Перевод: со всех языков на английский

с английского на все языки

fire+outbreak

  • 21 вибух

    ч
    1) explosion, blast, burst, detonation

    "Великий вибух" астр.the Big Bang

    здійснювати вибухto conduct (to carry out, to fire, to set off) an explosion

    2) ( бурхливе виявлення чогось) (out)burst, explosion, upheaval; ( сміху) eruption

    вибухи сміхуpeals (screams, outbursts) of laughter

    Українсько-англійський словник > вибух

  • 22 اندلاع

    n. outbreak, flare up, setting fire

    Arabic-English dictionary > اندلاع

  • 23 вспышка

    blaze, burst, explosion, fire, flare, outbreak, scintillation, spark

    Русско-английский научно-технический словарь Масловского > вспышка

  • 24 вспыхивать

    flash глагол:

    Русско-английский синонимический словарь > вспыхивать

  • 25 uitbreken

    voorbeelden:
    1   het angstzweet brak hem uit he broke out in a cold sweat
         er is brand/een epidemie uitgebroken a fire/epidemic has broken out
         een muur uitbreken knock down (a part of) a wall
         bij het uitbreken van de oorlog at/on the outbreak of the war
         breek er eens een dagje uit take a day off

    Van Dale Handwoordenboek Nederlands-Engels > uitbreken

  • 26 Gatling, Dr Richard Jordan

    [br]
    b. 12 September 1818 Winston, North Carolina, USA
    d. 26 February 1903 New York, USA
    [br]
    American weapons designer and metallurgist.
    [br]
    Gatling first became interested in inventing when helping his father develop more-efficient agricultural machines, and as early as 1839 he developed a screw propeller for ships. Shortly after this he was struck down by smallpox, and it was this that caused him, when he recovered, to study medicine; he did this at the Ohio Medical College, graduating in 1850. The outbreak of the American Civil War in 1861 triggered an immediate interest in weaponry and he set about designing a rapid-fire weapon, which would both bear his name and be one of the forerunners of the machine gun: he completed his design of the Gatling Gun in 1862. His concept of using several barrels was not unique, with other inventors such as the Belgian Fafschamps and the Frenchman Reffye also employing it. However, Catling's gun was superior to the others in the soundness of its engineering. The rounds were fed through a hopper on top of the gun into the chambers of each barrel, and the barrels themselves were fixed in a cluster. An endless screw operated by a hand crank controlled the operation, opening the breech of each barrel in turn, enabling the round to drop into the chamber through a series of grooves, and then closing the breech and releasing the striker. In the face of fierce competition, the Gatling was adopted by the US Army in 1866, and many other armies followed suit. Although a version powered by an electric motor was introduced in 1893, the Gatling was gradually superseded by the fully automatic machine gun, first developed by Maxim. Even so, such was the excellence of the Gatling's mechanics that the concept was readopted by the Americans in the late 1950s and employed in such systems as the Vulcan air-defence gun and the airborne Minigun. Gatling's inventions did not end with his gun. In 1886 he developed a new steel and aluminium alloy and also experimented with the production of cast-steel cannon.
    CM

    Biographical history of technology > Gatling, Dr Richard Jordan

  • 27 Nobel, Immanuel

    [br]
    b. 1801 Gävle, Sweden
    d. 3 September 1872 Stockholm, Sweden
    [br]
    Swedish inventor and industrialist, particularly noted for his work on mines and explosives.
    [br]
    The son of a barber-surgeon who deserted his family to serve in the Swedish army, Nobel showed little interest in academic pursuits as a child and was sent to sea at the age of 16, but jumped ship in Egypt and was eventually employed as an architect by the pasha. Returning to Sweden, he won a scholarship to the Stockholm School of Architecture, where he studied from 1821 to 1825 and was awarded a number of prizes. His interest then leaned towards mechanical matters and he transferred to the Stockholm School of Engineering. Designs for linen-finishing machines won him a prize there, and he also patented a means of transforming rotary into reciprocating movement. He then entered the real-estate business and was successful until a fire in 1833 destroyed his house and everything he owned. By this time he had married and had two sons, with a third, Alfred (of Nobel Prize fame; see Alfred Nobel), on the way. Moving to more modest quarters on the outskirts of Stockholm, Immanuel resumed his inventions, concentrating largely on India rubber, which he applied to surgical instruments and military equipment, including a rubber knapsack.
    It was talk of plans to construct a canal at Suez that first excited his interest in explosives. He saw them as a means of making mining more efficient and began to experiment in his backyard. However, this made him unpopular with his neighbours, and the city authorities ordered him to cease his investigations. By this time he was deeply in debt and in 1837 moved to Finland, leaving his family in Stockholm. He hoped to interest the Russians in land and sea mines and, after some four years, succeeded in obtaining financial backing from the Ministry of War, enabling him to set up a foundry and arms factory in St Petersburg and to bring his family over. By 1850 he was clear of debt in Sweden and had begun to acquire a high reputation as an inventor and industrialist. His invention of the horned contact mine was to be the basic pattern of the sea mine for almost the next 100 years, but he also created and manufactured a central-heating system based on hot-water pipes. His three sons, Ludwig, Robert and Alfred, had now joined him in his business, but even so the outbreak of war with Britain and France in the Crimea placed severe pressures on him. The Russians looked to him to convert their navy from sail to steam, even though he had no experience in naval propulsion, but the aftermath of the Crimean War brought financial ruin once more to Immanuel. Amongst the reforms brought in by Tsar Alexander II was a reliance on imports to equip the armed forces, so all domestic arms contracts were abruptly cancelled, including those being undertaken by Nobel. Unable to raise money from the banks, Immanuel was forced to declare himself bankrupt and leave Russia for his native Sweden. Nobel then reverted to his study of explosives, particularly of how to adapt the then highly unstable nitroglycerine, which had first been developed by Ascanio Sobrero in 1847, for blasting and mining. Nobel believed that this could be done by mixing it with gunpowder, but could not establish the right proportions. His son Alfred pursued the matter semi-independently and eventually evolved the principle of the primary charge (and through it created the blasting cap), having taken out a patent for a nitroglycerine product in his own name; the eventual result of this was called dynamite. Father and son eventually fell out over Alfred's independent line, but worse was to follow. In September 1864 Immanuel's youngest son, Oscar, then studying chemistry at Uppsala University, was killed in an explosion in Alfred's laboratory: Immanuel suffered a stroke, but this only temporarily incapacitated him, and he continued to put forward new ideas. These included making timber a more flexible material through gluing crossed veneers under pressure and bending waste timber under steam, a concept which eventually came to fruition in the form of plywood.
    In 1868 Immanuel and Alfred were jointly awarded the prestigious Letterstedt Prize for their work on explosives, but Alfred never for-gave his father for retaining the medal without offering it to him.
    [br]
    Principal Honours and Distinctions
    Imperial Gold Medal (Russia) 1853. Swedish Academy of Science Letterstedt Prize (jointly with son Alfred) 1868.
    Bibliography
    Immanuel Nobel produced a short handwritten account of his early life 1813–37, which is now in the possession of one of his descendants. He also had published three short books during the last decade of his life— Cheap Defence of the Country's Roads (on land mines), Cheap Defence of the Archipelagos (on sea mines), and Proposal for the Country's Defence (1871)—as well as his pamphlet (1870) on making wood a more physically flexible product.
    Further Reading
    No biographies of Immanuel Nobel exist, but his life is detailed in a number of books on his son Alfred.
    CM

    Biographical history of technology > Nobel, Immanuel

  • 28 Somerset, Edward, 2nd Marquis of Worcester

    [br]
    b. 1601
    d. 3 April 1667 Lambeth (?), London, England
    [br]
    English inventor of a steam-operated pump for raising water, described in his work A Century of…Inventions.
    [br]
    Edward Somerset became 6th Earl and 2nd Marquis of Worcester and Titular Earl of Glamorgan. He was educated privately and then abroad, visiting Germany, Italy and France. He was made Councillor of Wales in 1633 and Deputy Lord Lieutenant of Monmouthshire in 1635. On the outbreak of the Civil War, he was commissioned to levy forces against the Scots in 1640. He garrisoned Raglan Castle for the King and was employed by Charles I to bring troops in from Ireland. He was declared an enemy of the realm by Parliament and was banished, remaining in France for some years. On the Restoration, he recovered most of his estates, principally in South Wales, and was able to devote most of his time to mechanical studies and experiments.
    Soon after 1626, he had employed the services of a skilled Dutch or German mechanic, Caspar Kaltoff, to make small-scale models for display to interested people. In 1638 he showed Charles I a 14 ft (4.3m) diameter wheel carrying forty weights that was claimed to have solved the problem of perpetual motion. He wrote his Century of the Names and Scantlings of Such Inventions as at Present I Can Call to Mind to have Tried and Perfected in 1655, but it was not published until 1663: no. 68 describes "An admirable and most forcible way to drive up water by fire", which has been claimed as an early steam-engine. Before the Civil War he made experiments at Raglan Castle, and after the war he built one of his engines at Vauxhall, London, where it raised water to a height of 40 ft (12 m). An Act of Parliament enabling Worcester to receive the benefit and profits of his water-commanding engine for ninety-nine years did not restore his fortunes. Descriptions of this invention are so vague that it cannot be reconstructed.
    [br]
    Bibliography
    1655, Century of the Names and Scantlings of Such Inventions as at Present I Can Call to Mind to have Tried and Perfected.
    Further Reading
    H.Dircks, 1865, The Life, Times and Scientific Labours of the Second Marquis of Worcester.
    Dictionary of National Biography, 1898, Vol. L, London: Smith Elder \& Co. (mainly covers his political career).
    H.W.Dickinson, 1938, A Short History of the Steam Engine, Cambridge University Press (discusses his steam engine invention).
    W.H.Thorpe, 1932–3, "The Marquis of Worcester and Vauxhall", Transactions of the Newcomen Society 13.
    RLH

    Biographical history of technology > Somerset, Edward, 2nd Marquis of Worcester

  • 29 Zworykin, Vladimir Kosma

    [br]
    b. 30 July 1889 Mourum (near Moscow), Russia
    d. 29 July 1982 New York City, New York, USA
    [br]
    Russian (naturalized American 1924) television pioneer who invented the iconoscope and kinescope television camera and display tubes.
    [br]
    Zworykin studied engineering at the Institute of Technology in St Petersburg under Boris Rosing, assisting the latter with his early experiments with television. After graduating in 1912, he spent a time doing X-ray research at the Collège de France in Paris before returning to join the Russian Marconi Company, initially in St Petersburg and then in Moscow. On the outbreak of war in 1917, he joined the Russian Army Signal Corps, but when the war ended in the chaos of the Revolution he set off on his travels, ending up in the USA, where he joined the Westinghouse Corporation. There, in 1923, he filed the first of many patents for a complete system of electronic television, including one for an all-electronic scanning pick-up tube that he called the iconoscope. In 1924 he became a US citizen and invented the kinescope, a hard-vacuum cathode ray tube (CRT) for the display of television pictures, and the following year he patented a camera tube with a mosaic of photoelectric elements and gave a demonstration of still-picture TV. In 1926 he was awarded a PhD by the University of Pittsburgh and in 1928 he was granted a patent for a colour TV system.
    In 1929 he embarked on a tour of Europe to study TV developments; on his return he joined the Radio Corporation of America (RCA) as Director of the Electronics Research Group, first at Camden and then Princeton, New Jersey. Securing a budget to develop an improved CRT picture tube, he soon produced a kinescope with a hard vacuum, an indirectly heated cathode, a signal-modulation grid and electrostatic focusing. In 1933 an improved iconoscope camera tube was produced, and under his direction RCA went on to produce other improved types of camera tube, including the image iconoscope, the orthicon and image orthicon and the vidicon. The secondary-emission effect used in many of these tubes was also used in a scintillation radiation counter. In 1941 he was responsible for the development of the first industrial electron microscope, but for most of the Second World War he directed work concerned with radar, aircraft fire-control and TV-guided missiles.
    After the war he worked for a time on high-speed memories and medical electronics, becoming Vice-President and Technical Consultant in 1947. He "retired" from RCA and was made an honorary vice-president in 1954, but he retained an office and continued to work there almost up until his death; he also served as Director of the Rockefeller Institute for Medical Research from 1954 until 1962.
    [br]
    Principal Honours and Distinctions
    Zworykin received some twenty-seven awards and honours for his contributions to television engineering and medical electronics, including the Institution of Electrical Engineers Faraday Medal 1965; US Medal of Science 1966; and the US National Hall of Fame 1977.
    Bibliography
    29 December 1923, US patent no. 2,141, 059 (the original iconoscope patent; finally granted in December 1938!).
    13 July 1925, US patent no. 1,691, 324 (colour television system).
    1930, with D.E.Wilson, Photocells and Their Applications, New York: Wiley. 1934, "The iconoscope. A modern version of the electric eye". Proceedings of the
    Institute of Radio Engineers 22:16.
    1946, Electron Optics and the Electron Microscope.
    1940, with G.A.Morton, Television; revised 1954.
    Further Reading
    J.H.Udelson, 1982, The Great Television Race: History of the Television Industry 1925– 41: University of Alabama Press.
    KF

    Biographical history of technology > Zworykin, Vladimir Kosma

  • 30 воздух

    воздух сущ
    air
    автомат подсоса воздуха
    air diluter
    атмосферный воздух
    free aid
    в воздухе
    1. aloft
    2. up вентиляционный поток воздуха
    ventilation airlow
    воздух в пограничном слое
    boundary-layer air
    воздух в турбулентном состоянии
    rough air
    воздух, отбираемый от компрессора
    compressor-bleed air
    воздух, проходящий через первый контур
    main air
    воздух суфлирования
    breather air
    воздушное судно, находящееся в воздухе
    airborne aircraft
    восходящий поток воздуха
    ascending air
    восходящий поток воздуха на маршруте полета
    en-route updraft
    время фактического нахождения в воздухе
    actual airborne time
    вторая степень свободы воздуха
    second freedom of the air
    вторжение фронта холодного воздуха
    cold-air outbreak
    входное устройство с использованием сжатия воздуха на входе
    internal-compression inlet
    господство в воздухе
    air supremacy
    давление воздуха
    air pressure
    данные о результатах испытания в воздухе
    air data
    доставка грузов по воздуху
    aerial cargo delivery
    доставлять по воздуху
    fly in
    заборник воздуха для надува топливных баков от скоростного напора
    ram air assembly
    завихрение воздуха
    air eddy
    завоевывать господство в воздухе
    gain the air supremacy
    запуск в воздухе
    1. airstart
    2. air starting заслонка дозировки расхода воздуха
    air-flow metering unit
    заторможенный поток воздуха
    ram air
    испытание в воздухе
    air trial
    канал подвода воздуха к лабиринтному уплотнению
    sealing air passage
    канал связи воздух - земля
    air-ground communication channel
    канал спутниковой радиосвязи воздух - земля
    downlink satellite radio channel
    канал спутниковой связи воздух - земля
    aircraft-to-satellite channel
    клапан перепуска воздуха из компрессора
    compressor bleed valve
    кнопка запуска двигателя в воздухе
    flight restart button
    код визуального сигнала земля - воздух
    ground-air visual signal code
    кольцевой канал подвода воздуха к лабиринтному управления
    sealing air annulus
    кондиционирование воздуха
    1. air conditioning
    2. air-conditioning лента перепуска воздуха из компрессора
    compressor bleed band
    летательный аппарат легче воздуха
    1. lighter-than-air vehicle
    2. lighter-than-air aircraft летательный аппарат тяжелее воздуха
    1. heavier-than-air
    2. heavier-than-air aircraft массовый расход воздуха
    mass air flow
    механизм управления клапанами перепуска воздуха
    bleed valve control mechanism
    наблюдение с воздуха
    1. air survey
    2. aerial inspection наружный воздух
    open air
    невозмущенный воздух
    dead air
    недостаток воздуха
    air deficiency
    обогреватель воздуха
    air heater
    окно отбора воздуха
    air bleed hole
    окно подвода воздуха к жаровой трубе
    flame tube air hole
    окружающий воздух
    ambient air
    опознавать аэродром с воздуха
    identify the aerodrome from the air
    определять местоположение с воздуха
    indicate the location from the air
    опрыскивание сельскохозяйственных культур с воздуха
    aerial crop spraying
    опыление с воздуха
    aerial dusting
    отбирать воздух
    1. fuel trankage
    2. tap off отбирать воздух от компрессора
    tap air from the compressor
    отбор воздуха
    air bleed
    отверстие отбора воздуха
    air bleed port
    отводить воздух в атмосферу
    discharge air overboard
    охлаждение набегающим потоком воздуха
    ram air cooling
    парить в воздухе
    sail
    патрубок отвода охлаждающего воздуха
    cooling air outlet tube
    патрубок подвода воздуха
    air feeder
    патрулирование линий электропередач с воздуха
    power patrol operation
    первая степень свободы воздуха
    first freedom of the air
    перевозка грузов по воздуху
    air freight lift
    перепускать воздух
    bleed off air
    плотность воздуха
    air density
    плотность воздуха на уровне моря
    sea level atmospheric density
    подниматься в воздух
    ago aloft
    поиск с воздуха
    air search
    полет для выполнения наблюдений с воздуха
    1. aerial survey operation
    2. aerial survey flight полет для контроля состояния посевов с воздуха
    crop control operation
    полет с дозаправкой топлива в воздухе
    refuelling flight
    постоянный отбор воздуха
    continuous air bleed
    предупреждение столкновений в воздухе
    mid air collision control
    привод механизма отбора воздуха
    bleed actuator
    противообледенитель, использующий нагретый воздух
    hot-air deicer
    противопожарное патрулирование с воздуха
    fire control operation
    разреженный воздух
    1. light air
    2. rarefied air расход воздуха через двигатель
    engine airflow
    расходомер воздуха
    air meter
    расчетная температура воздуха
    aerodrome reference temperature
    регулятор отбора воздуха
    bleed governor
    режим воздушного потока в заборнике воздуха
    inlet airflow schedule
    ресивер отбора воздуха
    bleed air receiver
    решетка для забора воздуха
    air grill
    руление по воздуху
    air taxiing
    руление по воздуху к месту взлета
    aerial taxiing to takeoff
    связь воздух - земля
    1. air-to-ground communication
    2. air-ground communication сигнал земля - воздух
    ground-air signal
    сильный нисходящий поток воздуха
    sinker
    система забора воздуха
    air induction system
    система кондиционирования воздуха
    air conditioning system
    (в кабине воздушного судна) система отбора воздуха
    air bleed system
    (от компрессора) система распыления с воздуха
    aerial spraying system
    (например, удобрений) система регулирования температуры воздуха в кабине
    cabin temperature control system
    система увлажнения воздуха
    air humidifying system
    смесительный воздух
    mixing air
    смеситель потоков воздуха
    air flow mixer
    сопротивление воздуха
    1. windage
    2. air drag сопротивление воздуха вращению несущего винта
    rotor windage
    степень расхода воздуха
    air flow rate
    степень свободы воздуха
    freedom of the air
    столкновение в воздухе
    1. aerial collision
    2. mid-air collision стравливать давление воздуха
    release air
    тележка с баллонами сжатого воздуха
    air bottle cart
    температура атмосферного воздуха
    free-air temperature
    температура воздуха в трубопроводе
    duct air temperature
    температура набегающего потока воздуха
    ram air temperature
    температура наружного воздуха
    outside air temperature
    температура окружающего воздуха
    ambient air temperature
    транспортировка по воздуху
    shipment by air
    трубопровод подвода воздуха к воздухозаборнику
    pipeline to air intake
    трубопровод подвода воздуха к предкрылку
    pipeline to wing slat
    трубопровод подвода воздуха к хвостовому оперению
    pipeline to tail unit
    указатель расхода воздуха
    air-flow indicator
    указатель температуры наружного воздуха
    outside air temperature indicator
    фланец отбора воздуха от двигателя
    engine air bleed flange
    характеристика расхода воздуха
    air flow characteristic
    холодный фронт воздуха
    cold air
    циркуляция атмосферного воздуха
    atmospheric motion
    циркуляция воздуха
    air circulation
    шланг для стравливания воздуха
    air release hose
    штуцер зарядки воздухом
    air charging connection
    штуцер откачки воздуха
    defueling connection

    Русско-английский авиационный словарь > воздух

См. также в других словарях:

  • Outbreak (film) — Outbreak Theatrical release poster Directed by Wolfgang Petersen Produced by …   Wikipedia

  • fire alarm — n. 1. a signal to announce the outbreak of a fire, the activation of a smoke detector, etc. 2. a bell, siren, whistle, flashing light, etc. to give this signal …   English World dictionary

  • Fire on the Mountain (1988 novel) — Fire on the Mountain is a 1988 novel by Terry Bisson. It is an alternate history describing the world as it would have been had John Brown succeeded in his raid on Harper s Ferry and touched off a slave rebellion in 1859, as he intended. The… …   Wikipedia

  • Outbreak - Lautlose Killer — Filmdaten Deutscher Titel: Outbreak – Lautlose Killer Originaltitel: Outbreak Produktionsland: USA Erscheinungsjahr: 1995 Länge: 123 Minuten Originalsprache: Englisch …   Deutsch Wikipedia

  • Outbreak – Lautlose Killer — Filmdaten Deutscher Titel: Outbreak – Lautlose Killer Originaltitel: Outbreak Produktionsland: USA Erscheinungsjahr: 1995 Länge: 123 Minuten Originalsprache: Englisch …   Deutsch Wikipedia

  • Outbreak — Filmdaten Deutscher Titel Outbreak – Lautlose Killer Originaltitel Outbreak …   Deutsch Wikipedia

  • Fire-Eaters — In United States history, the term Fire Eaters refers to a group of extremist pro slavery politicians from the South who urged the separation of southern states into a new nation, which became known as the Confederate States of America.ImpactBy… …   Wikipedia

  • Fire of London —    In 1666, from September 2nd to 6th.    Commenced at the house of a baker in Pudding Lane, near London Bridge, and spread through the narrow streets and lanes of the City with extraordinary rapidity. Its progress west was only stopped within… …   Dictionary of London

  • 2008 Super Tuesday tornado outbreak — Infobox tornado outbreak name = 2008 Super Tuesday Tornado Outbreak image location = Noaa outbreak graphic.png date = February 5–6, 2008 duration = 15 hours, 20 minutes fujitascale = EF4 tornadoes = 87 confirmed total damages (USD) = ≥$507… …   Wikipedia

  • April 2, 2006 Tornado Outbreak — Infobox tornado outbreak|name=April 2 2006 Tornado Outbreak date=April 2, 2006 image location=Tornado southofKennett.jpg Kennett, Missouri duration=6 hours, 43 minutes fujitascale=F3 tornadoes=66 confirmed total damages (USD)=$1.1 billioncite… …   Wikipedia

  • February–March 2007 Tornado Outbreak — Infobox tornado outbreak name=February–March 2007 Tornado image location=Enterprise Radar.jpg date=February 28 – March 2, 2007 duration=37 hours, 7 minutes fujitascale=EF4 enhanced=yes tornadoes=55 confirmed total damages (USD)=>$580 million… …   Wikipedia

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»