical servo systems", Transactions of the Newcomen Society 29 (comments on his steam steering apparatus).
    RLH

    Biographical history of technology > Sickels, Frederick Ellsworth

  • 5 разменям

    ( разменявам, разменя) exchange (за for); ( като търговия) trade, barter; разг. swop, swap; ( думи в изречение) transpose
    разменям впечатления compare notes
    разменям мисли commune
    разменяме си reciprocate
    разменна търговия barter
    * * *
    exchange: I want to разменям my flat for a country house. - Искам да разменя апартамента си за къща в провинцията., разменям opinions - разменям мнения; barter: разменям rough material for engines - разменям суровини срещу машини; change; convert{kxn`vx:t}; counterchange; negotiate{nigou`Sieit}; swop; swap (разг.); trade

    Български-английски речник > разменям

  • 6 ἐμπαράσκευος

    A prepared, Sm.Ps.26(27).3; ἐμπαράσκευον, τό, a kind of wind-screen for engines, Ath.Mech.33.1. Adv.

    - ως Suid.

    s.v. ἑτοίμως.

    Greek-English dictionary (Αγγλικά Ελληνικά-λεξικό) > ἐμπαράσκευος

  • 7 ἐπιβάθρα

    A ladder or steps to ascend by: scaling ladder, Ph.Bel. 91.48, Ath.Mech.25.3,J.BJ7.9.2,Arr.An.4.27.1; ship's ladder, gangway, D.S.12.62.
    2. metaph., means of approach, stepping-stone, Plb.3.24.14 (pl.);

    ἐ. ἔχειν τὴν Ἄβυδον Id.16.29.2

    ;

    γάμον ἐ. τισὶ γενέσθαι J.AJ11.8.2

    ; τῆς Ἑλλάδος towards.., Plu.Demetr.8; τῷ ἑξῆς

    λόγῳ Arr.Epict.1.7.22

    , cf. Plot.1.6.1;

    εἰς τὸ ἐξευρεῖν Gal.9.149

    .
    3. platform for engines of war, J.BJ7.8.5; base, foundation, γῆ.. τοῖς ἐπ' αὐτῆς βεβηκόσιν ἑδραία ἐ. Plot.2.1.7: metaph.,

    γεῦσις ἐ. τῶν αἰσθήσεων Ph.1.665

    .

    Greek-English dictionary (Αγγλικά Ελληνικά-λεξικό) > ἐπιβάθρα

  • 8 уделять главное внимание

    Our main concern in the first six chapters was with the behaviour of bound rays.

    The forging engineer's primary consideration is the force that the forging machine can deliver.

    Русско-английский научно-технический словарь переводчика > уделять главное внимание

  • 9 опасность травмы

    Универсальный русско-английский словарь > опасность травмы

  • 10 Trevithick, Richard

    [br]
    b. 13 April 1771 Illogan, Cornwall, England
    d. 22 April 1833 Dartford, Kent, England
    [br]
    English engineer, pioneer of non-condensing steam-engines; designed and built the first locomotives.
    [br]
    Trevithick's father was a tin-mine manager, and Trevithick himself, after limited formal education, developed his immense engineering talent among local mining machinery and steam-engines and found employment as a mining engineer. Tall, strong and high-spirited, he was the eternal optimist.
    About 1797 it occurred to him that the separate condenser patent of James Watt could be avoided by employing "strong steam", that is steam at pressures substantially greater than atmospheric, to drive steam-engines: after use, steam could be exhausted to the atmosphere and the condenser eliminated. His first winding engine on this principle came into use in 1799, and subsequently such engines were widely used. To produce high-pressure steam, a stronger boiler was needed than the boilers then in use, in which the pressure vessel was mounted upon masonry above the fire: Trevithick designed the cylindrical boiler, with furnace tube within, from which the Cornish and later the Lancashire boilers evolved.
    Simultaneously he realized that high-pressure steam enabled a compact steam-engine/boiler unit to be built: typically, the Trevithick engine comprised a cylindrical boiler with return firetube, and a cylinder recessed into the boiler. No beam intervened between connecting rod and crank. A master patent was taken out.
    Such an engine was well suited to driving vehicles. Trevithick built his first steam-carriage in 1801, but after a few days' use it overturned on a rough Cornish road and was damaged beyond repair by fire. Nevertheless, it had been the first self-propelled vehicle successfully to carry passengers. His second steam-carriage was driven about the streets of London in 1803, even more successfully; however, it aroused no commercial interest. Meanwhile the Coalbrookdale Company had started to build a locomotive incorporating a Trevithick engine for its tramroads, though little is known of the outcome; however, Samuel Homfray's ironworks at Penydarren, South Wales, was already building engines to Trevithick's design, and in 1804 Trevithick built one there as a locomotive for the Penydarren Tramroad. In this, and in the London steam-carriage, exhaust steam was turned up the chimney to draw the fire. On 21 February the locomotive hauled five wagons with 10 tons of iron and seventy men for 9 miles (14 km): it was the first successful railway locomotive.
    Again, there was no commercial interest, although Trevithick now had nearly fifty stationary engines completed or being built to his design under licence. He experimented with one to power a barge on the Severn and used one to power a dredger on the Thames. He became Engineer to a project to drive a tunnel beneath the Thames at Rotherhithe and was only narrowly defeated, by quicksands. Trevithick then set up, in 1808, a circular tramroad track in London and upon it demonstrated to the admission-fee-paying public the locomotive Catch me who can, built to his design by John Hazledine and J.U. Rastrick.
    In 1809, by which date Trevithick had sold all his interest in the steam-engine patent, he and Robert Dickinson, in partnership, obtained a patent for iron tanks to hold liquid cargo in ships, replacing the wooden casks then used, and started to manufacture them. In 1810, however, he was taken seriously ill with typhus for six months and had to return to Cornwall, and early in 1811 the partners were bankrupt; Trevithick was discharged from bankruptcy only in 1814.
    In the meantime he continued as a steam engineer and produced a single-acting steam engine in which the cut-off could be varied to work the engine expansively by way of a three-way cock actuated by a cam. Then, in 1813, Trevithick was approached by a representative of a company set up to drain the rich but flooded silver-mines at Cerro de Pasco, Peru, at an altitude of 14,000 ft (4,300 m). Low-pressure steam engines, dependent largely upon atmospheric pressure, would not work at such an altitude, but Trevithick's high-pressure engines would. Nine engines and much other mining plant were built by Hazledine and Rastrick and despatched to Peru in 1814, and Trevithick himself followed two years later. However, the war of independence was taking place in Peru, then a Spanish colony, and no sooner had Trevithick, after immense difficulties, put everything in order at the mines then rebels arrived and broke up the machinery, for they saw the mines as a source of supply for the Spanish forces. It was only after innumerable further adventures, during which he encountered and was assisted financially by Robert Stephenson, that Trevithick eventually arrived home in Cornwall in 1827, penniless.
    He petitioned Parliament for a grant in recognition of his improvements to steam-engines and boilers, without success. He was as inventive as ever though: he proposed a hydraulic power transmission system; he was consulted over steam engines for land drainage in Holland; and he suggested a 1,000 ft (305 m) high tower of gilded cast iron to commemorate the Reform Act of 1832. While working on steam propulsion of ships in 1833, he caught pneumonia, from which he died.
    [br]
    Bibliography
    Trevithick took out fourteen patents, solely or in partnership, of which the most important are: 1802, Construction of Steam Engines, British patent no. 2,599. 1808, Stowing Ships' Cargoes, British patent no. 3,172.
    Further Reading
    H.W.Dickinson and A.Titley, 1934, Richard Trevithick. The Engineer and the Man, Cambridge; F.Trevithick, 1872, Life of Richard Trevithick, London (these two are the principal biographies).
    E.A.Forward, 1952, "Links in the history of the locomotive", The Engineer (22 February), 226 (considers the case for the Coalbrookdale locomotive of 1802).
    PJGR

    Biographical history of technology > Trevithick, Richard

  • 11 Ricardo, Sir Harry Ralph

    [br]
    b. 26 January 1885 London, England
    d. 18 May 1974 Graffham, Sussex, England
    [br]
    English mechanical engineer; researcher, designer and developer of internal combustion engines.
    [br]
    Harry Ricardo was the eldest child and only son of Halsey Ricardo (architect) and Catherine Rendel (daughter of Alexander Rendel, senior partner in the firm of consulting civil engineers that later became Rendel, Palmer and Tritton). He was educated at Rugby School and at Cambridge. While still at school, he designed and made a steam engine to drive his bicycle, and by the time he went up to Cambridge in 1903 he was a skilled craftsman. At Cambridge, he made a motor cycle powered by a petrol engine of his own design, and with this he won a fuel-consumption competition by covering almost 40 miles (64 km) on a quart (1.14 1) of petrol. This brought him to the attention of Professor Bertram Hopkinson, who invited him to help with research on turbulence and pre-ignition in internal combustion engines. After leaving Cambridge in 1907, he joined his grandfather's firm and became head of the design department for mechanical equipment used in civil engineering. In 1916 he was asked to help with the problem of loading tanks on to railway trucks. He was then given the task of designing and organizing the manufacture of engines for tanks, and the success of this enterprise encouraged him to set up his own establishment at Shoreham, devoted to research on, and design and development of, internal combustion engines.
    Leading on from the work with Hopkinson were his discoveries on the suppression of detonation in spark-ignition engines. He noted that the current paraffinic fuels were more prone to detonation than the aromatics, which were being discarded as they did not comply with the existing specifications because of their high specific gravity. He introduced the concepts of "highest useful compression ratio" (HUCR) and "toluene number" for fuel samples burned in a special variable compression-ratio engine. The toluene number was the proportion of toluene in heptane that gave the same HUCR as the fuel sample. Later, toluene was superseded by iso-octane to give the now familiar octane rating. He went on to improve the combustion in side-valve engines by increasing turbulence, shortening the flame path and minimizing the clearance between piston and head by concentrating the combustion space over the valves. By these means, the compression ratio could be increased to that used by overhead-valve engines before detonation intervened. The very hot poppet valve restricted the advancement of all internal combustion engines, so he turned his attention to eliminating it by use of the single sleeve-valve, this being developed with support from the Air Ministry. By the end of the Second World War some 130,000 such aero-engines had been built by Bristol, Napier and Rolls-Royce before the piston aero-engine was superseded by the gas turbine of Whittle. He even contributed to the success of the latter by developing a fuel control system for it.
    Concurrent with this was work on the diesel engine. He designed and developed the engine that halved the fuel consumption of London buses. He invented and perfected the "Comet" series of combustion chambers for diesel engines, and the Company was consulted by the vast majority of international internal combustion engine manufacturers. He published and lectured widely and fully deserved his many honours; he was elected FRS in 1929, was President of the Institution of Mechanical Engineers in 1944–5 and was knighted in 1948. This shy and modest, though very determined man was highly regarded by all who came into contact with him. It was said that research into internal combustion engines, his family and boats constituted all that he would wish from life.
    [br]
    Principal Honours and Distinctions
    Knighted 1948. FRS 1929. President, Institution of Mechanical Engineers 1944–5.
    Bibliography
    1968, Memo \& Machines. The Pattern of My Life, London: Constable.
    Further Reading
    Sir William Hawthorne, 1976, "Harry Ralph Ricardo", Biographical Memoirs of Fellows of the Royal Society 22.
    JB

    Biographical history of technology > Ricardo, Sir Harry Ralph

  • 12 Hamilton, Harold Lee (Hal)

    [br]
    b. 14 June 1890 Little Shasta, California, USA
    d. 3 May 1969 California, USA
    [br]
    American pioneer of diesel rail traction.
    [br]
    Orphaned as a child, Hamilton went to work for Southern Pacific Railroad in his teens, and then worked for several other companies. In his spare time he learned mathematics and physics from a retired professor. In 1911 he joined the White Motor Company, makers of road motor vehicles in Denver, Colorado, where he had gone to recuperate from malaria. He remained there until 1922, apart from an eighteenth-month break for war service.
    Upon his return from war service, Hamilton found White selling petrol-engined railbuses with mechanical transmission, based on road vehicles, to railways. He noted that they were not robust enough and that the success of petrol railcars with electric transmission, built by General Electric since 1906, was limited as they were complex to drive and maintain. In 1922 Hamilton formed, and became President of, the Electro- Motive Engineering Corporation (later Electro-Motive Corporation) to design and produce petrol-electric rail cars. Needing an engine larger than those used in road vehicles, yet lighter and faster than marine engines, he approached the Win ton Engine Company to develop a suitable engine; in addition, General Electric provided electric transmission with a simplified control system. Using these components, Hamilton arranged for his petrol-electric railcars to be built by the St Louis Car Company, with the first being completed in 1924. It was the beginning of a highly successful series. Fuel costs were lower than for steam trains and initial costs were kept down by using standardized vehicles instead of designing for individual railways. Maintenance costs were minimized because Electro-Motive kept stocks of spare parts and supplied replacement units when necessary. As more powerful, 800 hp (600 kW) railcars were produced, railways tended to use them to haul trailer vehicles, although that practice reduced the fuel saving. By the end of the decade Electro-Motive needed engines more powerful still and therefore had to use cheap fuel. Diesel engines of the period, such as those that Winton had made for some years, were too heavy in relation to their power, and too slow and sluggish for rail use. Their fuel-injection system was erratic and insufficiently robust and Hamilton concluded that a separate injector was needed for each cylinder.
    In 1930 Electro-Motive Corporation and Winton were acquired by General Motors in pursuance of their aim to develop a diesel engine suitable for rail traction, with the use of unit fuel injectors; Hamilton retained his position as President. At this time, industrial depression had combined with road and air competition to undermine railway-passenger business, and Ralph Budd, President of the Chicago, Burlington \& Quincy Railroad, thought that traffic could be recovered by way of high-speed, luxury motor trains; hence the Pioneer Zephyr was built for the Burlington. This comprised a 600 hp (450 kW), lightweight, two-stroke, diesel engine developed by General Motors (model 201 A), with electric transmission, that powered a streamlined train of three articulated coaches. This train demonstrated its powers on 26 May 1934 by running non-stop from Denver to Chicago, a distance of 1,015 miles (1,635 km), in 13 hours and 6 minutes, when the fastest steam schedule was 26 hours. Hamilton and Budd were among those on board the train, and it ushered in an era of high-speed diesel trains in the USA. By then Hamilton, with General Motors backing, was planning to use the lightweight engine to power diesel-electric locomotives. Their layout was derived not from steam locomotives, but from the standard American boxcar. The power plant was mounted within the body and powered the bogies, and driver's cabs were at each end. Two 900 hp (670 kW) engines were mounted in a single car to become an 1,800 hp (l,340 kW) locomotive, which could be operated in multiple by a single driver to form a 3,600 hp (2,680 kW) locomotive. To keep costs down, standard locomotives could be mass-produced rather than needing individual designs for each railway, as with steam locomotives. Two units of this type were completed in 1935 and sent on trial throughout much of the USA. They were able to match steam locomotive performance, with considerable economies: fuel costs alone were halved and there was much less wear on the track. In the same year, Electro-Motive began manufacturing diesel-electrie locomotives at La Grange, Illinois, with design modifications: the driver was placed high up above a projecting nose, which improved visibility and provided protection in the event of collision on unguarded level crossings; six-wheeled bogies were introduced, to reduce axle loading and improve stability. The first production passenger locomotives emerged from La Grange in 1937, and by early 1939 seventy units were in service. Meanwhile, improved engines had been developed and were being made at La Grange, and late in 1939 a prototype, four-unit, 5,400 hp (4,000 kW) diesel-electric locomotive for freight trains was produced and sent out on test from coast to coast; production versions appeared late in 1940. After an interval from 1941 to 1943, when Electro-Motive produced diesel engines for military and naval use, locomotive production resumed in quantity in 1944, and within a few years diesel power replaced steam on most railways in the USA.
    Hal Hamilton remained President of Electro-Motive Corporation until 1942, when it became a division of General Motors, of which he became Vice-President.
    [br]
    Further Reading
    P.M.Reck, 1948, On Time: The History of the Electro-Motive Division of General Motors Corporation, La Grange, Ill.: General Motors (describes Hamilton's career).
    PJGR

    Biographical history of technology > Hamilton, Harold Lee (Hal)

  • 13 Priestman, William Dent

    [br]
    b. 23 August 1847 Sutton, Hull, England
    d. 7 September 1936 Hull, England
    [br]
    English oil engine pioneer.
    [br]
    William was the second son and one of eleven children of Samuel Priestman, who had moved to Hull after retiring as a corn miller in Kirkstall, Leeds, and who in retirement had become a director of the North Eastern Railway Company. The family were strict Quakers, so William was sent to the Quaker School in Bootham, York. He left school at the age of 17 to start an engineering apprenticeship at the Humber Iron Works, but this company failed so the apprenticeship was continued with the North Eastern Railway, Gateshead. In 1869 he joined the hydraulics department of Sir William Armstrong \& Company, Newcastle upon Tyne, but after a year there his father financed him in business at a small, run down works, the Holderness Foundry, Hull. He was soon joined by his brother, Samuel, their main business being the manufacture of dredging equipment (grabs), cranes and winches. In the late 1870s William became interested in internal combustion engines. He took a sublicence to manufacture petrol engines to the patents of Eugène Etève of Paris from the British licensees, Moll and Dando. These engines operated in a similar manner to the non-compression gas engines of Lenoir. Failure to make the two-stroke version of this engine work satisfactorily forced him to pay royalties to Crossley Bros, the British licensees of the Otto four-stroke patents.
    Fear of the dangers of petrol as a fuel, reflected by the associated very high insurance premiums, led William to experiment with the use of lamp oil as an engine fuel. His first of many patents was for a vaporizer. This was in 1885, well before Ackroyd Stuart. What distinguished the Priestman engine was the provision of an air pump which pressurized the fuel tank, outlets at the top and bottom of which led to a fuel atomizer injecting continuously into a vaporizing chamber heated by the exhaust gases. A spring-loaded inlet valve connected the chamber to the atmosphere, with the inlet valve proper between the chamber and the working cylinder being camoperated. A plug valve in the fuel line and a butterfly valve at the inlet to the chamber were operated, via a linkage, by the speed governor; this is believed to be the first use of this method of control. It was found that vaporization was only partly achieved, the higher fractions of the fuel condensing on the cylinder walls. A virtue was made of this as it provided vital lubrication. A starting system had to be provided, this comprising a lamp for preheating the vaporizing chamber and a hand pump for pressurizing the fuel tank.
    Engines of 2–10 hp (1.5–7.5 kW) were exhibited to the press in 1886; of these, a vertical engine was installed in a tram car and one of the horizontals in a motor dray. In 1888, engines were shown publicly at the Royal Agricultural Show, while in 1890 two-cylinder vertical marine engines were introduced in sizes from 2 to 10 hp (1.5–7.5 kW), and later double-acting ones up to some 60 hp (45 kW). First, clutch and gearbox reversing was used, but reversing propellers were fitted later (Priestman patent of 1892). In the same year a factory was established in Philadelphia, USA, where engines in the range 5–20 hp (3.7–15 kW) were made. Construction was radically different from that of the previous ones, the bosses of the twin flywheels acting as crank discs with the main bearings on the outside.
    On independent test in 1892, a Priestman engine achieved a full-load brake thermal efficiency of some 14 per cent, a very creditable figure for a compression ratio limited to under 3:1 by detonation problems. However, efficiency at low loads fell off seriously owing to the throttle governing, and the engines were heavy, complex and expensive compared with the competition.
    Decline in sales of dredging equipment and bad debts forced the firm into insolvency in 1895 and receivers took over. A new company was formed, the brothers being excluded. However, they were able to attend board meetings, but to exert no influence. Engine activities ceased in about 1904 after over 1,000 engines had been made. It is probable that the Quaker ethics of the brothers were out of place in a business that was becoming increasingly cut-throat. William spent the rest of his long life serving others.
    [br]
    Further Reading
    C.Lyle Cummins, 1976, Internal Fire, Carnot Press.
    C.Lyle Cummins and J.D.Priestman, 1985, "William Dent Priestman, oil engine pioneer and inventor: his engine patents 1885–1901", Proceedings of the Institution of
    Mechanical Engineers 199:133.
    Anthony Harcombe, 1977, "Priestman's oil engine", Stationary Engine Magazine 42 (August).
    JB

    Biographical history of technology > Priestman, William Dent

  • 14 Reynolds, Edwin

    [br]
    b. 1831 Mansfield, Connecticut, USA
    d. 1909 Milwaukee, Wisconsin, USA
    [br]
    American contributor to the development of the Corliss valve steam engine, including the "Manhattan" layout.
    [br]
    Edwin Reynolds grew up at a time when formal engineering education in America was almost unavailable, but through his genius and his experience working under such masters as G.H. Corliss and William Wright, he developed into one of the best mechanical engineers in the country. When he was Plant Superintendent for the Corliss Steam Engine Company, he built the giant Corliss valve steam engine displayed at the 1876 Centennial Exhibition. In July 1877 he left the Corliss Steam Engine Company to join Edward Allis at his Reliance Works, although he was offered a lower salary. In 1861 Allis had moved his business to the Menomonee Valley, where he had the largest foundry in the area. Immediately on his arrival with Allis, Reynolds began desig-ning and building the "Reliance-Corliss" engine, which becamea symbol of simplicity, economy and reliability. By early 1878 the new engine was so successful that the firm had a six-month backlog of orders. In 1888 he built the first triple-expansion waterworks-pumping engine in the United States for the city of Milwaukee, and in the same year he patented a new design of blowing engine for blast furnaces. He followed this in March 1892 with the first steam engine sets coupled directly to electric generators when Allis-Chalmers contracted to build two Corliss cross-compound engines for the Narragansett Light Company of Providence, Rhode Island. In 1893, one of the impressive attractions at the World's Columbian Exposition in Chicago was the 3,000 hp (2,200 kW) quadruple-expansion Reynolds-Corliss engine designed by Reynolds, who continued to make significant improvements and gained worldwide recognition of his outstanding achievements in engine building.
    Reynolds was asked to go to New York in 1898 for consultation about some high-horsepower engines for the Manhattan transport system. There, 225 railway locomotives were to be replaced by electric trains, which would be supplied from one generating station producing 60,000 hp (45,000 kW). Reynolds sketched out his ideas for 10,000 hp (7,500 kW) engines while on the train. Because space was limited, he suggested a four-cylinder design with two horizontal-high-pressure cylinders and two vertical, low-pressure ones. One cylinder of each type was placed on each side of the flywheel generator, which with cranks at 135° gave an exceptionally smooth-running compact engine known as the "Manhattan". A further nine similar engines that were superheated and generated three-phase current were supplied in 1902 to the New York Interborough Rapid Transit Company. These were the largest reciprocating steam engines built for use on land, and a few smaller ones with a similar layout were installed in British textile mills.
    [br]
    Further Reading
    Concise Dictionary of American Biography, 1964, New York: C.Scribner's Sons (contains a brief biography).
    R.L.Hills, 1989, Power from Steam. A History of the Stationary Steam Engine, Cambridge University Press (provides a brief account of the Manhattan engines) Part of the information for this biography is derived from a typescript in the Smithsonian Institution, Washington, DC: T.H.Fehring, "Technological contributions of Milwaukee's Menomonee Valley industries".
    RLH

    Biographical history of technology > Reynolds, Edwin

  • 15 buscador

    adj.
    1 seeking, searching.
    2 homing.
    m.
    1 seeker, searcher.
    2 search engine.
    * * *
    1 searching
    nombre masculino,nombre femenino
    1 searcher, seeker
    1 (anteojo) finder
    2 INFORMÁTICA search engine
    ————————
    1 (anteojo) finder
    2 INFORMÁTICA search engine
    * * *
    buscador, -a
    1.
    SM / F (=persona)

    buscador(a) de talentos — talent spotter, talent scout

    2. SM
    1) (Internet) search engine
    2) (=mecanismo) scanner
    * * *
    - dora masculino, femenino
    * * *
    = seeker, portal, search engine, crawler, Web crawler, spider, intelligent agent, mining agent, intelligent search agent, search agent, digger, prospector.
    Ex. The cards in the index are liable to become disorganized if inexperienced information seekers tamper with the index.
    Ex. Portals are those Web sites which tend to be the starting points for Internet users and are the most intensively used consumer Web sites in the world.
    Ex. The number of World Wide Web (WWW) databases or search engines has grown rapidly = El total de bases de datos o buscadores World Wide Web ha aumentado rápidamente.
    Ex. Automated ' crawlers' index the complete text of Web documents = Los ' motores de búsqueda' indizan el texto completo de los documentos web.
    Ex. The Internet search engines, such as AltaVista and Excite, send out robots or Web crawlers to trawl the Internet and automatically index the files that they find.
    Ex. These spiders dynamically take a user's selected starting homepages and search the most closely related homepages on the Web, based on links and keyword indexing = Estos buscadores usan dinámicamente las páginas web principales seleccionadas por un usuario y buscan en la web las páginas más estrechamente relacionadas que contengan enlaces y palabras clave asignadas similares.
    Ex. Intelligent agents are specialized software designed to search through electronic mail and databases, and scan networks for interesting pieces of news and information on behalf of a single searcher.
    Ex. The article is entitled 'Complementing search engines with online web mining agents'.
    Ex. The author reviews the range of software designed to act as intelligent search agents to assist users find materials of interest in the Internet.
    Ex. Search agents could be used for monitoring the World Wide Web, or searching newspapers.
    Ex. Based on real events on the Australian goldfields in the 1850s, 'Three Diggers' chronicles the adventures of three gold prospectors.
    Ex. In 1897 he quit a wretchedly underpaid job and set out to make his fortune as a prospector in the gemstone fields of Alice Springs.
    ----
    * buscador de empleo = job applicant, job seeker.
    * buscador de información = information seeker, searcher.
    * buscador de oro = gold digger, gold prospector.
    * buscador de trabajo = job applicant, job seeker.
    * buscador por materias = subject gateway.
    * buscador web = Web spider.
    * * *
    - dora masculino, femenino
    * * *
    = seeker, portal, search engine, crawler, Web crawler, spider, intelligent agent, mining agent, intelligent search agent, search agent, digger, prospector.

    Ex: The cards in the index are liable to become disorganized if inexperienced information seekers tamper with the index.

    Ex: Portals are those Web sites which tend to be the starting points for Internet users and are the most intensively used consumer Web sites in the world.
    Ex: The number of World Wide Web (WWW) databases or search engines has grown rapidly = El total de bases de datos o buscadores World Wide Web ha aumentado rápidamente.
    Ex: Automated ' crawlers' index the complete text of Web documents = Los ' motores de búsqueda' indizan el texto completo de los documentos web.
    Ex: The Internet search engines, such as AltaVista and Excite, send out robots or Web crawlers to trawl the Internet and automatically index the files that they find.
    Ex: These spiders dynamically take a user's selected starting homepages and search the most closely related homepages on the Web, based on links and keyword indexing = Estos buscadores usan dinámicamente las páginas web principales seleccionadas por un usuario y buscan en la web las páginas más estrechamente relacionadas que contengan enlaces y palabras clave asignadas similares.
    Ex: Intelligent agents are specialized software designed to search through electronic mail and databases, and scan networks for interesting pieces of news and information on behalf of a single searcher.
    Ex: The article is entitled 'Complementing search engines with online web mining agents'.
    Ex: The author reviews the range of software designed to act as intelligent search agents to assist users find materials of interest in the Internet.
    Ex: Search agents could be used for monitoring the World Wide Web, or searching newspapers.
    Ex: Based on real events on the Australian goldfields in the 1850s, 'Three Diggers' chronicles the adventures of three gold prospectors.
    Ex: In 1897 he quit a wretchedly underpaid job and set out to make his fortune as a prospector in the gemstone fields of Alice Springs.
    * buscador de empleo = job applicant, job seeker.
    * buscador de información = information seeker, searcher.
    * buscador de oro = gold digger, gold prospector.
    * buscador de trabajo = job applicant, job seeker.
    * buscador por materias = subject gateway.
    * buscador web = Web spider.

    * * *
    masculine, feminine
    A
    buscador de oro gold prospector
    buscador de tesoros treasure hunter
    B
    buscador masculine ( Inf) search engine
    * * *

     

    buscador 1
    ◊ - dora sustantivo masculino, femenino: buscador de oro gold prospector;

    buscador de tesoros treasure hunter
    buscador 2 sustantivo masculino (Inf) search engine
    buscador,-ora sustantivo masculino y femenino buscador de oro, gold prospector

    ' buscador' also found in these entries:
    Spanish:
    buscadora
    English:
    browser
    - heat-seeking
    - prospector
    - homing
    - search
    * * *
    buscador, -ora
    nm,f
    hunter;
    buscador de oro gold prospector
    nm
    Informát [en Internet] search engine
    * * *
    I m, buscadora f searcher
    II m INFOR search engine
    * * *
    : hunter (for treasure, etc.), prospector

    Spanish-English dictionary > buscador

  • 16 Ewart, Peter

    SUBJECT AREA: Textiles
    [br]
    b. 14 May 1767 Traquair, near Peebles, Scotland
    d. September 1842 London, England
    [br]
    Scottish pioneer in the mechanization of the textile industry.
    [br]
    Peter Ewart, the youngest of six sons, was born at Traquair manse, where his father was a clergyman in the Church of Scotland. He was educated at the Free School, Dumfries, and in 1782 spent a year at Edinburgh University. He followed this with an apprenticeship under John Rennie at Musselburgh before moving south in 1785 to help Rennie erect the Albion corn mill in London. This brought him into contact with Boulton \& Watt, and in 1788 he went to Birmingham to erect a waterwheel and other machinery in the Soho Manufactory. In 1789 he was sent to Manchester to install a steam engine for Peter Drinkwater and thus his long connection with the city began. In 1790 Ewart took up residence in Manchester as Boulton \& Watt's representative. Amongst other engines, he installed one for Samuel Oldknow at Stockport. In 1792 he became a partner with Oldknow in his cotton-spinning business, but because of financial difficulties he moved back to Birmingham in 1795 to help erect the machines in the new Soho Foundry. He was soon back in Manchester in partnership with Samuel Greg at Quarry Bank Mill, Styal, where he was responsible for developing the water power, installing a steam engine, and being concerned with the spinning machinery and, later, gas lighting at Greg's other mills.
    In 1798, Ewart devised an automatic expansion-gear for steam engines, but steam pressures at the time were too low for such a device to be effective. His grasp of the theory of steam power is shown by his paper to the Manchester Literary and Philosophical Society in 1808, On the Measure of Moving Force. In 1813 he patented a power loom to be worked by the pressure of steam or compressed air. In 1824 Charles Babbage consulted him about automatic looms. His interest in textiles continued until at least 1833, when he obtained a patent for a self-acting spinning mule, which was, however, outclassed by the more successful one invented by Richard Roberts. Ewart gave much help and advice to others. The development of the machine tools at Boulton \& Watt's Soho Foundry has been mentioned already. He also helped James Watt with his machine for copying sculptures. While he continued to run his own textile mill, Ewart was also in partnership with Charles Macintosh, the pioneer of rubber-coated cloth. He was involved with William Fairbairn concerning steam engines for the boats that Fairbairn was building in Manchester, and it was through Ewart that Eaton Hodgkinson was introduced to Fairbairn and so made the tests and calculations for the tubes for the Britannia Railway Bridge across the Menai Straits. Ewart was involved with the launching of the Liverpool \& Manchester Railway as he was a director of the Manchester Chamber of Commerce at the time.
    In 1835 he uprooted himself from Manchester and became the first Chief Engineer for the Royal Navy, assuming responsibility for the steamboats, which by 1837 numbered 227 in service. He set up repair facilities and planned workshops for overhauling engines at Woolwich Dockyard, the first establishment of its type. It was here that he was killed in an accident when a chain broke while he was supervising the lifting of a large boiler. Engineering was Ewart's life, and it is possible to give only a brief account of his varied interests and connections here.
    [br]
    Further Reading
    Obituary, 1843, "Institution of Civil Engineers", Annual General Meeting, January. Obituary, 1843, Manchester Literary and Philosophical Society Memoirs (NS) 7. R.L.Hills, 1987–8, "Peter Ewart, 1767–1843", Manchester Literary and Philosophical
    Society Memoirs 127.
    M.B.Rose, 1986, The Gregs of Quarry Bank Mill The Rise and Decline of a Family Firm, 1750–1914, Cambridge (covers E wart's involvement with Samuel Greg).
    R.L.Hills, 1970, Power in the Industrial Revolution, Manchester; R.L.Hills, 1989, Power
    from Steam, Cambridge (both look at Ewart's involvement with textiles and steam engines).
    RLH

    Biographical history of technology > Ewart, Peter

  • 17 Stuart, Herbert Akroyd

    [br]
    b. 1864 Halifax, England
    d. 1927 Perth, Australia
    [br]
    English inventor of an oil internal-combustion engine.
    [br]
    Stuart's involvement with engines covered a period of less than ten years and was concerned with a means of vaporizing the heavier oils for use in the so-called oil engines. Leaving his native Yorkshire for Bletchley in Buckinghamshire, Stuart worked in his father's business, the Bletchley Iron and Tin Plate works. After finishing grammar school, he worked as an assistant in the Mechanical Engineering Department of the City and Guilds of London Technical College. He also formed a connection with the Finsbury Technical College, where he became acquainted with Professor William Robinson, a distinguished engineer eminent in the field of internal-combustion engines.
    Resuming work at Bletchley, Stuart carried out experiments with engines. His first patent was concerned with new methods of vaporizing the fuel, scavenging systems and improvement of speed control. Two further patents, in 1890, specified substantial improvements and formed the basis of later engine designs. In 1891 Stuart joined forces with R.Hornsby and Sons of Grantham, a firm founded in 1815 for the manufacture of machinery and steam engines. Hornsby acquired all rights to Stuart's engine patents, and their superior technical resources ensured substantial improvements to Stuart's early design. The Hornsby-Ackroyd engines, introduced in 1892, were highly successful and found wide acceptance, particularly in agriculture. With failing health, Stuart's interest in his engine work declined, and in 1899 he emigrated to Australia, where in 1903 he became a partner in importing gas engines and gas-producing plants. Following his death in 1927, under the terms of his will he was interred in England; sadly, he also requested that all papers and materials pertaining to his engines be destroyed.
    [br]
    Bibliography
    July 1886, British patent no. 9,866 (fuel vapourization methods, scavenging systems and improvement of speed control; the patent describes Stuart as Mechanical Engineer of Bletchley Iron Works).
    1890, British patent no. 7,146 and British patent no. 15,994 (describe a vaporizing chamber connected to the working cylinder by a small throat).
    Further Reading
    D.Clerk, 1895, The Gas and Oil Engine, 6th edn, London, pp. 420–6 (provides a detailed description of the Hornsby-Ackroyd engine and includes details of an engine test).
    T.Hornbuckle and A.K.Bruce, 1940, Herbert Akroyd Stuart and the Development of the Heavy Oil Engine, London: Diesel Engine Users'Association, p. 1.
    KAB

    Biographical history of technology > Stuart, Herbert Akroyd

  • 18 Adamson, Daniel

    [br]
    b. 1818 Shildon, Co. Durham, England
    d. January 1890 Didsbury, Manchester, England
    [br]
    English mechanical engineer, pioneer in the use of steel for boilers, which enabled higher pressures to be introduced; pioneer in the use of triple-and quadruple-expansion mill engines.
    [br]
    Adamson was apprenticed between 1835 and 1841 to Timothy Hackworth, then Locomotive Superintendent on the Stockton \& Darlington Railway. After this he was appointed Draughtsman, then Superintendent Engineer, at that railway's locomotive works until in 1847 he became Manager of Shildon Works. In 1850 he resigned and moved to act as General Manager of Heaton Foundry, Stockport. In the following year he commenced business on his own at Newton Moor Iron Works near Manchester, where he built up his business as an iron-founder and boilermaker. By 1872 this works had become too small and he moved to a 4 acre (1.6 hectare) site at Hyde Junction, Dukinfield. There he employed 600 men making steel boilers, heavy machinery including mill engines fitted with the American Wheelock valve gear, hydraulic plant and general millwrighting. His success was based on his early recognition of the importance of using high-pressure steam and steel instead of wrought iron. In 1852 he patented his type of flanged seam for the firetubes of Lancashire boilers, which prevented these tubes cracking through expansion. In 1862 he patented the fabrication of boilers by drilling rivet holes instead of punching them and also by drilling the holes through two plates held together in their assembly positions. He had started to use steel for some boilers he made for railway locomotives in 1857, and in 1860, only four years after Bessemer's patent, he built six mill engine boilers from steel for Platt Bros, Oldham. He solved the problems of using this new material, and by his death had made c.2,800 steel boilers with pressures up to 250 psi (17.6 kg/cm2).
    He was a pioneer in the general introduction of steel and in 1863–4 was a partner in establishing the Yorkshire Iron and Steel Works at Penistone. This was the first works to depend entirely upon Bessemer steel for engineering purposes and was later sold at a large profit to Charles Cammell \& Co., Sheffield. When he started this works, he also patented improvements both to the Bessemer converters and to the engines which provided their blast. In 1870 he helped to turn Lincolnshire into an important ironmaking area by erecting the North Lincolnshire Ironworks. He was also a shareholder in ironworks in South Wales and Cumberland.
    He contributed to the development of the stationary steam engine, for as early as 1855 he built one to run with a pressure of 150 psi (10.5 kg/cm) that worked quite satisfactorily. He reheated the steam between the cylinders of compound engines and then in 1861–2 patented a triple-expansion engine, followed in 1873 by a quadruple-expansion one to further economize steam. In 1858 he developed improved machinery for testing tensile strength and compressive resistance of materials, and in the same year patents for hydraulic lifting jacks and riveting machines were obtained.
    He was a founding member of the Iron and Steel Institute and became its President in 1888 when it visited Manchester. The previous year he had been President of the Institution of Civil Engineers when he was presented with the Bessemer Gold Medal. He was a constant contributor at the meetings of these associations as well as those of the Institution of Mechanical Engineers. He did not live to see the opening of one of his final achievements, the Manchester Ship Canal. He was the one man who, by his indomitable energy and skill at public speaking, roused the enthusiasm of the people in Manchester for this project and he made it a really practical proposition in the face of strong opposition.
    [br]
    Principal Honours and Distinctions
    President, Institution of Civil Engineers 1887.
    President, Iron and Steel Institute 1888. Institution of Civil Engineers Bessemer Gold Medal 1887.
    Further Reading
    Obituary, Engineer 69:56.
    Obituary, Engineering 49:66–8.
    H.W.Dickinson, 1938, A Short History of the Steam Engine, Cambridge University Press (provides an illustration of Adamson's flanged seam for boilers).
    R.L.Hills, 1989, Power from Steam. A History of the Stationary Steam Engine, Cambridge University Press (covers the development of the triple-expansion engine).
    RLH

    Biographical history of technology > Adamson, Daniel

  • 19 Griffith, Alan Arnold

    [br]
    b. 13 June 1893 London, England
    d. 13 October 1963 Farnborough, England
    [br]
    English research engineer responsible for many original ideas, including jet-lift aircraft.
    [br]
    Griffith was very much a "boffin", for he was a quiet, thoughtful man who shunned public appearances, yet he produced many revolutionary ideas. During the First World War he worked at the Royal Aircraft Factory, Farnborough, where he carried out research into structural analysis. Because of his use of soap films in solving torsion problems, he was nicknamed "Soap-bubble".
    During the 1920s Griffith carried out research into gas-turbine design at the Royal Aircraft Establishment (RAE; as the Royal Aircraft Factory had become). In 1929 he made proposals for a gas turbine driving a propeller (a turboprop), but the idea was shelved. In the 1930s he was head of the Engine Department of the RAE and developed multi-stage axial compressors, which were later used in jet engines. This work attracted the attention of E.W. (later Lord) Hives of Rolls-Royce who persuaded Griffith to join Rolls-Royce in 1939. His first major project was a "contra-flow" jet engine, which was a good idea but a practical failure. However, Griffith's axial-flow compressor experience played an important part in the success of Rolls-Royce jet engines from the Avon onwards. He also proposed the bypass principle used for the Conway.
    Griffith experimented with suction to control the boundary layer on wings, but his main interest in the 1950s centred on vertical-take-off and -landing aircraft. He developed the remarkable "flying bedstead", which consisted of a framework (the bedstead) in which two jet engines were mounted with their jets pointing downwards, thus lifting the machine vertically. It first flew in 1954 and provided much valuable data. The Short SC1 aircraft followed, with four small jets providing lift for vertical take-off and one conventional jet to provide forward propulsion. This flew successfully in the late 1950s and early 1960s. Griffith proposed an airliner with lifting engines, but the weight of the lifting engines when not in use would have been a serious handicap. He retired in 1960.
    [br]
    Principal Honours and Distinctions
    CBE 1948. FRS 1941. Royal Aeronautical Society Silver Medal 1955; Blériot Medal 1962.
    Bibliography
    Griffith produced many technical papers in his early days; for example: 1926, Aerodynamic Theory of Turbine Design, Farnborough.
    Further Reading
    D.Eyre, 1966, "Dr A.A.Griffith, CBE, FRS", Journal of the Royal Aeronautical Society (June) (a detailed obituary).
    F.W.Armstrong, 1976, "The aero engine and its progress: fifty years after Griffith", Aeronautical Journal (December).
    O.Stewart, 1966, Aviation: The Creative Ideas, London (provides brief descriptions of Griffith's many projects).
    JDS

    Biographical history of technology > Griffith, Alan Arnold

  • 20 Bollée, Ernest-Sylvain

    [br]
    b. 19 July 1814 Clefmont (Haute-Marne), France
    d. 11 September 1891 Le Mans, France
    [br]
    French inventor of the rotor-stator wind engine and founder of the Bollée manufacturing industry.
    [br]
    Ernest-Sylvain Bollée was the founder of an extensive dynasty of bellfounders based in Le Mans and in Orléans. He and his three sons, Amédée (1844–1917), Ernest-Sylvain fils (1846–1917) and Auguste (1847-?), were involved in work and patents on steam-and petrol-driven cars, on wind engines and on hydraulic rams. The presence of the Bollées' car industry in Le Mans was a factor in the establishment of the car races that are held there.
    In 1868 Ernest-Sylvain Bollée père took out a patent for a wind engine, which at that time was well established in America and in England. In both these countries, variable-shuttered as well as fixed-blade wind engines were in production and patented, but the Ernest-Sylvain Bollée patent was for a type of wind engine that had not been seen before and is more akin to the water-driven turbine of the Jonval type, with its basic principle being parallel to the "rotor" and "stator". The wind drives through a fixed ring of blades on to a rotating ring that has a slightly greater number of blades. The blades of the fixed ring are curved in the opposite direction to those on the rotating blades and thus the air is directed onto the latter, causing it to rotate at a considerable speed: this is the "rotor". For greater efficiency a cuff of sheet iron can be attached to the "stator", giving a tunnel effect and driving more air at the "rotor". The head of this wind engine is turned to the wind by means of a wind-driven vane mounted in front of the blades. The wind vane adjusts the wind angle to enable the wind engine to run at a constant speed.
    The fact that this wind engine was invented by the owner of a brass foundry, with all the gear trains between the wind vane and the head of the tower being of the highest-quality brass and, therefore, small in scale, lay behind its success. Also, it was of prefabricated construction, so that fixed lengths of cast-iron pillar were delivered, complete with twelve treads of cast-iron staircase fixed to the outside and wrought-iron stays. The drive from the wind engine was taken down the inside of the pillar to pumps at ground level.
    Whilst the wind engines were being built for wealthy owners or communes, the work of the foundry continued. The three sons joined the family firm as partners and produced several steam-driven vehicles. These vehicles were the work of Amédée père and were l'Obéissante (1873); the Autobus (1880–3), of which some were built in Berlin under licence; the tram Bollée-Dalifol (1876); and the private car La Mancelle (1878). Another important line, in parallel with the pumping mechanism required for the wind engines, was the development of hydraulic rams, following the Montgolfier patent. In accordance with French practice, the firm was split three ways when Ernest-Sylvain Bollée père died. Amédée père inherited the car side of the business, but it is due to Amédée fils (1867– 1926) that the principal developments in car manufacture came into being. He developed the petrol-driven car after the impetus given by his grandfather, his father and his uncle Ernest-Sylvain fils. In 1887 he designed a four-stroke single-cylinder engine, although he also used engines designed by others such as Peugeot. He produced two luxurious saloon cars before putting Torpilleur on the road in 1898; this car competed in the Tour de France in 1899. Whilst designing other cars, Amédée's son Léon (1870–1913) developed the Voiturette, in 1896, and then began general manufacture of small cars on factory lines. The firm ceased work after a merger with the English firm of Morris in 1926. Auguste inherited the Eolienne or wind-engine side of the business; however, attracted to the artistic life, he sold out to Ernest Lebert in 1898 and settled in the Paris of the Impressionists. Lebert developed the wind-engine business and retained the basic "stator-rotor" form with a conventional lattice tower. He remained in Le Mans, carrying on the business of the manufacture of wind engines, pumps and hydraulic machinery, describing himself as a "Civil Engineer".
    The hydraulic-ram business fell to Ernest-Sylvain fils and continued to thrive from a solid base of design and production. The foundry in Le Mans is still there but, more importantly, the bell foundry of Dominique Bollée in Saint-Jean-de-Braye in Orléans is still at work casting bells in the old way.
    [br]
    Further Reading
    André Gaucheron and J.Kenneth Major, 1985, The Eolienne Bollée, The International Molinological Society.
    Cénomane (Le Mans), 11, 12 and 13 (1983 and 1984).
    KM

    Biographical history of technology > Bollée, Ernest-Sylvain

См. также в других словарях:

  • Engines and Escapades — was a DVD of Thomas the Tank Engine and Friends , containing episodes unseen on TV. These episodes were the 3rd of the annual straight to DVD releases by HiT Entertainment, and are considered to be part of Season 11 of 2007. The DVD was released… …   Wikipedia

  • Engines of Creation — Infobox Book name = Engines of Creation: The Coming Era of Nanotechnology title orig = translator = image caption = author = K. Eric Drexler illustrator = cover artist = country = language = series = subject = genre = publisher = Doubleday pub… …   Wikipedia

  • Engines of Creation (album) — Infobox Album | Name = Engines of Creation Type = Album Artist = Joe Satriani Released = March 14, 2000 Recorded = Genre = Instrumental rock Length = 53:30 Label = Epic Producer = Joe Satriani Reviews = *Allmusic Rating|3|5… …   Wikipedia

  • Engines (children's book) — Infobox Book | name = Engines title orig = translator = image caption = Cover of Engines author = L. Sprague de Camp illustrator = Jack Coggins cover artist = Lowell Hess country = United States language = English series = subject = Engineering… …   Wikipedia

  • Engines —    1) Heb. hishalon i.e., invention (as in Eccl. 7:29) contrivances indicating ingenuity. In 2 Chr. 26:15 it refers to inventions for the purpose of propelling missiles from the walls of a town, such as stones (the Roman balista) and arrows (the… …   Easton's Bible Dictionary

  • Railway engines (Thomas and Friends) — For the narrow gauge railway engines from Thomas and Friends, see Narrow gauge engines (Thomas and Friends). This article lists the standard gauge Railway Engine characters of the Television Series Thomas and Friends (formerly Thomas the Tank… …   Wikipedia

  • Walter Aircraft Engines — For the German company, see Hellmuth Walter Kommanditgesellschaft. Walter Aircraft Engines Industry Aerospace Founded 1911 Headquarters Prague, Czech Republic Parent …   Wikipedia

  • Walter Engines — For the German company see Hellmuth Walter Kommanditgesellschaft Walter Engines a.s. is a Czech subsidiary of GE Aviation based in Prague that manufactures aircraft engines, in particular the M601 turboprop used in the Let L 410 Turbolet 19 seat… …   Wikipedia

  • List of Renault engines — Engines used by French automaker Renault SA have historically been referenced in technical specifications along two distinct systems: * a purely numeric system used from the origins of the company until the mid 1980s * an alphanumeric system in… …   Wikipedia

  • List of GM engines — This is a list of GM engines, or more specifically a list of engine designs that General Motors has used in its various products.DivisionsFrom its founding in 1908, GM allowed each of its divisions (including overseas units like Opel and Holden)… …   Wikipedia

  • Cox Model Engines — are used to power small model airplanes, model cars and model boats. Cox engines were in production for more than 50 years between 1945 and 2006 by L.M. Cox Manufacturing Co. Inc. who later became Cox Hobbies Inc. and then Cox Products before… …   Wikipedia

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»