-
1 алгоритм разложения (больших чисел) на простые множители
Security: factoring algorithm, factorization algorithmУниверсальный русско-английский словарь > алгоритм разложения (больших чисел) на простые множители
-
2 алгоритм разложения (больших чисел) на простые сомножители
Security: factoring algorithm, factorization algorithmУниверсальный русско-английский словарь > алгоритм разложения (больших чисел) на простые сомножители
-
3 алгоритм факторизации
Security: factoring algorithm, factorization algorithmУниверсальный русско-английский словарь > алгоритм факторизации
-
4 алгоритм разложения на простые множители
Security: (больших чисел) factoring algorithm, (больших чисел) factorization algorithmУниверсальный русско-английский словарь > алгоритм разложения на простые множители
-
5 алгоритм разложения на простые сомножители
Security: (больших чисел) factoring algorithm, (больших чисел) factorization algorithmУниверсальный русско-английский словарь > алгоритм разложения на простые сомножители
-
6 Неблочный
An unblocked version of a block-partitioned algorithmThis subroutine computes (performs) a $QR$-factorization with (без артикля) column (row) pivoting of a general rectangular matrixThis subroutine computes (performs) an $LU$-factorization of a general band matrix, using (без артикля) partial pivoting with row (column) interchangesРусско-английский словарь по прикладной математике и механике > Неблочный
-
7 В том смысле, что
The proof of the theorem is constructive in that it actually suggests an algorithm for computing the factorizationThis method has the advantage over capacitance methods in that it does not require differentiation to obtain...The computer is only automatic in the sense that it can deal with explicit instructionsРусско-английский словарь по прикладной математике и механике > В том смысле, что
См. также в других словарях:
Factorization — This article is about the mathematical concept. For other uses, see Factor and Integer factorization. A visual illustration of the polynomial x2 + cx + d = (x + a)(x + b) where… … Wikipedia
Integer factorization — In number theory, integer factorization is the way of breaking down a composite number into smaller non trivial divisors, which when multiplied together equal the original integer.When the numbers are very large, no efficient integer… … Wikipedia
Dixon's factorization method — In number theory, Dixon s factorization method (also Dixon s random squares method[1] or Dixon s algorithm) is a general purpose integer factorization algorithm; it is the prototypical factor base method, and the only factor base method for which … Wikipedia
Pollard's rho algorithm — is a special purpose integer factorization algorithm. It was invented by John Pollard in 1975. It is particularly effective at splitting composite numbers with small factors.Core ideasThe rho algorithm is based on Floyd s cycle finding algorithm… … Wikipedia
Continued fraction factorization — In number theory, the continued fraction factorization method (CFRAC) is an integer factorization algorithm. It is a general purpose algorithm, meaning that it is suitable for factoring any integer n, not depending on special form or properties.… … Wikipedia
Williams' p + 1 algorithm — In computational number theory, Williams p + 1 algorithm is an integer factorization algorithm, one of the family of algebraic group factorisation algorithms. It was invented by Hugh C. Williams in 1982. It works well if the number N to be… … Wikipedia
Index calculus algorithm — In group theory, the index calculus algorithm is an algorithm for computing discrete logarithms. This is the best known algorithm for certain groups, such as mathbb{Z} m^* (the multiplicative group modulo m ).Dubious|date=April 2008 Description… … Wikipedia
Pollard's p - 1 algorithm — Pollard s p − 1 algorithm is a number theoretic integer factorization algorithm, invented by John Pollard in 1974. It is a special purpose algorithm, meaning that it is only suitable for integers with specific types of factors; it is the simplest … Wikipedia
Bruun's FFT algorithm — Bruun s algorithm is a fast Fourier transform (FFT) algorithm based on an unusual recursive polynomial factorization approach, proposed for powers of two by G. Bruun in 1978 and generalized to arbitrary even composite sizes by H. Murakami in 1996 … Wikipedia
Shor's algorithm — Shor s algorithm, first introduced by mathematician Peter Shor, is a quantum algorithm for integer factorization. On a quantum computer, to factor an integer N, Shor s algorithm takes polynomial time in log{N}, specifically O((log{N})^3),… … Wikipedia
Lenstra elliptic curve factorization — The Lenstra elliptic curve factorization or the elliptic curve factorization method (ECM) is a fast, sub exponential running time algorithm for integer factorization which employs elliptic curves. Technically, the ECM is classified as a… … Wikipedia