Перевод: со всех языков на английский

с английского на все языки

engineer+r&d+laboratory

  • 41 Ford, Henry

    [br]
    b. 30 July 1863 Dearborn, Michigan, USA
    d. 7 April 1947 Dearborn, Michigan, USA
    [br]
    American pioneer motor-car maker and developer of mass-production methods.
    [br]
    He was the son of an Irish immigrant farmer, William Ford, and the oldest son to survive of Mary Litogot; his mother died in 1876 with the birth of her sixth child. He went to the village school, and at the age of 16 he was apprenticed to Flower brothers' machine shop and then at the Drydock \& Engineering Works in Detroit. In 1882 he left to return to the family farm and spent some time working with a 1 1/2 hp steam engine doing odd jobs for the farming community at $3 per day. He was then employed as a demonstrator for Westinghouse steam engines. He met Clara Jane Bryant at New Year 1885 and they were married on 11 April 1888. Their only child, Edsel Bryant Ford, was born on 6 November 1893.
    At that time Henry worked on steam engine repairs for the Edison Illuminating Company, where he became Chief Engineer. He became one of a group working to develop a "horseless carriage" in 1896 and in June completed his first vehicle, a "quadri cycle" with a two-cylinder engine. It was built in a brick shed, which had to be partially demolished to get the carriage out.
    Ford became involved in motor racing, at which he was more successful than he was in starting a car-manufacturing company. Several early ventures failed, until the Ford Motor Company of 1903. By October 1908 they had started with production of the Model T. The first, of which over 15 million were built up to the end of its production in May 1927, came out with bought-out steel stampings and a planetary gearbox, and had a one-piece four-cylinder block with a bolt-on head. This was one of the most successful models built by Ford or any other motor manufacturer in the life of the motor car.
    Interchangeability of components was an important element in Ford's philosophy. Ford was a pioneer in the use of vanadium steel for engine components. He adopted the principles of Frederick Taylor, the pioneer of time-and-motion study, and installed the world's first moving assembly line for the production of magnetos, started in 1913. He installed blast furnaces at the factory to make his own steel, and he also promoted research and the cultivation of the soya bean, from which a plastic was derived.
    In October 1913 he introduced the "Five Dollar Day", almost doubling the normal rate of pay. This was a profit-sharing scheme for his employees and contained an element of a reward for good behaviour. About this time he initiated work on an agricultural tractor, the "Fordson" made by a separate company, the directors of which were Henry and his son Edsel.
    In 1915 he chartered the Oscar II, a "peace ship", and with fifty-five delegates sailed for Europe a week before Christmas, docking at Oslo. Their objective was to appeal to all European Heads of State to stop the war. He had hoped to persuade manufacturers to replace armaments with tractors in their production programmes. In the event, Ford took to his bed in the hotel with a chill, stayed there for five days and then sailed for New York and home. He did, however, continue to finance the peace activists who remained in Europe. Back in America, he stood for election to the US Senate but was defeated. He was probably the father of John Dahlinger, illegitimate son of Evangeline Dahlinger, a stenographer employed by the firm and on whom he lavished gifts of cars, clothes and properties. He became the owner of a weekly newspaper, the Dearborn Independent, which became the medium for the expression of many of his more unorthodox ideas. He was involved in a lawsuit with the Chicago Tribune in 1919, during which he was cross-examined on his knowledge of American history: he is reputed to have said "History is bunk". What he actually said was, "History is bunk as it is taught in schools", a very different comment. The lawyers who thus made a fool of him would have been surprised if they could have foreseen the force and energy that their actions were to release. For years Ford employed a team of specialists to scour America and Europe for furniture, artefacts and relics of all kinds, illustrating various aspects of history. Starting with the Wayside Inn from South Sudbury, Massachusetts, buildings were bought, dismantled and moved, to be reconstructed in Greenfield Village, near Dearborn. The courthouse where Abraham Lincoln had practised law and the Ohio bicycle shop where the Wright brothers built their first primitive aeroplane were added to the farmhouse where the proprietor, Henry Ford, had been born. Replicas were made of Independence Hall, Congress Hall and the old City Hall in Philadelphia, and even a reconstruction of Edison's Menlo Park laboratory was installed. The Henry Ford museum was officially opened on 21 October 1929, on the fiftieth anniversary of Edison's invention of the incandescent bulb, but it continued to be a primary preoccupation of the great American car maker until his death.
    Henry Ford was also responsible for a number of aeronautical developments at the Ford Airport at Dearborn. He introduced the first use of radio to guide a commercial aircraft, the first regular airmail service in the United States. He also manufactured the country's first all-metal multi-engined plane, the Ford Tri-Motor.
    Edsel became President of the Ford Motor Company on his father's resignation from that position on 30 December 1918. Following the end of production in May 1927 of the Model T, the replacement Model A was not in production for another six months. During this period Henry Ford, though officially retired from the presidency of the company, repeatedly interfered and countermanded the orders of his son, ostensibly the man in charge. Edsel, who died of stomach cancer at his home at Grosse Point, Detroit, on 26 May 1943, was the father of Henry Ford II. Henry Ford died at his home, "Fair Lane", four years after his son's death.
    [br]
    Bibliography
    1922, with S.Crowther, My Life and Work, London: Heinemann.
    Further Reading
    R.Lacey, 1986, Ford, the Men and the Machine, London: Heinemann. W.C.Richards, 1948, The Last Billionaire, Henry Ford, New York: Charles Scribner.
    IMcN

    Biographical history of technology > Ford, Henry

  • 42 Kao, Charles Kuen

    [br]
    b. 4 November 1933 Shanghai, China
    [br]
    Chinese electrical engineer whose work on optical fibres did much to make optical communications a practical reality.
    [br]
    After the Second World War, Kao moved with his family to Hong Kong, where he went to St Joseph's College. To further his education he then moved to England, taking his "A" Levels at Woolwich Polytechnic. In 1957 he gained a BSc in electrical engineering and then joined Standard Telephones and Cables Laboratory (STL) at Harlow. Following the discovery by others in 1960 of the semiconductor laser, from 1963 Kao worked on the problems of optical communications, in particular that of achieving attenuation in optical cables low enough to make this potentially very high channel capacity form of communication a practical proposition; this problem was solved by suitable cladding of the fibres. In the process he obtained his PhD from University College, London, in 1965. From 1970 until 1974, whilst on leave from STL, he was Professor of Electronics and Department Chairman at the Chinese University of Hong Kong, then in 1982–7 he was Chief Scientist and Director of Engineering with the parent company ITT in the USA. Since 1988 he has been Vice-Chancellor of Hong Kong University.
    [br]
    Principal Honours and Distinctions
    Franklin Institute Stuart Ballantine Medal 1977. Institute of Electrical and Electronic Engineers Morris N.Liebmann Memorial Prize 1978; L.M.Ericsson Prize 1979. Institution of Electrical Engineers A.G.Bell Medal 1985; Faraday Medal 1989. American Physical Society International Prize for New Materials 1989.
    Bibliography
    1966, with G.A.Hockham, "Dielectric fibre surface waveguides for optical frequencies", Proceedings of the Institution of Electrical Engineers 113:1,151 (describes the major step in optical-fibre development).
    1982, Optical Fibre Systems. Technology, Design \& Application, New York: McGraw- Hill.
    1988, Optical Fibre, London: Peter Peregrinus.
    Further Reading
    W.B.Jones, 1988, Introduction to Optical Fibre Communications: R\&W Holt.
    KF

    Biographical history of technology > Kao, Charles Kuen

  • 43 Keller, Arthur

    [br]
    b. 18 August 1901 New York City, New York, USA d. 1983
    [br]
    American engineer and developer of telephone switching equipment who was instrumental in the development of electromechanical recording and stereo techniques.
    [br]
    He obtained a BSc in electrical engineering at Cooper Union for the Advancement of Science and Art, New York, in 1923 and an MSc from Yale University, and he did postgraduate work at Columbia University. Most of the time he was also on the staff of the Bell Telephone Laboratories. The Bell Laboratories and its predecessors had a long tradition in research in speech and hearing, and in a team of researchers under H.C. Harrison, Keller developed a number of definite improvements in electrical pick-ups, gold-sputtering for matrix work and electrical disc recording equipment. From 1931 onwards the team at Bell Labs developed disc recording for moving pictures and entered into collaboration with Leopold Stokowski and the Philadelphia Orchestra concerning transmission and recording of high-fidelity sound over wires, and stereo techniques. Keller developed a stereo recording system for disc records independently of A.D. Blumlein that was used experimentally in the Bell Labs during the 1930s. During the Second World War Keller was in a team developing sonar (sound navigation and ranging) for the US Navy. After the war he concentrated on switching equipment for telephone exchanges and developed a miniature relay. In 1966 he retired from the Bell Laboratories, where he had been Director of several departments, ending as Director of the Switching Apparatus Laboratory. After retirement he was a consultant internationally, concerning electromechanical devices in particular. When, in 1980, the Bell Laboratories decided to issue LP re-recordings of a number of the experimental records made during the 1930s, Keller was brought in from retirement to supervise the project and decide on the selections.
    [br]
    Bibliography
    Keller was inventor or co-inventor of forty patents, including: US patent no. 2,114,471 (the principles of stereo disc recording); US patent no. 2,612,586 (tape guides with air lubrication); US patent no. 3,366,901 (a miniature crossbar switch).
    Apart from a large number of highly technical papers, Keller also wrote the article "Phonograph" in the 1950 and 1957 editions of Encyclopaedia Britannica.
    1986, Reflections of a Stereo Pioneer, San Francisco: San Francisco Press (an honest, personal account).
    GB-N

    Biographical history of technology > Keller, Arthur

  • 44 Leclanché, Georges

    SUBJECT AREA: Electricity
    [br]
    b. 1839 Paris, France
    d. 14 September 1882 Paris, France
    [br]
    French chemist and inventor of the primary cell named after him, from which the electrochemical principles of the modern dry cell have been developed.
    [br]
    Leclanché was sent to England for his early education. Returning to France, he entered the Central School of Arts and Manufacture, from which he graduated as a chemical engineer in 1860. He spent some years with a railway company in setting up an electrical timing system, and this work led him to electrochemical research. Driven by political pressure into exile, he set up a small laboratory in Brussels to continue the studies of the behaviour of voltaic cells he had started in France. Many workers directed their efforts to constructing a cell with a single electrolyte and a solid insoluble depo-larizer, but it was Leclanché who produced, in 1866, the prototype of a battery that was rugged, cheap and contained no highly corro-sive liquid. With electrodes of carbon and zinc and a solution of ammonium chloride, polarization was prevented by surrounding the positive electrode with manganese dioxide. The Leclanché cell was adopted by the Belgian Government Telegraph Service in 1868 and rapidly came into general use wherever an intermittent current was needed; for example, in telegraph and later in telephone circuits. Carl Gassner in 1888 pioneered successful dry cells based on the Leclanché system, with the zinc anode serving as the container, and c. 1890 commercial production of such cells began.
    [br]
    Bibliography
    10 October 1866, British patent no. 2,623 (Leclanché cell).
    1868, "Pile au peroxyde de manganèse à seul liquide", Les Mondes 16:532–3 (describes the Leclanché cell).
    Further Reading
    M.Barak, 1966, "Georges Leclanché (1939–1882)", IEE Electronics and Power 12:184– 91 (a detailed account).
    N.C.Cahoon and G.W.Heise (eds), 1976, The Primary Battery, Vol. II, New York, pp. 1–147 (describes subsequent developments), GW

    Biographical history of technology > Leclanché, Georges

  • 45 Marrison, Warren Alvin

    [br]
    b. 21 May 1896 Inverary, Canada
    d. 27 March 1980 Palo Verdes Estates, California, USA
    [br]
    Canadian (naturalized American) electrical engineer, pioneer of the quartz clock.
    [br]
    Marrison received his high-school education at Kingston Collegiate Institute, Ontario, and in 1914 he entered Queen's University in Kingston. He graduated in Engineering Physics in 1920, his college career having been interrupted by war service in the Royal Flying Corps. During his service in the Flying Corps he worked on radio, and when he returned to Kingston he established his own transmitter. This interest in radio was later to influence his professional life.
    In 1921 he entered Harvard University, where he obtained an MA, and shortly afterwards he joined the Western Electric Company in New York to work on the recording of sound on film. In 1925 he transferred to Western Electric's Bell Laboratory, where he began what was to become his life's work: the development of frequency standards for radio transmission. In 1922 Cady had used the elastic vibration of a quartz crystal to control the frequency of a valve oscillator, but at that time there was no way of counting and displaying the number of vibrations as the frequency was too high. In 1927 Marrison succeeded in dividing the frequency electronically until it was low enough to drive a synchronous motor. Although his purpose was to determine the frequency accurately by counting the number of vibrations that occurred in a given time, he had incidentally produced the first quartz-crystal -ontrolled clock. The results were sufficiently encouraging for him to build an improved version the following year, specifically as a time and frequency standard.
    [br]
    Principal Honours and Distinctions
    British Horological Institute Gold Medal 1947. Clockmakers' Company Tompion Medal 1955.
    Bibliography
    1928, with J.W.Horton, "Precision measurement of frequency", Proceedings of the Institute of Radio Engineers 16:137–54 (provides details of the original quartz clock, although it was not described as such).
    1930, "The crystal clock", Proceedings of the National Academy of Sciences 16:496–507 (describes the second clock).
    Further Reading
    W.R.Topham, 1989, "Warren A.Marrison—pioneer of the quartz revolution", NAWCC Bulletin 31(2):126–34.
    J.D.Weaver, 1982, Electrical and Electronic Clocks and Watches, London (a technical assessment of his work on the quartz clock).
    DV

    Biographical history of technology > Marrison, Warren Alvin

  • 46 Noyce, Robert

    [br]
    b. 12 December 1927 Burlington, Iowa, USA
    [br]
    American engineer responsible for the development of integrated circuits and the microprocessor chip.
    [br]
    Noyce was the son of a Congregational minister whose family, after a number of moves, finally settled in Grinnell, some 50 miles (80 km) east of Des Moines, Iowa. Encouraged to follow his interest in science, in his teens he worked as a baby-sitter and mower of lawns to earn money for his hobby. One of his clients was Professor of Physics at Grinnell College, where Noyce enrolled to study mathematics and physics and eventually gained a top-grade BA. It was while there that he learned of the invention of the transistor by the team at Bell Laboratories, which included John Bardeen, a former fellow student of his professor. After taking a PhD in physical electronics at the Massachusetts Institute of Technology in 1953, he joined the Philco Corporation in Philadelphia to work on the development of transistors. Then in January 1956 he accepted an invitation from William Shockley, another of the Bell transistor team, to join the newly formed Shockley Transistor Company, the first electronic firm to set up shop in Palo Alto, California, in what later became known as "Silicon Valley".
    From the start things at the company did not go well and eventually Noyce and Gordon Moore and six colleagues decided to offer themselves as a complete development team; with the aid of the Fairchild Camera and Instrument Company, the Fairchild Semiconductor Corporation was born. It was there that in 1958, contemporaneously with Jack K. Wilby at Texas Instruments, Noyce had the idea for monolithic integration of transistor circuits. Eventually, after extended patent litigation involving study of laboratory notebooks and careful examination of the original claims, priority was assigned to Noyce. The invention was most timely. The Apollo Moon-landing programme announced by President Kennedy in May 1961 called for lightweight sophisticated navigation and control computer systems, which could only be met by the rapid development of the new technology, and Fairchild was well placed to deliver the micrologic chips required by NASA.
    In 1968 the founders sold Fairchild Semicon-ductors to the parent company. Noyce and Moore promptly found new backers and set up the Intel Corporation, primarily to make high-density memory chips. The first product was a 1,024-bit random access memory (1 K RAM) and by 1973 sales had reached $60 million. However, Noyce and Moore had already realized that it was possible to make a complete microcomputer by putting all the logic needed to go with the memory chip(s) on a single integrated circuit (1C) chip in the form of a general purpose central processing unit (CPU). By 1971 they had produced the Intel 4004 microprocessor, which sold for US$200, and within a year the 8008 followed. The personal computer (PC) revolution had begun! Noyce eventually left Intel, but he remained active in microchip technology and subsequently founded Sematech Inc.
    [br]
    Principal Honours and Distinctions
    Franklin Institute Stuart Ballantine Medal 1966. National Academy of Engineering 1969. National Academy of Science. Institute of Electrical and Electronics Engineers Medal of Honour 1978; Cledo Brunetti Award (jointly with Kilby) 1978. Institution of Electrical Engineers Faraday Medal 1979. National Medal of Science 1979. National Medal of Engineering 1987.
    Bibliography
    1955, "Base-widening punch-through", Proceedings of the American Physical Society.
    30 July 1959, US patent no. 2,981,877.
    Further Reading
    T.R.Reid, 1985, Microchip: The Story of a Revolution and the Men Who Made It, London: Pan Books.
    KF

    Biographical history of technology > Noyce, Robert

  • 47 Rammler, Erich

    [br]
    b. 9 July 1901 Tirpersdorf, near Oelsnitz, Germany
    d. 6 November 1986 Freiberg, Saxony, Germany
    [br]
    German mining engineer, developer of metallurgic coke from lignite.
    [br]
    A scholar of the Mining Academy in Freiberg, who in his dissertation dealt with the fineness of coal dust, Rammler started experiments in 1925 relating to firing this material. In the USA this process, based on coal, had turned out to be very effective in large boiler furnaces. Rammler endeavoured to apply the process to lignite and pursued general research work on various thermochemical problems as well as methods of grinding and classifying. As producing power from lignite was of specific interest for the young Soviet Union, with its large demand from its new power stations and its as-yet unexploited lignite deposits, he soon came into contact with the Soviet authorities. In his laboratory in Dresden, which he had bought from the freelance metallurgist Paul Otto Rosin after his emigration and under whom he had been working since he left the Academy, he continued his studies in refining coal and soon gained an international reputation. He opened up means of producing coke from lignite for use in metallurgical processes.
    His later work was of utmost importance after the Second World War when several countries in Eastern Europe, especially East Germany with its large lignite deposits, established their own iron and steel industries. Accordingly, the Soviet administration supported his experiments vigorously after he joined Karl Kegel's Institute for Briquetting in Freiberg in 1945. Through his numerous books and articles, he became the internationally leading expert on refining lignite and Kegel's successor as head of the Institute and Professor at the Bergakademie. Six years later, he produced for the first time high-temperature coke from lignite low in ash and sulphur for smelting in low-shaft furnaces. Rammler was widely honoured and contributed decisively to the industrial development of his country; he demonstrated new technological processes when, under austere conditions, economical and ecological considerations were neglected.
    [br]
    Bibliography
    Rammler, whose list of publications comprises more than 600 titles on various matters of his main scientific concern, also was the co-author (with E.Wächtler) of two articles on the development of briquetting brown coal in Germany, both published in 1985, Freiberger Forschungshefte, D 163 and D 169, Leipzig.
    Further Reading
    E.Wächtler, W.Mühlfriedel and W.Michel, 1976, Erich Rammler, Leipzig, (substantial biography, although packed with communist propaganda).
    M.Rasch, 1989, "Paul Rosin—Ingenieur, Hochschullehrer und Rationalisierungsfachmann". Technikgeschichte 56:101–32 (describes the framework within which Rammler's primary research developed).
    WK

    Biographical history of technology > Rammler, Erich

  • 48 Strachey, Christopher

    [br]
    b. 16 November 1916 England
    d. 18 May 1975 Oxford, England
    [br]
    English physicist and computer engineer who proposed time-sharing as a more efficient means of using a mainframe computer.
    [br]
    After education at Gresham's School, London, Strachey went to King's College, Cambridge, where he completed an MA. In 1937 he took up a post as a physicist at the Standard Telephone and Cable Company, then during the Second World War he was involved in radar research. In 1944 he became an assistant master at St Edmunds School, Canterbury, moving to Harrow School in 1948. Another change of career in 1951 saw him working as a Technical Officer with the National Research and Development Corporation, where he was involved in computer software and hardware design. From 1958 until 1962 he was an independent consultant in computer design, and during this time (1959) he realized that as mainframe computers were by then much faster than their human operators, their efficiency could be significantly increased by "time-sharing" the tasks of several operators in rapid succession. Strachey made many contributions to computer technology, being variously involved in the design of the Manchester University MkI, Elliot and Ferranti Pegasus computers. In 1962 he joined Cambridge University Mathematics Laboratory as a senior research fellow at Churchill College and helped to develop the programming language CPL. After a brief period as Visiting Lecturer at the Massachusetts Institute of Technology, he returned to the UK in 1966 as Reader in Computation and Fellow of Wolfeon College, Oxford, to establish a programming research group. He remained there until his death.
    [br]
    Principal Honours and Distinctions
    Distinguished Fellow of the British Computer Society 1972.
    Bibliography
    1961, with M.R.Wilkes, "Some proposals for improving the efficiency of Algol 60", Communications of the ACM 4:488.
    1966, "Systems analysis and programming", Scientific American 25:112. 1976, with R.E.Milne, A Theory of Programming Language Semantics.
    Further Reading
    J.Alton, 1980, Catalogue of the Papers of C. Strachey 1916–1975.
    M.Campbell-Kelly, 1985, "Christopher Strachey 1916–1975. A biographical note", Annals of the History of Computing 7:19.
    M.R.Williams, 1985, A History of Computing Technology, London: Prentice-Hall.
    KF

    Biographical history of technology > Strachey, Christopher

  • 49 Voigt, Paul Gustavus Adolphus Helmuth

    [br]
    b. 9 December 1901 Forest Hill, London, England
    d. 9 February 1981 Brighton, Ontario, Canada
    [br]
    English/Canadian electronics engineer, developer of electromechanical recording and reproductions systems, amplifiers and loudspeakers.
    [br]
    He received his education at Dulwich College and in 1922 graduated with a BSc from University College, London. He had an early interest in the application of valve amplifiers, and after graduating he was employed by J.E.Hough, Edison Bell Works, to develop a line of radio-receiving equipment. However, he became interested in the mechanical (and later electrical) side of recording and from 1925 developed principles and equipment. In particular he developed capacitor microphones, not only for in-house work but also commercially, until the mid-1930s. The Edison Bell company did not survive the Depression and closed in 1933. Voigt founded his own company, Voigt Patents Ltd, concentrating on loudspeakers for cinemas and developing horn loudspeakers for domestic use. During the Second World War he continued to develop loudspeaker units and gramophone pick-ups, and in 1950 he emigrated to Toronto, Canada, but his company closed. Voigt taught electronics, and from 1960 to 1969 he was employed by the Radio Regulations Laboratory in Ottawa. After retirement he worked with theoretical cosmology and fundamental interactions.
    [br]
    Bibliography
    Most of Voigt's patents are concerned with improvements in the magnetic circuit in dynamic loudspeakers and centring devices for diaphragms. However, UK patent nos. 278,098, 404,037 and 447,749 may be regarded as particularly relevant. In 1940 Voigt contributed a remarkable paper on the principles of equalization in mechanical recording: "Getting the best from records, part 1—the recording characteristic", Wireless World (February): 141–4.
    Further Reading
    Personal accounts of experiences with Voigt may be found in "Paul Voigt's contribution to Audio", British Kinematography Sound and Television (October 1970): 316–27, which also includes a list of his patents.
    GB-N

    Biographical history of technology > Voigt, Paul Gustavus Adolphus Helmuth

  • 50 Laboringenieur

    m
    laboratory engineer

    Deutsch-Englisches Wörterbuch > Laboringenieur

См. также в других словарях:

  • Engineer — For other uses, see Engineer (disambiguation). Engineer Conference of Engineers at the Menai Straits Preparatory to Floating one of the T …   Wikipedia

  • Engineer Research and Development Center — The Engineer Research and Development Center or ERDC is a United States government funded military base located at Vicksburg, Mississippi. The base was set up after the 1927 flood disaster of the Mississippi River. The base is staffed by the U.S …   Wikipedia

  • Minus Eighty Degree Laboratory Freezer for ISS — The Minus Eighty Degree Laboratory Freezer for ISS (MELFI) is a European built experiment storage freezer for the International Space Station. It comprises four independent dewars which can be set to operate at different temperatures. Currently… …   Wikipedia

  • Oak Ridge National Laboratory — Established: 1943 Director: Thom Mason Locat …   Wikipedia

  • Argonne National Laboratory — Established 1946 Research Type Research Field of Research Physical science Life …   Wikipedia

  • Hanford Engineer Works — Karte der einzelnen Bereiche auf der Hanford Site Straßenschild der Hanford Site Hanford Site ist der Name eines US amerikanischen Nuklearkomplexes am Columbia R …   Deutsch Wikipedia

  • Ed Roberts (computer engineer) — Ed Roberts Ed Roberts in 2002 Born Henry Edward Roberts September 13, 1941(1941 09 13) Miami, Florida, United States …   Wikipedia

  • Naval Ordnance Laboratory — The Naval Ordnance Laboratory (NOL), now disestablished, formerly located in White Oak, Maryland was the site of considerable work that had practical impact upon world technology. The White Oak site of NOL has now been taken over by the Food and… …   Wikipedia

  • Cold Regions Research and Engineering Laboratory — Established 1 February 1961 (1 February 1961) Research Type …   Wikipedia

  • Metallurgical Laboratory — Henry Moore s Nuclear Energy on the site of the first self sustaining nuclear chain reaction. The Metallurgical Laboratory or Met Lab at the University of Chicago was part of the World War II–era Manhattan Project, created by the United States to …   Wikipedia

  • Csaba Horváth (chemical engineer) — Csaba Horváth (25 January 1930 – 13 April 2004) was a Hungarian American chemical engineer, particularly noted for building the first high performance liquid chromatograph. Contents 1 Life 2 Work 3 References …   Wikipedia

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»