Перевод: с английского на все языки

со всех языков на английский

feed+rolls

  • 21 grinding

    1) шлифование

    2) затачивание
    3) зашлифовывание
    4) зашлифовка
    5) измельчающий
    6) мельничный
    7) перемол
    8) размалывание
    9) размол
    10) умол
    11) шлифовочный
    12) заточка
    13) шлифовка
    14) заточной
    15) зачистка
    16) притирочный
    17) притирка
    18) мелющий
    19) намольный
    20) шлифовальный
    band grinding
    coarse grinding
    dry grinding
    fine grinding
    finish by grinding
    finish grinding
    grinding by attrition
    grinding by crushing
    grinding capacity
    grinding crack
    grinding drum
    grinding fan
    grinding gauge
    grinding head
    grinding machine
    grinding material
    grinding mill
    grinding paste
    grinding powder
    grinding rolls
    grinding shaft
    grinding steady-rest
    grinding wheel
    high-velocity grinding
    impact grinding
    in-feed grinding
    infeed grinding
    internal grinding
    plunge grinding
    rough grinding
    valve grinding
    wet grinding

    electric-erosion tool grindingэлектроискровое затачивание


    grinding wheel headшлифовальная бабка


    laminated grinding wheelшлифовальный многослойный круг

    Англо-русский технический словарь > grinding

  • 22 Applegath, Augustus

    SUBJECT AREA: Paper and printing
    [br]
    fl. 1816–58 London, England
    [br]
    English printer and manufacturer of printing machinery.
    [br]
    After Koenig and Bauer had introduced the machine printing-press and returned to Germany, it fell to Applegath and his mechanic brother-in-law Edward Cooper to effect improvements. In particular, Applegath succeeded Koenig and Bauer as machine specialist to The Times newspaper, then in the vanguard of printing technology.
    Applegath and Cooper first came into prominence when the Bank of England began to seek ways of reducing the number of forged banknotes. In 1816 Cooper patented a device for printing banknotes from curved stereotypes fixed to a cylinder. These were inked and printed by the rotary method. Although Applegath and Cooper were granted money to develop their invention, the Bank did not pursue it. The idea of rotary printing was interesting, but it was not followed up, possibly due to lack of demand.
    Applegath and Cooper were then engaged by John Walter of The Times to remedy defects in Koenig and Bauer's presses; in 1818 Cooper patented an improved method of inking the forme and Applegath also took out patents for improvements. In 1821 Applegath had enough experience of these presses to set up as a manufacturer of printing machinery in premises in Duke Street, Blackfriars, in London. Increases in the size and circulation of The Times led Walter to ask Applegath to build a faster press. In 1827 he produced a machine with the capacity of four presses, his steam-driven four-feeder press.
    Its flat form carrying the type passed under four impression cylinders in a row. It could make 4,200 impressions an hour and sufficed to print The Times for twenty years, until it was superseded by the rotary press devised by Hoe. By 1826, however, Applegath was in financial difficulties; he sold his Duke Street workshop to William Clowes, a book printer. In the following year he gave up being a full-time manufacturer of printing machinery and turned to silk printing. In 1830 he patented a machine for printing rolls of calico and silk from bent intaglio plates.
    In 1848 Applegath was persuaded by The Times to return to newspaper printing. He tackled rotary printing without the benefit of curved printing plates and roll paper feed, and he devised a large "type revolving" machine which set the pattern for newspaper printing-presses for some twenty years.
    [br]
    Further Reading
    J.Moran, 1973, Printing Presses, London: Faber \& Faber.
    LRD

    Biographical history of technology > Applegath, Augustus

  • 23 Baumann, Karl

    [br]
    b. 18 April 1884 Switzerland
    d. 14 July 1971 Ilkley, Yorkshire
    [br]
    Swiss/British mechanical engineer, designer and developer of steam and gas turbine plant.
    [br]
    After leaving school in 1902, he went to the Ecole Polytechnique, Zurich, leaving in 1906 with an engineering diploma. He then spent a year with Professor A.Stodola, working on steam engines, turbines and internal combustion engines. He also conducted research in the strength of materials. After this, he spent two years as Research and Design Engineer at the Nuremberg works of Maschinenfabrik Augsburg-Nürnberg. He came to England in 1909 to join the British Westinghouse Co. Ltd in Manchester, and by 1912 was Chief Engineer of the Engine Department of that firm. The firm later became the Metropolitan-Vickers Electrical Co. Ltd (MV), and Baumann rose from Chief Mechanical Engineer through to, by 1929, Special Director and Member of the Executive Management Board; he remained a director until his retirement in 1949.
    For much of his career, Baumann was in the forefront of power station steam-cycle development, pioneering increased turbine entry pressures and temperatures, in 1916 introducing multi-stage regenerative feed-water heating and the Baumann turbine multi-exhaust. His 105 MW set for Battersea "A" station (1933) was for many years the largest single-axis unit in Europe. From 1938 on, he and his team were responsible for the first axial-flow aircraft propulsion gas turbines to fly in England, and jet engines in the 1990s owe much to the "Beryl" and "Sapphire" engines produced by MV. In particular, the design of the compressor for the Sapphire engine later became the basis for Rolls-Royce units, after an exchange of information between that company and Armstrong-Siddeley, who had previously taken over the aircraft engine work of MV.Further, the Beryl engine formed the basis of "Gatric", the first marine gas turbine propulsion engine.
    Baumann was elected to full membership for the Institution of Mechanical Engineers in 1929 and a year later was awarded the Thomas Hawksley Gold Medal by that body, followed by their James Clayton Prize in 1948: in the same year he became the thirty-fifth Thomas Hawksley lecturer. Many of his ideas and introductions have stood the test of time, being based on his deep and wide understanding of fundamentals.
    JB

    Biographical history of technology > Baumann, Karl

  • 24 Ramsbottom, John

    [br]
    b. 11 September 1814 Todmorden, Lancashire, England
    d. 20 May 1897 Alderley Edge, Cheshire, England
    [br]
    English railway engineer, inventor of the reversing rolling mill.
    [br]
    Ramsbottom's initial experience was gained at the locomotive manufacturers Sharp, Roberts \& Co. At the age of 28 he was Manager of the Longsight works of the Manchester \& Birmingham Railway, which, with other lines, became part of the London \& North Western Railway (L \& NWR) in 1846. Ramsbottom was appointed Locomotive Superintendent of its north-eastern division. Soon after 1850 came his first major invention, that of the split-ring piston, consisting of castiron rings fitted round the piston to ensure a steam-tight fit in the cylinder. This proved to be successful, with a worldwide application. In 1856 he introduced sight-feed lubrication and the form of safety valve that bears his name. In 1857 he became Locomotive Superintendent of the L \& NWR at Crewe, producing two notable classes of locomotives: 2–4–0s for passenger traffic; and 0–6–0s for goods. They were of straightforward design and robust construction, and ran successfully for many years. His most spectacular railway invention was the water trough between the rails which enabled locomotives to replenish their water tanks without stopping.
    As part of his policy of making Crewe works as independent as possible, Ramsbottom made several metallurgical innovations. He installed one of the earliest Bessemer converters for steelmaking. More important, in 1866 he coupled the engine part of a railway engine to a two-high rolling mill so that the rolls could be run in either direction, and quickly change direction, by means of the standard railway link reversing gear. This greatly speeded up the rolling of iron or steel into the required sections. He eventually retired in 1871.
    [br]
    Further Reading
    J.N.Weatwood, 1977, Locomotive Designers in the Age of Steam, London: Sidgwick \& Jackson, pp. 43–7.
    W.K.V.Gale, 1969, Iron and Steel, London: Longmans, p. 80 (provides brief details of his reversing mill).
    F.C.Hammerton, 1937, John Ramsbottom, the Father of the Modern Locomotive,
    London.
    LRD

    Biographical history of technology > Ramsbottom, John

  • 25 Riley, James

    SUBJECT AREA: Metallurgy
    [br]
    b. 1840 Halifax, England
    d. 15 July 1910 Harrogate, England
    [br]
    English steelmaker who promoted the manufacture of low-carbon bulk steel by the open-hearth process for tin plate and shipbuilding; pioneer of nickel steels.
    [br]
    After working as a millwright in Halifax, Riley found employment at the Ormesby Ironworks in Middlesbrough until, in 1869, he became manager of the Askam Ironworks in Cumberland. Three years later, in 1872, he was appointed Blast-furnace Manager at the pioneering Siemens Steel Company's works at Landore, near Swansea in South Wales. Using Spanish ore, he produced the manganese-rich iron (spiegeleisen) required as an additive to make satisfactory steel. Riley was promoted in 1874 to be General Manager at Landore, and he worked with William Siemens to develop the use of the latter's regenerative furnace for the production of open-hearth steel. He persuaded Welsh makers of tin plate to use sheets rolled from lowcarbon (mild) steel instead of from charcoal iron and, partly by publishing some test results, he was instrumental in influencing the Admiralty to build two naval vessels of mild steel, the Mercury and the Iris.
    In 1878 Riley moved north on his appointment as General Manager of the Steel Company of Scotland, a firm closely associated with Charles Tennant that was formed in 1872 to make steel by the Siemens process. Already by 1878, fourteen Siemens melting furnaces had been erected, and in that year 42,000 long tons of ingots were produced at the company's Hallside (Newton) Works, situated 8 km (5 miles) south-east of Glasgow. Under Riley's leadership, steelmaking in open-hearth furnaces was initiated at a second plant situated at Blochairn. Plates and sections for all aspects of shipbuilding, including boilers, formed the main products; the company also supplied the greater part of the steel for the Forth (Railway) Bridge. Riley was associated with technical modifications which improved the performance of steelmaking furnaces using Siemens's principles. He built a gasfired cupola for melting pig-iron, and constructed the first British "universal" plate mill using three-high rolls (Lauth mill).
    At the request of French interests, Riley investigated the properties of steels containing various proportions of nickel; the report that he read before the Iron and Steel Institute in 1889 successfully brought to the notice of potential users the greatly enhanced strength that nickel could impart and its ability to yield alloys possessing substantially lower corrodibility.
    The Steel Company of Scotland paid dividends in the years to 1890, but then came a lean period. In 1895, at the age of 54, Riley moved once more to another employer, becoming General Manager of the Glasgow Iron and Steel Company, which had just laid out a new steelmaking plant at Wishaw, 25 km (15 miles) south-east of Glasgow, where it already had blast furnaces. Still the technical innovator, in 1900 Riley presented an account of his experiences in introducing molten blast-furnace metal as feed for the open-hearth steel furnaces. In the early 1890s it was largely through Riley's efforts that a West of Scotland Board of Conciliation and Arbitration for the Manufactured Steel Trade came into being; he was its first Chairman and then its President.
    In 1899 James Riley resigned from his Scottish employment to move back to his native Yorkshire, where he became his own master by acquiring the small Richmond Ironworks situated at Stockton-on-Tees. Although Riley's 1900 account to the Iron and Steel Institute was the last of the many of which he was author, he continued to contribute to the discussion of papers written by others.
    [br]
    Principal Honours and Distinctions
    President, West of Scotland Iron and Steel Institute 1893–5. Vice-President, Iron and Steel Institute, 1893–1910. Iron and Steel Institute (London) Bessemer Gold Medal 1887.
    Bibliography
    1876, "On steel for shipbuilding as supplied to the Royal Navy", Transactions of the Institute of Naval Architects 17:135–55.
    1884, "On recent improvements in the method of manufacture of open-hearth steel", Journal of the Iron and Steel Institute 2:43–52 plus plates 27–31.
    1887, "Some investigations as to the effects of different methods of treatment of mild steel in the manufacture of plates", Journal of the Iron and Steel Institute 1:121–30 (plus sheets II and III and plates XI and XII).
    27 February 1888, "Improvements in basichearth steel making furnaces", British patent no. 2,896.
    27 February 1888, "Improvements in regenerative furnaces for steel-making and analogous operations", British patent no. 2,899.
    1889, "Alloys of nickel and steel", Journal of the Iron and Steel Institute 1:45–55.
    Further Reading
    A.Slaven, 1986, "James Riley", in Dictionary of Scottish Business Biography 1860–1960, Volume 1: The Staple Industries (ed. A.Slaven and S. Checkland), Aberdeen: Aberdeen University Press, 136–8.
    "Men you know", The Bailie (Glasgow) 23 January 1884, series no. 588 (a brief biography, with portrait).
    J.C.Carr and W.Taplin, 1962, History of the British Steel Industry, Harvard University Press (contains an excellent summary of salient events).
    JKA

    Biographical history of technology > Riley, James

См. также в других словарях:

  • feed rolls — Смотри задающие ролики …   Энциклопедический словарь по металлургии

  • feed rolls — Смотри станинные ролики …   Энциклопедический словарь по металлургии

  • feed — feedable, adj. /feed/, v., fed, feeding, n. v.t. 1. to give food to; supply with nourishment: to feed a child. 2. to yield or serve as food for: This land has fed 10 generations. 3. to provide as food. 4. to furnish for consumption. 5. to… …   Universalium

  • feed roll — noun 1. or feed roller : a roll or one of two or more rolls by which material is drawn or fed into a machine 2. : one of a set of small rubber rolls under the platen of a typewriter that help to roll the paper and hold it in place during typing …   Useful english dictionary

  • Feed head — Head Head (h[e^]d), n. [OE. hed, heved, heaved, AS. he[ a]fod; akin to D. hoofd, OHG. houbit, G. haupt, Icel. h[ o]fu[eth], Sw. hufvud, Dan. hoved, Goth. haubi[thorn]. The word does not correspond regularly to L. caput head (cf. E. {Chief},… …   The Collaborative International Dictionary of English

  • feed-tilting rolls — Смотри задающе кантующие ролики …   Энциклопедический словарь по металлургии

  • feed (breast) rolls — Смотри станинные ролики …   Энциклопедический словарь по металлургии

  • When the Haar Rolls in — Infobox Album | Name = When the Haar Rolls in Type = album Artist = James Yorkston Released = 2008 Recorded = Genre = Folk Length = Label = Domino Producer = James Yorkston Reviews = * *UNCUT [http://www.uncut.co.uk/blog/index.php?blog=6 p=819… …   Wikipedia

  • form feed —    The ability of a printer to move continuous rolls of paper into the proper position to print one page after another …   IT glossary of terms, acronyms and abbreviations

  • задающие ролики — [feed rolls] вспомогательный механизм в виде одной или нескольких пар приводящих роликов для подачи обрабатываемого изделия в агрегатный стан или машину; Смотри также: Ролики тянущие ролики ро …   Энциклопедический словарь по металлургии

  • РОЛИКИ ЗАДАЮЩИЕ — [feed rolls] вспомогательный механизм в виде одной или нескольких пар приводных роликов для подачи обрабатываемого изделия в агрегат, стан или машину …   Металлургический словарь

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»