Перевод: с английского на все языки

со всех языков на английский

factory+electronics

  • 1 factory electronics

    Универсальный англо-русский словарь > factory electronics

  • 2 factory electronics

    English-Russian dictionary of mechanical engineering and automation > factory electronics

  • 3 electronics

    2) электронные схемы; электронная аппаратура; электронные устройства (напр. УЧПУ)
    - buffering electronics
    - consumer electronics
    - drive electronics
    - factory electronics
    - interpolation electronics
    - pocket calculator electronics
    - servo electronics
    - subdividing electronics

    English-Russian dictionary of mechanical engineering and automation > electronics

  • 4 factory floor interface

    English-Russian big polytechnic dictionary > factory floor interface

  • 5 Kilby, Jack St Clair

    [br]
    b. 8 November 1923 Jefferson City, Missouri, USA
    [br]
    American engineer who filed the first patents for micro-electronic (integrated) circuits.
    [br]
    Kilby spent most of his childhood in Great Bend, Kansas, where he often accompanied his father, an electrical power engineer, on his maintenance rounds. Working in the blizzard of 1937, his father borrowed a "ham" radio, and this fired Jack to study for his amateur licence (W9GTY) and to construct his own equipment while still a student at Great Bend High School. In 1941 he entered the University of Illinois, but four months later, after the attack on Pearl Harbor, he was enlisted in the US Army and found himself working in a radio repair workshop in India. When the war ended he returned to his studies, obtaining his BSEE from Illinois in 1947 and his MSEE from the University of Wisconsin. He then joined Centralab, a small electronics firm in Milwaukee owned by Globe-Union. There he filed twelve patents, including some for reduced titanate capacitors and for Steatite-packing of transistors, and developed a transistorized hearing-aid. During this period he also attended a course on transistors at Bell Laboratories. In May 1958, concerned to gain experience in the field of number processing, he joined Texas Instruments in Dallas. Shortly afterwards, while working alone during the factory vacation, he conceived the idea of making monolithic, or integrated, circuits by diffusing impurities into a silicon substrate to create P-N junctions. Within less than a month he had produced a complete oscillator on a chip to prove that the technology was feasible, and the following year at the 1ERE Show he demonstrated a germanium integrated-circuit flip-flop. Initially he was granted a patent for the idea, but eventually, after protracted litigation, priority was awarded to Robert Noyce of Fairchild. In 1965 he was commissioned by Patrick Haggerty, the Chief Executive of Texas Instruments, to make a pocket calculator based on integrated circuits, and on 14 April 1971 the world's first such device, the Pocketronic, was launched onto the market. Costing $150 (and weighing some 2½ lb or 1.1 kg), it was an instant success and in 1972 some 5 million calculators were sold worldwide. He left Texas Instruments in November 1970 to become an independent consultant and inventor, working on, amongst other things, methods of deriving electricity from sunlight.
    [br]
    Principal Honours and Distinctions
    Franklin Institute Stuart Ballantine Medal 1966. Institute of Electrical and Electronics Engineers David Sarnoff Award 1966; Cledo Brunetti Award (jointly with Noyce) 1978; Medal of Honour 1986. National Academy of Engineering 1967. National Science Medal 1969. National Inventors Hall of Fame 1982. Honorary DEng Miami 1982, Rochester 1986. Honorary DSc Wisconsin 1988. Distinguished Professor, Texas A \& M University.
    Bibliography
    6 February 1959, US patent no. 3,138,743 (the first integrated circuit (IC); initially granted June 1964).
    US patent no. 3,819,921 (the Pocketronic calculator).
    Further Reading
    T.R.Reid, 1984, Microchip. The Story of a Revolution and the Men Who Made It, London: Pan Books (for the background to the development of the integrated circuit). H.Queisser, 1988, Conquest of the Microchip, Cambridge, Mass.: Harvard University Press.
    KF

    Biographical history of technology > Kilby, Jack St Clair

  • 6 Paul, Robert William

    [br]
    b. 3 October 1869 Highbury, London, England
    d. 28 March 1943 London, England
    [br]
    English scientific instrument maker, inventor of the Unipivot electrical measuring instrument, and pioneer of cinematography.
    [br]
    Paul was educated at the City of London School and Finsbury Technical College. He worked first for a short time in the Bell Telephone Works in Antwerp, Belgium, and then in the electrical instrument shop of Elliott Brothers in the Strand until 1891, when he opened an instrument-making business at 44 Hatton Garden, London. He specialized in the design and manufacture of electrical instruments, including the Ayrton Mather galvanometer. In 1902, with a purpose-built factory, he began large batch production of his instruments. He also opened a factory in New York, where uncalibrated instruments from England were calibrated for American customers. In 1903 Paul introduced the Unipivot galvanometer, in which the coil was supported at the centre of gravity of the moving system on a single pivot. The pivotal friction was less than in a conventional instrument and could be used without accurate levelling, the sensitivity being far beyond that of any pivoted galvanometer then in existence.
    In 1894 Paul was asked by two entrepreneurs to make copies of Edison's kinetoscope, the pioneering peep-show moving-picture viewer, which had just arrived in London. Discovering that Edison had omitted to patent the machine in England, and observing that there was considerable demand for the machine from show-people, he began production, making six before the end of the year. Altogether, he made about sixty-six units, some of which were exported. Although Edison's machine was not patented, his films were certainly copyrighted, so Paul now needed a cinematographic camera to make new subjects for his customers. Early in 1895 he came into contact with Birt Acres, who was also working on the design of a movie camera. Acres's design was somewhat impractical, but Paul constructed a working model with which Acres filmed the Oxford and Cambridge Boat Race on 30 March, and the Derby at Epsom on 29 May. Paul was unhappy with the inefficient design, and developed a new intermittent mechanism based on the principle of the Maltese cross. Despite having signed a ten-year agreement with Paul, Acres split with him on 12 July 1895, after having unilaterally patented their original camera design on 27 May. By the early weeks of 1896, Paul had developed a projector mechanism that also used the Maltese cross and which he demonstrated at the Finsbury Technical College on 20 February 1896. His Theatrograph was intended for sale, and was shown in a number of venues in London during March, notably at the Alhambra Theatre in Leicester Square. There the renamed Animatographe was used to show, among other subjects, the Derby of 1896, which was won by the Prince of Wales's horse "Persimmon" and the film of which was shown the next day to enthusiastic crowds. The production of films turned out to be quite profitable: in the first year of the business, from March 1896, Paul made a net profit of £12,838 on a capital outlay of about £1,000. By the end of the year there were at least five shows running in London that were using Paul's projectors and screening films made by him or his staff.
    Paul played a major part in establishing the film business in England through his readiness to sell apparatus at a time when most of his rivals reserved their equipment for sole exploitation. He went on to become a leading producer of films, specializing in trick effects, many of which he pioneered. He was affectionately known in the trade as "Daddy Paul", truly considered to be the "father" of the British film industry. He continued to appreciate fully the possibilities of cinematography for scientific work, and in collaboration with Professor Silvanus P.Thompson films were made to illustrate various phenomena to students.
    Paul ended his involvement with film making in 1910 to concentrate on his instrument business; on his retirement in 1920, this was amalgamated with the Cambridge Instrument Company. In his will he left shares valued at over £100,000 to form the R.W.Paul Instrument Fund, to be administered by the Institution of Electrical Engineers, of which he had been a member since 1887. The fund was to provide instruments of an unusual nature to assist physical research.
    [br]
    Principal Honours and Distinctions
    Fellow of the Physical Society 1920. Institution of Electrical Engineers Duddell Medal 1938.
    Bibliography
    17 March 1903, British patent no. 6,113 (the Unipivot instrument).
    1931, "Some electrical instruments at the Faraday Centenary Exhibition 1931", Journal of Scientific Instruments 8:337–48.
    Further Reading
    Obituary, 1943, Journal of the Institution of Electrical Engineers 90(1):540–1. P.Dunsheath, 1962, A History of Electrical Engineering, London: Faber \& Faber, pp.
    308–9 (for a brief account of the Unipivot instrument).
    John Barnes, 1976, The Beginnings of Cinema in Britain, London. Brian Coe, 1981, The History of Movie Photography, London.
    BC / GW

    Biographical history of technology > Paul, Robert William

  • 7 EFM

    3) Телекоммуникации: Eight-Fourteen Modulation
    5) Физиология: extrafibrillar matrix
    6) Электроника: Electronic Flow Measurement
    7) Вычислительная техника: Eight-to-Fourteen-Modulation (CD-DA, CD-ROM, CD)
    9) Сетевые технологии: EFM-модуляция, eight-to-fourteen modulation
    10) Полупроводники: electrostatic force microscopy
    11) Макаров: electric field meter
    12) SAP.тех. модель функций предприятия
    13) Общественная организация: Epilepsy Foundation of Michigan
    14) AMEX. Merrill Lynch & Company, Inc.

    Универсальный англо-русский словарь > EFM

  • 8 VFE

    3) Фирменный знак: Valley Forge Enterprises, Ltd., Virtual Franchise Expo
    4) Деловая лексика: Virtual Factory Equipment
    6) Программное обеспечение: Version with Full Encription

    Универсальный англо-русский словарь > VFE

  • 9 efm

    3) Телекоммуникации: Eight-Fourteen Modulation
    5) Физиология: extrafibrillar matrix
    6) Электроника: Electronic Flow Measurement
    7) Вычислительная техника: Eight-to-Fourteen-Modulation (CD-DA, CD-ROM, CD)
    9) Сетевые технологии: EFM-модуляция, eight-to-fourteen modulation
    10) Полупроводники: electrostatic force microscopy
    11) Макаров: electric field meter
    12) SAP.тех. модель функций предприятия
    13) Общественная организация: Epilepsy Foundation of Michigan
    14) AMEX. Merrill Lynch & Company, Inc.

    Универсальный англо-русский словарь > efm

  • 10 workshop

    noun
    1) (room) Werkstatt, die; (building) Werk, das
    2) (meeting) Workshop, der; Arbeitstreffen, das

    drama workshop — Theaterworkshop, der

    * * *
    1) (a room or building, especially in a factory etc where construction and repairs are carried out.) die Werkstatt
    2) (a course of experimental work for a group of people on a particular project.) der Arbeitskreis
    * * *
    ˈwork·shop
    I. n
    1. (room) Werkstatt f
    electronics/stone \workshop Elektro-/Steinmetzwerkstatt f
    2. (meeting) Workshop m, Seminar nt
    drama/nutrition/stress-reduction \workshop Theater-/Ernährungs-/Antistressworkshop m
    weekend \workshop Wochenendseminar nt
    to attend/run a \workshop einen Workshop besuchen/leiten
    II. vt
    to \workshop a play ein Stück inszenieren
    * * *
    1. Werkstatt f
    2. Werkraum m (einer Schule etc)
    3. fig Workshop m, Kurs m, Seminar n
    * * *
    noun
    1) (room) Werkstatt, die; (building) Werk, das
    2) (meeting) Workshop, der; Arbeitstreffen, das

    drama workshop — Theaterworkshop, der

    * * *
    n.
    Reparaturwerkstatt f.
    Werkstatt f.

    English-german dictionary > workshop

  • 11 engineering

    Англо-русский словарь по экономике и финансам > engineering

  • 12 crystal

    crystal ['krɪstəl]
    1 noun
    (a) (gen) & Mineralogy cristal m;
    as clear as crystal clair comme le jour ou comme de l'eau de roche
    (b) (chip) cristal m;
    salt/snow crystals cristaux mpl de sel/de neige
    (c) American (of watch) verre m (de montre)
    (d) Electronics galène f
    (vase, glass, water) de cristal
    ►► crystal ball boule f de cristal;
    crystal factory cristallerie f;
    crystal healing = utilisation de cristaux à des fins curatives;
    Crystal Palace = édifice de verre et d'acier construit à Londres en 1851 et détruit en 1936 par un incendie, qui a donné son nom à un terrain de football;
    Radio crystal set poste m à galène

    Un panorama unique de l'anglais et du français > crystal

  • 13 Edison, Thomas Alva

    [br]
    b. 11 February 1847 Milan, Ohio, USA
    d. 18 October 1931 Glenmont
    [br]
    American inventor and pioneer electrical developer.
    [br]
    He was the son of Samuel Edison, who was in the timber business. His schooling was delayed due to scarlet fever until 1855, when he was 8½ years old, but he was an avid reader. By the age of 14 he had a job as a newsboy on the railway from Port Huron to Detroit, a distance of sixty-three miles (101 km). He worked a fourteen-hour day with a stopover of five hours, which he spent in the Detroit Free Library. He also sold sweets on the train and, later, fruit and vegetables, and was soon making a profit of $20 a week. He then started two stores in Port Huron and used a spare freight car as a laboratory. He added a hand-printing press to produce 400 copies weekly of The Grand Trunk Herald, most of which he compiled and edited himself. He set himself to learn telegraphy from the station agent at Mount Clements, whose son he had saved from being run over by a freight car.
    At the age of 16 he became a telegraphist at Port Huron. In 1863 he became railway telegraphist at the busy Stratford Junction of the Grand Trunk Railroad, arranging a clock with a notched wheel to give the hourly signal which was to prove that he was awake and at his post! He left hurriedly after failing to hold a train which was nearly involved in a head-on collision. He usually worked the night shift, allowing himself time for experiments during the day. His first invention was an arrangement of two Morse registers so that a high-speed input could be decoded at a slower speed. Moving from place to place he held many positions as a telegraphist. In Boston he invented an automatic vote recorder for Congress and patented it, but the idea was rejected. This was the first of a total of 1180 patents that he was to take out during his lifetime. After six years he resigned from the Western Union Company to devote all his time to invention, his next idea being an improved ticker-tape machine for stockbrokers. He developed a duplex telegraphy system, but this was turned down by the Western Union Company. He then moved to New York.
    Edison found accommodation in the battery room of Law's Gold Reporting Company, sleeping in the cellar, and there his repair of a broken transmitter marked him as someone of special talents. His superior soon resigned, and he was promoted with a salary of $300 a month. Western Union paid him $40,000 for the sole rights on future improvements on the duplex telegraph, and he moved to Ward Street, Newark, New Jersey, where he employed a gathering of specialist engineers. Within a year, he married one of his employees, Mary Stilwell, when she was only 16: a daughter, Marion, was born in 1872, and two sons, Thomas and William, in 1876 and 1879, respectively.
    He continued to work on the automatic telegraph, a device to send out messages faster than they could be tapped out by hand: that is, over fifty words per minute or so. An earlier machine by Alexander Bain worked at up to 400 words per minute, but was not good over long distances. Edison agreed to work on improving this feature of Bain's machine for the Automatic Telegraph Company (ATC) for $40,000. He improved it to a working speed of 500 words per minute and ran a test between Washington and New York. Hoping to sell their equipment to the Post Office in Britain, ATC sent Edison to England in 1873 to negotiate. A 500-word message was to be sent from Liverpool to London every half-hour for six hours, followed by tests on 2,200 miles (3,540 km) of cable at Greenwich. Only confused results were obtained due to induction in the cable, which lay coiled in a water tank. Edison returned to New York, where he worked on his quadruplex telegraph system, tests of which proved a success between New York and Albany in December 1874. Unfortunately, simultaneous negotiation with Western Union and ATC resulted in a lawsuit.
    Alexander Graham Bell was granted a patent for a telephone in March 1876 while Edison was still working on the same idea. His improvements allowed the device to operate over a distance of hundreds of miles instead of only a few miles. Tests were carried out over the 106 miles (170 km) between New York and Philadelphia. Edison applied for a patent on the carbon-button transmitter in April 1877, Western Union agreeing to pay him $6,000 a year for the seventeen-year duration of the patent. In these years he was also working on the development of the electric lamp and on a duplicating machine which would make up to 3,000 copies from a stencil. In 1876–7 he moved from Newark to Menlo Park, twenty-four miles (39 km) from New York on the Pennsylvania Railway, near Elizabeth. He had bought a house there around which he built the premises that would become his "inventions factory". It was there that he began the use of his 200- page pocket notebooks, each of which lasted him about two weeks, so prolific were his ideas. When he died he left 3,400 of them filled with notes and sketches.
    Late in 1877 he applied for a patent for a phonograph which was granted on 19 February 1878, and by the end of the year he had formed a company to manufacture this totally new product. At the time, Edison saw the device primarily as a business aid rather than for entertainment, rather as a dictating machine. In August 1878 he was granted a British patent. In July 1878 he tried to measure the heat from the solar corona at a solar eclipse viewed from Rawlins, Wyoming, but his "tasimeter" was too sensitive.
    Probably his greatest achievement was "The Subdivision of the Electric Light" or the "glow bulb". He tried many materials for the filament before settling on carbon. He gave a demonstration of electric light by lighting up Menlo Park and inviting the public. Edison was, of course, faced with the problem of inventing and producing all the ancillaries which go to make up the electrical system of generation and distribution-meters, fuses, insulation, switches, cabling—even generators had to be designed and built; everything was new. He started a number of manufacturing companies to produce the various components needed.
    In 1881 he built the world's largest generator, which weighed 27 tons, to light 1,200 lamps at the Paris Exhibition. It was later moved to England to be used in the world's first central power station with steam engine drive at Holborn Viaduct, London. In September 1882 he started up his Pearl Street Generating Station in New York, which led to a worldwide increase in the application of electric power, particularly for lighting. At the same time as these developments, he built a 1,300yd (1,190m) electric railway at Menlo Park.
    On 9 August 1884 his wife died of typhoid. Using his telegraphic skills, he proposed to 19-year-old Mina Miller in Morse code while in the company of others on a train. He married her in February 1885 before buying a new house and estate at West Orange, New Jersey, building a new laboratory not far away in the Orange Valley.
    Edison used direct current which was limited to around 250 volts. Alternating current was largely developed by George Westinghouse and Nicola Tesla, using transformers to step up the current to a higher voltage for long-distance transmission. The use of AC gradually overtook the Edison DC system.
    In autumn 1888 he patented a form of cinephotography, the kinetoscope, obtaining film-stock from George Eastman. In 1893 he set up the first film studio, which was pivoted so as to catch the sun, with a hinged roof which could be raised. In 1894 kinetoscope parlours with "peep shows" were starting up in cities all over America. Competition came from the Latham Brothers with a screen-projection machine, which Edison answered with his "Vitascope", shown in New York in 1896. This showed pictures with accompanying sound, but there was some difficulty with synchronization. Edison also experimented with captions at this early date.
    In 1880 he filed a patent for a magnetic ore separator, the first of nearly sixty. He bought up deposits of low-grade iron ore which had been developed in the north of New Jersey. The process was a commercial success until the discovery of iron-rich ore in Minnesota rendered it uneconomic and uncompetitive. In 1898 cement rock was discovered in New Village, west of West Orange. Edison bought the land and started cement manufacture, using kilns twice the normal length and using half as much fuel to heat them as the normal type of kiln. In 1893 he met Henry Ford, who was building his second car, at an Edison convention. This started him on the development of a battery for an electric car on which he made over 9,000 experiments. In 1903 he sold his patent for wireless telegraphy "for a song" to Guglielmo Marconi.
    In 1910 Edison designed a prefabricated concrete house. In December 1914 fire destroyed three-quarters of the West Orange plant, but it was at once rebuilt, and with the threat of war Edison started to set up his own plants for making all the chemicals that he had previously been buying from Europe, such as carbolic acid, phenol, benzol, aniline dyes, etc. He was appointed President of the Navy Consulting Board, for whom, he said, he made some forty-five inventions, "but they were pigeonholed, every one of them". Thus did Edison find that the Navy did not take kindly to civilian interference.
    In 1927 he started the Edison Botanic Research Company, founded with similar investment from Ford and Firestone with the object of finding a substitute for overseas-produced rubber. In the first year he tested no fewer than 3,327 possible plants, in the second year, over 1,400, eventually developing a variety of Golden Rod which grew to 14 ft (4.3 m) in height. However, all this effort and money was wasted, due to the discovery of synthetic rubber.
    In October 1929 he was present at Henry Ford's opening of his Dearborn Museum to celebrate the fiftieth anniversary of the incandescent lamp, including a replica of the Menlo Park laboratory. He was awarded the Congressional Gold Medal and was elected to the American Academy of Sciences. He died in 1931 at his home, Glenmont; throughout the USA, lights were dimmed temporarily on the day of his funeral.
    [br]
    Principal Honours and Distinctions
    Member of the American Academy of Sciences. Congressional Gold Medal.
    Further Reading
    M.Josephson, 1951, Edison, Eyre \& Spottiswode.
    R.W.Clark, 1977, Edison, the Man who Made the Future, Macdonald \& Jane.
    IMcN

    Biographical history of technology > Edison, Thomas Alva

  • 14 Zuse, Konrad

    [br]
    b. 22 June 1910 Berlin, Germany
    [br]
    German civil engineer who developed a series of computers before, during and after the Second World War.
    [br]
    Zuse grew up in Braunsberg, then in East Prussia, and attended the Technische Hochschule at Berlin-Charlottenburg to study civil engineering. In 1934 he became interested in calculatingmachines and the pursuit of a career in aeronautical engineering. Two years later, having taken a post as a statistician, in his spare time he built a mechanical computer, which he called Z1; for this he used two-state mechanical switches and punched-tape for the program input. This was followed by the design for Z2, which used electromechanical relays.
    Called to military service in 1939, he was soon sent to the Henschel aircraft factory, where he completed Z2. Between 1939 and 1941 the German Aeronautical Research Institute supported his development of Z3, which used 2,600 relays and a keyboard input. Taken into immediate use by the aircraft industry, both it and its predecessors were destroyed in air raids. Z4, completed towards the end of the war and using mechanical memory, survived, and with improvements was used in Switzerland until 1960. Other achievements by Zuse included a machine to perform logical calculations (LI) and his Plankalkul, one of the first computer languages. In 1950, with two friends, he formed the Zuse KG company near Bad Hersfeld, Essen, and his first Z5 relay computer was sold to Leitz in 1952. A series of machines followed, a milestone in 1958 being the first transistorized machine, Z22, of which over 200 were made. Finally, in 1969, the company was absorbed by Siemens AG and Zuse returned to scientific research.
    [br]
    Principal Honours and Distinctions
    Honorary Doctorate Berlin Technical University 1960. Honorary Professor Göttingen University 1960.
    Bibliography
    11 April 1936, German patent no. Z23 1391X/42M. 16 June 1941, German patent no. Z391.
    1 August 1949, German patent no. 50,746.
    1993, The Computer: My Life, Berlin: SpringerVerlag (autobiography).
    Further Reading
    P.E.Ceruzzi, 1981, "The early computers of Konrad Zuse 1935–45", Annals of the History of Computing 3:241.
    M.R.Williams, 1985, A History of Computing Technology, London: Prentice-Hall.
    KF

    Biographical history of technology > Zuse, Konrad

  • 15 inductive current

    1. индукционный ток
    2. индуктивный ток

     

    индуктивный ток

    [Я.Н.Лугинский, М.С.Фези-Жилинская, Ю.С.Кабиров. Англо-русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.]

    Тематики

    • электротехника, основные понятия

    EN

     

    индукционный ток

    [Интент]

    Параллельные тексты EN-RU из ABB Review. Перевод компании Интент

    Though fundamentally based on the physics of electromagnetism, the existing technology had to be cleverly manipulated so it could be applied in an industrial setup. The system now in place in the factory can solve complicated Maxwell equations in a matter of milliseconds! High-precision electronics measure signals with a high degree of accuracy and within a time stability frame of picoseconds! A successful system depended on understanding the effects of induced currents in thin metal strips, and this was acquired through extensive laboratory work.

    Данная технология, основанная на физике электромагнитных полей, была искусно применена в сфере производства, и теперь установленная на фабрике система может решать сложные уравнения Максвелла в считанные миллисекунды! Прецизионная электроника измеряет сигналы с высокой точностью и обеспечивает стабильность по времени в несколько пикосекунд! Успешная работа системы опирается на глубокое понимание характера индукционных токов в тонких металлических пластинах, которое достигнуто в результате кропотливых лабораторных исследований.

    Тематики

    • электротехника, основные понятия

    EN

    Англо-русский словарь нормативно-технической терминологии > inductive current

  • 16 induced current

    1. наведенный ток
    2. индукционный ток

     

    индукционный ток

    [Интент]

    Параллельные тексты EN-RU из ABB Review. Перевод компании Интент

    Though fundamentally based on the physics of electromagnetism, the existing technology had to be cleverly manipulated so it could be applied in an industrial setup. The system now in place in the factory can solve complicated Maxwell equations in a matter of milliseconds! High-precision electronics measure signals with a high degree of accuracy and within a time stability frame of picoseconds! A successful system depended on understanding the effects of induced currents in thin metal strips, and this was acquired through extensive laboratory work.

    Данная технология, основанная на физике электромагнитных полей, была искусно применена в сфере производства, и теперь установленная на фабрике система может решать сложные уравнения Максвелла в считанные миллисекунды! Прецизионная электроника измеряет сигналы с высокой точностью и обеспечивает стабильность по времени в несколько пикосекунд! Успешная работа системы опирается на глубокое понимание характера индукционных токов в тонких металлических пластинах, которое достигнуто в результате кропотливых лабораторных исследований.

    Тематики

    • электротехника, основные понятия

    EN

     

    наведенный ток
    Ток, возникающий в отключенных и заземленных линиях в результате емкостного и индуктивного взаимодействия с соседними линиями, находящимися под напряжением
    [ ГОСТ Р 52726-2007]

    Тематики

    • высоковольтный аппарат, оборудование...

    EN

    Англо-русский словарь нормативно-технической терминологии > induced current

  • 17 induction current

    1. экстраток размыкания
    2. индукционный ток

     

    индукционный ток

    [Интент]

    Параллельные тексты EN-RU из ABB Review. Перевод компании Интент

    Though fundamentally based on the physics of electromagnetism, the existing technology had to be cleverly manipulated so it could be applied in an industrial setup. The system now in place in the factory can solve complicated Maxwell equations in a matter of milliseconds! High-precision electronics measure signals with a high degree of accuracy and within a time stability frame of picoseconds! A successful system depended on understanding the effects of induced currents in thin metal strips, and this was acquired through extensive laboratory work.

    Данная технология, основанная на физике электромагнитных полей, была искусно применена в сфере производства, и теперь установленная на фабрике система может решать сложные уравнения Максвелла в считанные миллисекунды! Прецизионная электроника измеряет сигналы с высокой точностью и обеспечивает стабильность по времени в несколько пикосекунд! Успешная работа системы опирается на глубокое понимание характера индукционных токов в тонких металлических пластинах, которое достигнуто в результате кропотливых лабораторных исследований.

    Тематики

    • электротехника, основные понятия

    EN

     

    экстраток размыкания

    [Л.Г.Суменко. Англо-русский словарь по информационным технологиям. М.: ГП ЦНИИС, 2003.]

    Тематики

    EN

    Англо-русский словарь нормативно-технической терминологии > induction current

См. также в других словарях:

  • electronics — /i lek tron iks, ee lek /, n. (used with a sing. v.) the science dealing with the development and application of devices and systems involving the flow of electrons in a vacuum, in gaseous media, and in semiconductors. [1905 10; see ELECTRONIC,… …   Universalium

  • Factory reset — A factory reset or master reset is a full restore of an electronic device to its factory settings. Such electronic devices include handheld computers such as PDAs and cellular phones. It entails deleting all information stored in the device. This …   Wikipedia

  • Digital electronics — Main articles: Electronics and Electronic circuit Digital electronics represent signals by discrete bands of analog levels, rather than by a continuous range. All levels within a band represent the same signal state. Relatively small changes to… …   Wikipedia

  • Coby Electronics Corporation — Type Private Industry Consumer electronics Founded 1991 Headquarters …   Wikipedia

  • IEEE Industrial Electronics Society — The IEEE Industrial Electronics Society (IES) is a Society of the Institute of Electrical and Electronics Engineers (IEEE). Vision StatementThe vision of the IES is to advance global prosperity by fostering technological innovation, enabling… …   Wikipedia

  • Doll Factory — Chris Roy (left) and Garrick Antikajian (right) of Doll Factory Background information Origin Seattle, WA, USA …   Wikipedia

  • Anaheim Electronics — This article is about the fictional corporation in the Gundam metaseries, Universal Century timeline. There is a real life Anaheim Electronics based in Anaheim, California, however, there is no article for it yet. Anaheim Electronics is also the… …   Wikipedia

  • Fear Factory — Infobox musical artist Name = Fear Factory Img capt = Landscape = Background = group or band Alias = Origin = Los Angeles, California, USA Genre = Death metal (early) Industrial metal Groove metal Alternative metal [http://www.allmusic.com/cg/amg …   Wikipedia

  • Samsung Electronics — 삼성전자 Type Public Korean: 삼성전자 Traded as KRX: 005930 …   Wikipedia

  • The Viral Factory — Infobox Company name = The Viral Factory type = Public genre = foundation = London, United Kingdom (2001) founder = Ed Robinson, Matt Smith location city = location country = location = London, United Kingdom Los Angeles, United States locations …   Wikipedia

  • Neve Electronics — Industry Professional audio design engineering Founded 1961 Key people Rupert Neve Neve Electronics was a manufacturer of music recording and broadcast mixing consoles and hardware. It was originally founded as Ne …   Wikipedia

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»