-
61 работа 1
[см. астрономические работы; вести монтажные работы; вступать в работу; длительность работы; инструкторская работа; места для работы, отдыха и сна экипажа; монтажные работы; на очень широком фронте работ; наилучший режим работы; насыщенная программа работ; объем работы; опыт работы; основное развитие работы по созданию … получили; первые работы по созданию … проводились; приспособленный к задачам и условиям работы в космосе; проводить свою работу; программа работ; режим работы; ремонтные работы; с опытом работы в космосе; увлекшись работой; условия работы и отдыха; фронт работ; фундаментальная работа; широкие работы по; экспериментальная работа; эти работы проводятся на базе; см. тж. действие; режим]Halfway inside the hatch I carried out observations of the Earth's horizon and checked the operation of attitude control jets…Throughout the process the orientation of the spacecraft remains the same as during the firing of the retro-engine.After landing the cosmonauts had high praise for the performance of all the on-board systems, which functioned properly throughout the flight. -
62 ход
муж.дать задний ход — to put it into reverse, to back down/off/out
на полный ход — at full capacity (о механизме, фабрике); at its height/peak, going strong (о бизнесе, торговле)
ход развития — process; time history
в ходе чего-л. — during, in the course of
гусеничный ход — caterpillar, crawler тех.
есть на ходу — to snatch a meal/bite
задний ход — backing, reverse; backward; reverse motion
замедлять ход — to slow down, to reduce speed
на полном ходу — full-pelt, in full operation
на ходу — in motion, on the move, without stopping ( во время движения) ; in working/running order ( в рабочем состоянии); ( во время работы механизма) while running
полный ход, полный вперед — full speed (ahead)
прибавлять ходу, поддать ходу — to pick up speed; to step on the gas ( о водителе)
свободный ход — free wheeling; coasting (об автомобиле)
своим ходом — under one's own steam/power, on one's own ( двигаться); at one's own pace, (to take) its course ( развиваться)
ход рассуждений — chain/line of argument/reasoning
ход событий — course/march of events; trend of developments
- ход со дворазнать все ходы и выходы — to know all the ins and outs, to be perfectly at home разг.
- ход сообщения
- черный ход3) мн. ч. ходы (в игре) move шахм.; lead, turn карт.ваш ход — it is your move (в шахматах); it is your lead (в картах)
чей ход? — whose move is it? (в шахматах); who is it to lead? (в картах)
•на гусеничном ходу — caterpillar-mounted, caterpillar-tracked; mounted on caterpillar tracks
••дать ход — (делу, заявлению и т.п.)
идти в ход, идти в дело — to be put to use, to be used
пустить в ход — (что-л.)to star, to set going, to give a start, to set in train; to get under way, to get started (о деле, предприятии); to start (up) an engine, to get running/going (о машине, механизме и т.п.); to start (up) a factory, to put a factory into operation (о фабрике и т.п.); to put smth. to use (свое обаяние и т.п.); to put forward an argument ( аргумент)
дела идут полным ходом — affairs/things are in full swing
пускать в ход все средства — to leave no stone unturned; to move heaven and earth
- ловкий ходэтот товар в большом ходу — this article is in great demand, these goods are in great request
- не давать хода
- с ходу -
63 масло
1. с. butter; oilпоглотительное масло — absorption oil; wash oil
рабочее масло — power oil; pressure oil; relay oil
2. oil; butter -
64 labour
(American) labor [ˈleɪbə]1. noun1) hard work:The building of the cathedral involved considerable labour over two centuries
عَمَل شاقPeople engaged in manual labour are often badly paid.
2) workmen on a job:عُمّالThe firm is having difficulty hiring labour.
3) (in a pregnant woman etc) the process of childbirth:مَخاض المرأهShe was in labour for several hours before the baby was born.
4) used ( with capital) as a name for the Socialist party in the United Kingdom.حِزب العُمّال2. verb1) to be employed to do hard and unskilled work:يَعْمَل، يَشْتَغِلHe spends the summer labouring on a building site.
2) to move or work etc slowly or with difficulty:يَتَحَرَّك، يَعْمَل بصُعوبَهthe car engine labours a bit on steep hills.
-
65 malfunction
[mælˈfaŋkʃən] nounfaulty performance or a faulty process:سوء الأداء، قُصور في الأداءThere's a malfunction in the main engine.
-
66 блок
unit, block;
- (агрегат) — unit
- (ролик, тросовый) — pulley
- (такелажный, погрузочный) — pulley block
- а, д, е (бытовых приборов) — unit а, d, е
- аварийных и предупреждающих сигналов (бап) — warning/caution signal unit
- автоматики (ба, инерц. сист.) — automatic control unit
- автоматического триммирования (бат), автотриммирования — autotrim control unit
-, антенно-электронный — antenna/electronic unit
- баланса (электрического баланса, системы сп-50) — balance control unit
-, балансировки (бб) — stable platform gyro bias drift
дпя компенсации систематической составляющей собственного дрейфа гироскопов гироплатформы по трем осям. — compensator
- ввода начальных данных (пв, инерциальной системы) — control display unit (cdu)
- воздушных параметров (бвп) — air data unit
-, "врубной" — plug-in unit
- bcmb (системы cbc, вычислитепь скорости, чиспа м и высоты) — air data computer
-, вычислительно-усилительный (вуб, инерциальной системы) — computer-amplifier unit
- гиромагнитной коррекции (бгмк) — gyro/mag monitor
-, гидравлический — hydraulic unit (pack)
- датчиков угловых скоростей — rate gyro unit /group/
- демпфирующих гироскопов — rate gyro unit
- дистанционной (дискретной) коррекции (бдк) — navigation computer correction selector
задатчик, устанавливаемый на приборной доске и служащий для компенсации систематической погрешности курсовой системы или цепи счисления пути в нав. вычислитепь (нву) (рис. 69). — selector is installed on сopilot's instrument panel, and is used to compensate systematic errors оf compass system or а/с position reckoning circuit in navigation computer.
- добавочного сопротивления (для ограничения токов в цепи якоря электродвигателя.) — additional resistance unit
- заданной информации по траектории полета — flight path data storage unit (fdsu)
- задатчика скорости (приборной) — ias selector unit
- задающий (в сист. управления) — master unit
- зажигания — ignition unit
-, законченный — definite-purpose unit
- защиты двигателя (бзд) — engine protection unit
- защиты и управления (бзу) — protection and control unit
-, инерциально-навигационный (с гироплатформой) — inertial navigation unit (inu)
- искрогашения (рад.) — spark quench unit
-, исполнительный — actuating unit
- камеры сгорания — combustion section
- кислородного питания, переносной — portable oxygen unit
- кислородного питания (бкп), переносной (аварийный баллон с редуктором и манометром) — (emergency) portable /walkaround/ oxygen cylinder
- кислородного питания (бкп), стационарный — oxygen supply cylinder (unit)
- кислородного оборудования (бко состоит из укладочного блока и кислородной маски) — oxygen unit
- коммутации — switching unit
- коммутации навигационного оборудования (бкн) — navigation equipment switching unit
- коммутации шин (автомат переключения шин) — bus tie relay (unit)
-, конструктивно-законченный — definite-purpose unit
- контроля — monitor
- контроля (переносного типа "тестер") — tester
- контроля исправности (системы) — (system) integrity monitor /monitoring unit/
- контроля кренов (бкк) (сравнивает углы крена и тангажа, индицируемые на обоих пкп и измеряемые резервной курсовертикалью, и при необходимости вырабатывает сигнал отказа.) — attitude monitor (атт mntr)
- коррекции и связи (бкс, инерциальной навигационной системы) — coupler
- кресел (пассажирских) — seat unit
- кресел, двухместный — double-place seat unit
- кресел, трехместный — triple-place seat unit
-, легкосъемный (со штырьевым разъемом) — plug-and-socket quick release unit
- масляных насосов (маслоагрегат) — oil pump block
-, модульный — module
- на твердых схемах (электронный) — solid state circuitry unit (all-solid state circuitry is used in many key chassis areas.)
- наведения (бн) — guidance unit
в системе сау для управления механизмом триммерного эффекта продольного канала. — directs an aircraft with referеncе 'to selection of a flight path.
-, натяжной (для регулирования натяжения тросовой проводки) — cable tensioning pulley
-, натяжной (оттяжной, тросовой проводки) — idle pulley block
- неуправляемых ракет (подвесной) — rocket pod
- ограничения режимов (автопилота, бор) — mode limiter
- опасной высоты (автопилота,бов) — preselected radio altitude unit
- оперативной памяти (устройство) — random-access memory (ram) ram output data is transferred on the memory bus.
- (иммитации) отказов (системы сау) — failure simulator
- отключения генератора (бог) — generator cut-out unit
-, оттяжной (тросовой проводки) — idle pulley block
- очередности (очереди работы озу) — queue control block (а block that is used to regulate the sequential use of a programmer.)
- памяти (внешней) — storage unit
- памяти воздушных сигналов — air data storage unit
- передачи данных — data transmitter
-, перекидной (роликовый) — guide pulley block
- переключения потребителей (бпп) — load monitor relay (unit) (lmr)
- переключения шин (автомат) — bus tie relay unit (btr)
- перекрестных связей (бпс) — cross-coupling unit
- питания — power unit
- питания потребителей (бпп) — power unit
- пластин (аккумулятора), отрицательный — negative plate group
- пластин (аккумулятора), положительный — positive plate group
-, погрузочный (тросовой проводки с лебедкой) — (cargo) loading /handling/ pulley block
- подрыва (сро) — destructor (unit)
- подшипника, внутренний — bearing inner race and cage assembly
-, полностью собранный на транзисторах — all-transistorized unit
- полупроводниковых приборов(бпп) — semiconductor module
- постоянной памяти (устройство) — read-only memory (rom) rom output data is transferred on the memory bus.
- постоянной памяти (внешнее устройство) — permanent storage
- преобразования (системы свс) — converter
- преобразования сигналов (системы мсрп) — signal conditioning unit
- приема данных — data receiver
- приема и обработки сигналов (навигац.системы "омега") — receiver-processor unit (rpu)
-,приемо-вычислительный (системы "омега") — receiver processor unit (rpu)
-,приемо-процессорный (системы "омега") — receiver processor unit (rpu) contains the circuitry to process the received omega and vlf signals.
-, процессорно-вычислительный (пb, системы "омега") — receiver-processor unit (rpu)
- разовых команд (брк) — event signal unit
- распределения углов (бру, крена, курса, тангажа инерциальной системы) — pitch, roll and heading angular information distributor (used to transfer pitch, roll and heading angular information to respective systems.)
- растормаживания (блок тормоза) — brake retraction mechanism
- реактивных орудий (подвесной) — rocket pod
- регулирования частоты генератора (брч) — generator frequency control unit
- регулировочно-коммутационный (автопилота) — coupler
- речевой информации (ри) — voice warning unit (vwu)
- речевых команд (брк) — voice warding unit (vwu)
- (2-х) роликовый — (twin) pulley block
-,рулевой (рб,автопилота) — servo (unit)
- ручного триммирования — manual trim control unit
- связи — coupling unit, coupler
-, связи аналого-цифровой (ацбс) — analog-digital coupler
служит для преобразования входных данных в цифровой код и цифрового кода в выходные данные. — converts input data into digital code, and then digital code into output signals.
- связи, антенный (системы "омега") — antenna coupler (acu)
- связи низкой частоты доплеровского измерителя скорости и сноса — doppler lf coupler
- связи с антенной — antenna coupler unit
- связи с курсовой системой — compass system coupling unit /coupler/
- связи с радиолокационным оборудованием — radar coupling unit /coupler/
- сигнализации нарушения питания (снп) — power fail relay (unit)
- сигнализации предельных кренов (бспк для включения табло крен лев (прав) велик) — limit bank warn(ing) unit (to operate high l(r) bank annunciators)
- сигналов отказа (бсо) — failure signal unit
- сидений (кресел, двух-трехместный) — (double-, triple-place) seat unit
- скоростных гироскопов — rate gyro unit/group/
- собранный на транзисторах — transistorized unit
- согласования (автопилота) — synchronizer
- согласования (сарпп) — signal conditioning unit
- согласования (сист. высотноскоростных параметров) — synchronizer
- согласования курса (бск, сист. бскв) — heading synchronizer
- согласующих устройств (бсу, системы мсрп) — signal conditioning unit
- сопряжения антенн (системы омега) — antenna coupler unit (acu)
- специализированного питания (бсп, инерциональной системы) — power unit
- сравнения — comparator
- сравнения гировертикалей (бсг) — vertical gyro comparator, vg comparator
- сравнения сигналов компасов — compass signal comparator
- страниц — page block
а normal blank page within a page block (e.g. the back of a fold-out page) shall be identified as follows. pages 823/824 (ata-1oo, 1-1-1, p.2)
- страниц раздела технология обслуживания, включает: обслуживание (стр. 301-400) демонтаж/монтаж (стр. 401-500) регулировка/испытание (стр. 501-600) осмотр/проверка (стр. 601-700) очистка/окраска (стр. 701-800) 1 текущий ремонт (стр. 801-900) — maintenance practices page number blocks are as follows: servicing (pages 301-400) removal/installation (401-500) adjustment/test (501-600) inspection/check (601-700) cleaning/painting (701-800) approved repairs (801-900)
- страниц, стандартный — standard page number block
standard page number blocks to be used for the maintenance manual are as follows:
(напр. описание и работа стр. 1-1oo — description and operation, pages 1 to 100
отыскание неисправности стр. 101-200 и т.д.) — trouble shooting, pages 101-200
maintenance practices, pages 201-300 servicing pages 301-400 (ata-1oo, 2-1-1 p.2)
- суммарного измерения (топливомера (бси) — fuel quantity totalizer
- суммарной сигнализации (топливомера) (бсс) — total fuel indication unit
- (-) схема — block diagram
блок-схемы используются в описательной части руководств для общего ознакомления с работой и соединениями сложной эпектрической или электронной системы (рис. 95). — the block diagram shall be used in the descriptive portion of the manuals to simplify complex circuits to understand the system function and operation.
- (-) схема (подрисуночная надпись, напр. "блоксхема доплеровекого измерителя) — block schematic туре 72 doppler - block schematic
- топливомера (электронный) — fuel quantity unit
- тормоза (колеса) — brake unit
- траекторного управления (бту системы сту) — flight director unit, fd unit
- трансформаторно-выпрямительный — transformer-rectifier unit (tr, tru, t/r;
-, укладочный (для кислородной маски и шланга) — (oxygen mask) container
-, унифицированный (уб для pc) — rocket pod (rkt pod)
- управления — control unit
- управления и индикации (нав. сист. "омега") — control display unit (cdu)
- управления и индикации расстояния до пункта назначения и отклонения от курса — along/across track display controller
- управления сигнализацией — warning system control unit
- усилителя сервопривода крена (бус крена) — aileron servo amplifier (unit)
- усилителя сервопривода тангажа (бус тангажа) — elevator servo amplifier (unit)
- усилителей сервоприводов (бус, автопилота) — servo amplifier unit, autopilot amplifier unit
provides power outputs to drive the control surface servos.
-, усилительный (автопилота) — autopilot amplifier
-, усилительный, крена (тангажа, рыскания) — roll (pitch, yaw) channel amplifier unit
- формирования (сигналов) и контроля — signal conditioning and monitor unit
бфк, формирует сигналы h, m, vпр) и вырабат. сигналы отказа датчиков
-, функционально-законченный — definite-purpose unit
- центровки самолета (сист. топливомера) (бцс) — fuel equalizer
- цилиндров — cylinder block
соединение нескольких цилиндров в общем конструктивном узле
- цилиндров (тормоза колеса) (рис. 32) — cylinder block
силовой узел тормоза, воздействующий при подаче давления на нажимной диск, сжимающий тормозные (вращающиеся и неподвижные) диски, — the two sets of four piston and cylinder assemblies are incorporated in the torque plate of the cylinder block to provide fully dupplicated and independent application of brake.
- чередования фаз (бчф) — phase-sequence (relay) unit
- электроники (бэ, инерц. сист.) — electronic unitРусско-английский сборник авиационно-технических терминов > блок
-
67 коэффициент
coefficient (coeff.), factor
безразмерное число, в основном отношение к-п. величин, характеризующих заданные условия. — а number indicating the amount of some change under certain specified сoпditions, often expressed as a ratio.
- безопасности — factor of safety
число, равное отношению расчетной нагрузки к эксплуатационной. расчетная нагрузка - произведение эксплуатационной нагрузки на коэффициент безопасности. — а number indicating the ratio between the ultimate load and limit load (maximum load expected in service). ultimate load is limit load multiplied by factor of safety.
- восстановления давления — pressure recovery factor
- двухконтурности (дтрд) — bypass ratio
- загрузки пассажирами, безубыточный — passenger break-even load factor
- запаса длины впп — field length factor
- запаса длины летной полосы — field length factor
- запаса длины летной полосы в направлении взлета — takeoff field length factor
- запаса длины летной полосы в направлении посадки — landing field length factor
- запаса длины летной полосы при всех работающих двигателей — field length factor for all-engines-operating сase
- запаса длины летной полосы при одном отказавшем двигателе — field length factor for one-engine-inoperative ease
- запаса прочности — reserve factor
отношение фактической прочности конструкции к минимально-потребной в данных условиях. — а ratio of the actual strength of the structure to the minimum required to specific condition.
- заполнения (в вычислительном уст-ве) — duty factor in computer, the ratio of active time to total time.
- заполнения (воздушного) винта — propeller solidity ratio
отношение суммарной площади всех лопастей винта к сметаемой ими площади. — the ratio of the total projected blade area to the area of the projected outline of the propeller disc.
- заполнения несущего винта (вертолета) — rotor solidity ratio solidity of rotor is a ratio of the total blade area to the disc area.
- лобового сопротивления (сх) — drag coefficient (cd)
коэффициент, характеризующий лобовое сопротивление рассматриваемого аэродинамического профиля. — а coefficient representing the drag on а given airfoil.
- маневренной перегрузки — maneuvering load factor
- момента крена — rolling-moment coefficient
- момента рыскания — yawing-moment coefficient
- момента тангажа — pitching-moment coefficient
- мощности — power factor
- мощности (воздушного винта) — activity factor
- мощности лопасти (возд. винта) — blade activity factor
безразмерная функция поверхности лопасти, характеризующая способность лопасти использовать прикладываемую мощность. — а non-dimensional function of the blade surface used to express capacity of a blade for absorbing power.
- несущей поверхности (покрытия аэродрома), калифорнийский — californian bearing ratio (с.в.r.)
-, относительный (воздушного винта) — figure of merit
- перегрузки (n) — load factor (n)
число, показывающее, во сколько раз нагрузки, действующие на самолет (или его отдельные части), превышает нагрузки в равномерном горизонтальном полете или нагрузки от веса при стоянке. — the ratio to the weight of an aircraft of а specified exterпаl load. such load may arise from aerodynamic forces, gravity, ground or water reaction, or from combinations of these forces.
- перегрузки, максимальный эксплуатационный — limit load factor
- перегрузки, (полетный) — flight load factor
отношение составляющей аэродинамической нагрузки (действующей перпендикулярно продольной оси ла) к весу ла. — the ratio of the aerodynamic force component (acting normal to the assumed longitudiпа1 axis of the airplane) to the weight of the airplane.
- перегрузки (полетной), отрицательный — negative load factor
- перегрузки (полетной), положительный — positive load factor
в данном случае аэродинамичеекая сила воздействует на ла снизу вверх. — in positive load factor the aerodynamic force acts upward with respect to the airplane.
- перегрузки при маневре — maneuvering load factor
- перегрузки при маневре, максимальный эксплуатационный — limit maneuvering load factor
- перегрузки, расчетный — ultimate load factor
- передачи (коэффициент передаточного числа в системе управления ла) — gain
- подъемной силы (су) безразмерная величина, определяемая по формуле. — lift coefficient (cl) а coefficient representing the lift of а given airfoil or other body. the lift coefficient is obtained ьу dividing the lift by the free-stream dynamic pressure and by the representative area under consideration.
- полезного действия (кпд) — efficiency (n)
the ratio of the useful output of the quantity to its total input.
- полезного действия, общий — overall efficiency
- полезного действия,тепловой — thermal efficiency
-, поправочный — correction factor
например, для учета влияния погодных (сезонных) условий (температура наружного воздуха, атмосферные осадки, обледенение) на характеристики тормозного участка впп в пределах установленных эксплуатационных ограничений. — the correction factors must account for the particular surface characteristics of the stopway and the variations in these characteristics with seasonal weather conditions (such as temperature, rain, snow, and ice) within the established operational limits.
- предельной перегрузки — ultimate load factor
- преобразования (в преобразователе) — conversion efficiency ratio of dc output power to ас input power.
- профильного сопротивления — profile drag coefficient
- прочности грунта, калифорнийский — californian bearing ratio (c.b.r.)
(к. несущей способности покрытия аэродрома, впп) — c.b.r. is used to measure subsoil strength of the runways and airfields.
- связи (эл.) — coupling coefficient
- сжимаемости — coefficient of compressibility
относительное уменьшение объема газа при повышении давления в изотермическом процессе. — the relative decrease of the volume of а gaseous system with increasing pressure in an isothermal process.
- совершенства (воздушного винта) — figure of merit
- сопротивления (лобовой, сx) — drag coefficient (cd)
- сопротивления (сx) груза на внешней подвеске (вертолета) — drag coefficient (cd) representing а drag caused by an externally-slung load
- стоячей волны — standing wave ratio (swr)
- схождения карты — chart convergence factor (ccf)
- сцепления (между шиной колеса и поверхностью впп) — coefficient of friction
-, сцепления (между шиной и впп при торможении) — braking coefficient of friction
- трансформации (в трансформаторе) — transformation ratio compensation windings are used to correct for variations in the resolvers transformation ratio.
- трения — coefficient of friction
- трения торможения — braking coefficient of friction
коэффициент трения между шиной и поверхностью взлетно-посадочной полосы при торможении самолета. — braking coefficient of friction between the aircraft wheel tires and runway (surface).
- трения торможения, осредненный приведенный — (mean) corrected braking coefficient of friction
- тяги (воздушного винта) — thrust coefficient (ст)
- усиления (эл.) — amplification factor
the ratio of output magnitude to input magnitude.
- усиления антенны — antenna gain
- усиления (передаточное число в системе управления) — gain
- усиления, самонастраивающийся (системы управления) — adaptive gain
- утечки — leakage factor
- шарнирного момента — hinge moment factor
- шарнирного момента от порыва ветра на земле, предельный — limit hinge moment factor (к) for ground gusts
в отношении элеронов и рулей высоты, коэффициент имеет положительный знак, если момент, воздействующий на поверхность управления, вызывает ее опускание. — for ailerons and elevators, а positive value of к indicates а moment tending to depress the surface, and а negative value of к - to raise the surface.
- шума — noise factor
для данной полосы частот, отношение суммарной величины помех на выходе к величине помехи на входе. — for а given bandwidth, the ratio оf total noise at the output, to the noise at the input.
- эксплуатационной маневренной перегрузки (максимальный), или эксплуатационной перегрузки при маневрировании (отрицательный или попожительный) — (negative, positive) limit maneuvering load factor rotorcraft must be designed for positive limit maneuvering load factor of 3.5 and negafive limit maneuvering load factor of 1.0.Русско-английский сборник авиационно-технических терминов > коэффициент
-
68 сварка (металлов)
welding
технологический процесс образования неразъемного соединения деталей, конструкций путем их местного сплавпения, — the process of producing an intimate union of similar мetals and metal parts by bringing the areas immediately adjacent to the proposed weld up to the melting points and fusing the metals together.
- (ппеночных пластиков) — heat sealing
заварить шов пленочного чехла двигателя при помощи сварочного приспособления, — heat seal the engine envelope using а plastic film sealing iron.
-, аргона-дуговая — argonarc welding
- в защитном газе — inert-gas shielded welding
- в инертном газе (электродуговая) — inert-gas shielded (arc) welding
- внахлестку — lap welding
- встык — butt welding
-, газовая — gas welding
-, дуговая (эпектродуговая) — arc welding
welding by using the heat of an electric arc.
-, кислородно-ацетиленовая — oxyacetylene welding
-, контактная — resistance welding
electric welding by means of passing an electric current through the metal.
- нейтрапьным ппаменем — welding with neutral flame
-, прихватками — tack welding
-, роликовая — roll welding
точечная сварка посредством роликовых электродов. — а spot weld using roll electrоdes.
-, точечная — spot welding
-, электродуговая — arc weldingРусско-английский сборник авиационно-технических терминов > сварка (металлов)
-
69 Bedson, George
SUBJECT AREA: Metallurgy[br]b. 3 November 1820 Sutton Coldfield, Warwickshire, Englandd. 12 December 1884 Manchester (?), England[br]English metallurgist, inventor of the continuous rolling mill.[br]He acquired a considerable knowledge of wire-making in his father's works before he took a position in 1839 at the works of James Edleston at Warrington. From there, in 1851, he went to Manchester as Manager of Richard Johnson \& Sons' wire mill, where he remained for the rest of his life. It was there that he initiated several important improvements in the manufacture of wire. These included a system of circulating puddling furnace water bottoms and sides, and a galvanizing process. His most important innovation, however, was the continuous mill for producing iron rod for wiredrawing. Previously the red-hot iron billets had to be handled repeatedly through a stand or set of rolls to reduce the billet to the required shape, with time and heat being lost at each handling. In Bedson's continuous mill, the billet entered the first of a succession of stands placed as closely to each other as possible and emerged from the final one as rod suitable for wiredrawing, without any intermediate handling. A second novel feature was that alternate rolls were arranged vertically to save turning the piece manually through a right angle. That improved the quality as well as the speed of production. Bedson's first continuous mill was erected in Manchester in 1862 and had sixteen stands in tandem. A mill on this principle had been patented the previous year by Charles While of Pontypridd, South Wales, but it was Bedson who made it work and brought it into use commercially. A difficult problem to overcome was that as the piece being rolled lengthened, its speed increased, so that each pair of rolls had to increase correspondingly. The only source of power was a steam engine working a single drive shaft, but Bedson achieved the greater speeds by using successively larger gear-wheels at each stand.Bedson's first mill was highly successful, and a second one was erected at the Manchester works; however, its application was limited to the production of small bars, rods and sections. Nevertheless, Bedson's mill established an important principle of rolling-mill design that was to have wider applications in later years.[br]Further ReadingObituary, 1884, Journal of the Iron and Steel Institute 27:539–40. W.K.V.Gale, 1969, Iron and Steel, London: Longmans, pp. 81–2.LRD -
70 Champion, Nehemiah
SUBJECT AREA: Metallurgy[br]b. 1678 probably Bristol, Englandd. 9 September 1747 probably Bristol, England[br]English merchant and brass manufacturer of Bristol.[br]Several members of Champion's Quaker family were actively engaged as merchants in Bristol during the late seventeenth and the eighteenth centuries. Port records show Nehemiah in receipt of Cornish copper ore at Bristol's Crews Hole smelting works by 1706, in association with the newly formed brassworks of the city. He later became a leading partner, managing the company some time after Abraham Darby left the Bristol works to pursue his interest at Coalbrookdale. Champion, probably in company with his father, became the largest customer for Darby's Coalbrookdale products and also acted as Agent, at least briefly, for Thomas Newcomen.A patent in 1723 related to two separate innovations introduced by the brass company.The first improved the output of brass by granulating the copper constituent and increasing its surface area. A greater proportion of zinc vapour could permeate the granules compared with the previous practice, resulting in the technique being adopted generally in the cementation process used at the time. The latter part of the same patent introduced a new type of coal-fired furnace which facilitated annealing in bulk so replacing the individual processing of pieces. The principle of batch annealing was generally adopted, although the type of furnace was later improved. A further patent, in 1739, in the name of Nehemiah, concerned overshot water-wheels possibly intended for use in conjunction with the Newcomen atmospheric pumping engine employed for recycling water by his son William.Champion's two sons, John and William, and their two sons, both named John, were all concerned with production of non-ferrous metals and responsible for patented innovations. Nehemiah, shortly before his death, is believed to have partnered William at the Warmley works to exploit his son's new patent for producing metallic zinc.[br]Bibliography1723, British patent no. 454 (granulated copper technique and coal-fired furnace). 1739, British patent no. 567 (overshot water-wheels).Further ReadingA.Raistrick, 1950, Quakers in Science and Industry, London: Bannisdale Press (for the Champion family generally).J.Day, 1973, Bristol Brass, a History of the Industry, Newton Abbot: David \& Charles (for the industrial activities of Nehemiah).JD -
71 Darby, Abraham
SUBJECT AREA: Metallurgy[br]b. 1678 near Dudley, Worcestershire, Englandd. 5 May 1717 Madely Court, Coalbrookdale, Shropshire, England[br]English ironmaster, inventor of the coke smelting of iron ore.[br]Darby's father, John, was a farmer who also worked a small forge to produce nails and other ironware needed on the farm. He was brought up in the Society of Friends, or Quakers, and this community remained important throughout his personal and working life. Darby was apprenticed to Jonathan Freeth, a malt-mill maker in Birmingham, and on completion of his apprenticeship in 1699 he took up the trade himself in Bristol. Probably in 1704, he visited Holland to study the casting of brass pots and returned to Bristol with some Dutch workers, setting up a brassworks at Baptist Mills in partnership with others. He tried substituting cast iron for brass in his castings, without success at first, but in 1707 he was granted a patent, "A new way of casting iron pots and other pot-bellied ware in sand without loam or clay". However, his business associates were unwilling to risk further funds in the experiments, so he withdrew his share of the capital and moved to Coalbrookdale in Shropshire. There, iron ore, coal, water-power and transport lay close at hand. He took a lease on an old furnace and began experimenting. The shortage and expense of charcoal, and his knowledge of the use of coke in malting, may well have led him to try using coke to smelt iron ore. The furnace was brought into blast in 1709 and records show that in the same year it was regularly producing iron, using coke instead of charcoal. The process seems to have been operating successfully by 1711 in the production of cast-iron pots and kettles, with some pig-iron destined for Bristol. Darby prospered at Coalbrookdale, employing coke smelting with consistent success, and he sought to extend his activities in the neighbourhood and in other parts of the country. However, ill health prevented him from pursuing these ventures with his previous energy. Coke smelting spread slowly in England and the continent of Europe, but without Darby's technological breakthrough the ever-increasing demand for iron for structures and machines during the Industrial Revolution simply could not have been met; it was thus an essential component of the technological progress that was to come.Darby's eldest son, Abraham II (1711–63), entered the Coalbrookdale Company partnership in 1734 and largely assumed control of the technical side of managing the furnaces and foundry. He made a number of improvements, notably the installation of a steam engine in 1742 to pump water to an upper level in order to achieve a steady source of water-power to operate the bellows supplying the blast furnaces. When he built the Ketley and Horsehay furnaces in 1755 and 1756, these too were provided with steam engines. Abraham II's son, Abraham III (1750–89), in turn, took over the management of the Coalbrookdale works in 1768 and devoted himself to improving and extending the business. His most notable achievement was the design and construction of the famous Iron Bridge over the river Severn, the world's first iron bridge. The bridge members were cast at Coalbrookdale and the structure was erected during 1779, with a span of 100 ft (30 m) and height above the river of 40 ft (12 m). The bridge still stands, and remains a tribute to the skill and judgement of Darby and his workers.[br]Further ReadingA.Raistrick, 1989, Dynasty of Iron Founders, 2nd edn, Ironbridge Gorge Museum Trust (the best source for the lives of the Darbys and the work of the company).H.R.Schubert, 1957, History of the British Iron and Steel Industry AD 430 to AD 1775, London: Routledge \& Kegan Paul.LRD -
72 Edison, Thomas Alva
SUBJECT AREA: Architecture and building, Automotive engineering, Electricity, Electronics and information technology, Metallurgy, Photography, film and optics, Public utilities, Recording, Telecommunications[br]b. 11 February 1847 Milan, Ohio, USAd. 18 October 1931 Glenmont[br]American inventor and pioneer electrical developer.[br]He was the son of Samuel Edison, who was in the timber business. His schooling was delayed due to scarlet fever until 1855, when he was 8½ years old, but he was an avid reader. By the age of 14 he had a job as a newsboy on the railway from Port Huron to Detroit, a distance of sixty-three miles (101 km). He worked a fourteen-hour day with a stopover of five hours, which he spent in the Detroit Free Library. He also sold sweets on the train and, later, fruit and vegetables, and was soon making a profit of $20 a week. He then started two stores in Port Huron and used a spare freight car as a laboratory. He added a hand-printing press to produce 400 copies weekly of The Grand Trunk Herald, most of which he compiled and edited himself. He set himself to learn telegraphy from the station agent at Mount Clements, whose son he had saved from being run over by a freight car.At the age of 16 he became a telegraphist at Port Huron. In 1863 he became railway telegraphist at the busy Stratford Junction of the Grand Trunk Railroad, arranging a clock with a notched wheel to give the hourly signal which was to prove that he was awake and at his post! He left hurriedly after failing to hold a train which was nearly involved in a head-on collision. He usually worked the night shift, allowing himself time for experiments during the day. His first invention was an arrangement of two Morse registers so that a high-speed input could be decoded at a slower speed. Moving from place to place he held many positions as a telegraphist. In Boston he invented an automatic vote recorder for Congress and patented it, but the idea was rejected. This was the first of a total of 1180 patents that he was to take out during his lifetime. After six years he resigned from the Western Union Company to devote all his time to invention, his next idea being an improved ticker-tape machine for stockbrokers. He developed a duplex telegraphy system, but this was turned down by the Western Union Company. He then moved to New York.Edison found accommodation in the battery room of Law's Gold Reporting Company, sleeping in the cellar, and there his repair of a broken transmitter marked him as someone of special talents. His superior soon resigned, and he was promoted with a salary of $300 a month. Western Union paid him $40,000 for the sole rights on future improvements on the duplex telegraph, and he moved to Ward Street, Newark, New Jersey, where he employed a gathering of specialist engineers. Within a year, he married one of his employees, Mary Stilwell, when she was only 16: a daughter, Marion, was born in 1872, and two sons, Thomas and William, in 1876 and 1879, respectively.He continued to work on the automatic telegraph, a device to send out messages faster than they could be tapped out by hand: that is, over fifty words per minute or so. An earlier machine by Alexander Bain worked at up to 400 words per minute, but was not good over long distances. Edison agreed to work on improving this feature of Bain's machine for the Automatic Telegraph Company (ATC) for $40,000. He improved it to a working speed of 500 words per minute and ran a test between Washington and New York. Hoping to sell their equipment to the Post Office in Britain, ATC sent Edison to England in 1873 to negotiate. A 500-word message was to be sent from Liverpool to London every half-hour for six hours, followed by tests on 2,200 miles (3,540 km) of cable at Greenwich. Only confused results were obtained due to induction in the cable, which lay coiled in a water tank. Edison returned to New York, where he worked on his quadruplex telegraph system, tests of which proved a success between New York and Albany in December 1874. Unfortunately, simultaneous negotiation with Western Union and ATC resulted in a lawsuit.Alexander Graham Bell was granted a patent for a telephone in March 1876 while Edison was still working on the same idea. His improvements allowed the device to operate over a distance of hundreds of miles instead of only a few miles. Tests were carried out over the 106 miles (170 km) between New York and Philadelphia. Edison applied for a patent on the carbon-button transmitter in April 1877, Western Union agreeing to pay him $6,000 a year for the seventeen-year duration of the patent. In these years he was also working on the development of the electric lamp and on a duplicating machine which would make up to 3,000 copies from a stencil. In 1876–7 he moved from Newark to Menlo Park, twenty-four miles (39 km) from New York on the Pennsylvania Railway, near Elizabeth. He had bought a house there around which he built the premises that would become his "inventions factory". It was there that he began the use of his 200- page pocket notebooks, each of which lasted him about two weeks, so prolific were his ideas. When he died he left 3,400 of them filled with notes and sketches.Late in 1877 he applied for a patent for a phonograph which was granted on 19 February 1878, and by the end of the year he had formed a company to manufacture this totally new product. At the time, Edison saw the device primarily as a business aid rather than for entertainment, rather as a dictating machine. In August 1878 he was granted a British patent. In July 1878 he tried to measure the heat from the solar corona at a solar eclipse viewed from Rawlins, Wyoming, but his "tasimeter" was too sensitive.Probably his greatest achievement was "The Subdivision of the Electric Light" or the "glow bulb". He tried many materials for the filament before settling on carbon. He gave a demonstration of electric light by lighting up Menlo Park and inviting the public. Edison was, of course, faced with the problem of inventing and producing all the ancillaries which go to make up the electrical system of generation and distribution-meters, fuses, insulation, switches, cabling—even generators had to be designed and built; everything was new. He started a number of manufacturing companies to produce the various components needed.In 1881 he built the world's largest generator, which weighed 27 tons, to light 1,200 lamps at the Paris Exhibition. It was later moved to England to be used in the world's first central power station with steam engine drive at Holborn Viaduct, London. In September 1882 he started up his Pearl Street Generating Station in New York, which led to a worldwide increase in the application of electric power, particularly for lighting. At the same time as these developments, he built a 1,300yd (1,190m) electric railway at Menlo Park.On 9 August 1884 his wife died of typhoid. Using his telegraphic skills, he proposed to 19-year-old Mina Miller in Morse code while in the company of others on a train. He married her in February 1885 before buying a new house and estate at West Orange, New Jersey, building a new laboratory not far away in the Orange Valley.Edison used direct current which was limited to around 250 volts. Alternating current was largely developed by George Westinghouse and Nicola Tesla, using transformers to step up the current to a higher voltage for long-distance transmission. The use of AC gradually overtook the Edison DC system.In autumn 1888 he patented a form of cinephotography, the kinetoscope, obtaining film-stock from George Eastman. In 1893 he set up the first film studio, which was pivoted so as to catch the sun, with a hinged roof which could be raised. In 1894 kinetoscope parlours with "peep shows" were starting up in cities all over America. Competition came from the Latham Brothers with a screen-projection machine, which Edison answered with his "Vitascope", shown in New York in 1896. This showed pictures with accompanying sound, but there was some difficulty with synchronization. Edison also experimented with captions at this early date.In 1880 he filed a patent for a magnetic ore separator, the first of nearly sixty. He bought up deposits of low-grade iron ore which had been developed in the north of New Jersey. The process was a commercial success until the discovery of iron-rich ore in Minnesota rendered it uneconomic and uncompetitive. In 1898 cement rock was discovered in New Village, west of West Orange. Edison bought the land and started cement manufacture, using kilns twice the normal length and using half as much fuel to heat them as the normal type of kiln. In 1893 he met Henry Ford, who was building his second car, at an Edison convention. This started him on the development of a battery for an electric car on which he made over 9,000 experiments. In 1903 he sold his patent for wireless telegraphy "for a song" to Guglielmo Marconi.In 1910 Edison designed a prefabricated concrete house. In December 1914 fire destroyed three-quarters of the West Orange plant, but it was at once rebuilt, and with the threat of war Edison started to set up his own plants for making all the chemicals that he had previously been buying from Europe, such as carbolic acid, phenol, benzol, aniline dyes, etc. He was appointed President of the Navy Consulting Board, for whom, he said, he made some forty-five inventions, "but they were pigeonholed, every one of them". Thus did Edison find that the Navy did not take kindly to civilian interference.In 1927 he started the Edison Botanic Research Company, founded with similar investment from Ford and Firestone with the object of finding a substitute for overseas-produced rubber. In the first year he tested no fewer than 3,327 possible plants, in the second year, over 1,400, eventually developing a variety of Golden Rod which grew to 14 ft (4.3 m) in height. However, all this effort and money was wasted, due to the discovery of synthetic rubber.In October 1929 he was present at Henry Ford's opening of his Dearborn Museum to celebrate the fiftieth anniversary of the incandescent lamp, including a replica of the Menlo Park laboratory. He was awarded the Congressional Gold Medal and was elected to the American Academy of Sciences. He died in 1931 at his home, Glenmont; throughout the USA, lights were dimmed temporarily on the day of his funeral.[br]Principal Honours and DistinctionsMember of the American Academy of Sciences. Congressional Gold Medal.Further ReadingM.Josephson, 1951, Edison, Eyre \& Spottiswode.R.W.Clark, 1977, Edison, the Man who Made the Future, Macdonald \& Jane.IMcN -
73 Hargreaves, James
SUBJECT AREA: Textiles[br]b. c.1720–1 Oswaldtwistle, near Blackburn, Englandd. April 1778 Nottingham, England[br]English inventor of the first successful machine to spin more than a couple of yarns of cotton or wool at once.[br]James Hargreaves was first a carpenter and then a hand-loom weaver at Stanhill, Blackburn, probably making Blackburn Checks or Greys from linen warps and cotton weft. An invention ascribed to him doubled production in the preparatory carding process before spinning. Two or three cards were nailed to the same stock and the upper one was suspended from the ceiling by a cord and counterweight. Around 1762 Robert Peel (1750–1830) sought his assistance in constructing a carding engine with cylinders that may have originated with Daniel Bourn, but this was not successful. In 1764, inspired by seeing a spinning wheel that continued to revolve after it had been knocked over accidentally, Hargreaves invented his spinning jenny. The first jennies had horizontal wheels and could spin eight threads at once. To spin on this machine required a great deal of skill. A length of roving was passed through the clamp or clove. The left hand was used to close this and draw the roving away from the spindles which were rotated by the spinner turning the horizontal wheel with the right hand. The spindles twisted the fibres as they were being drawn out. At the end of the draw, the spindles continued to be rotated until sufficient twist had been put into the fibres to make the finished yarn. This was backed off from the tips of the spindles by reversing them and then, with the spindles turning in the spinning direction once more, the yarn was wound on by the right hand rotating the spindles, the left hand pushing the clove back towards them and one foot operating a pedal which guided the yarn onto the spindles by a faller wire. A piecer was needed to rejoin the yarns when they broke. At first Hargreaves's jenny was worked only by his family, but then he sold two or three of them, possibly to Peel. In 1768, local opposition and a riot in which his house was gutted forced him to flee to Nottingham. He entered into partnership there with Thomas James and established a cotton mill. In 1770 he followed Arkwright's example and sought to patent his machine and brought an action for infringement against some Lancashire manufacturers, who offered £3,000 in settlement. Hargreaves held out for £4,000, but he was unable to enforce his patent because he had sold jennies before leaving Lancashire. Arkwright's "water twist" was more suitable for the Nottingham hosiery industry trade than jenny yarn and in 1777 Hargreaves replaced his own machines with Arkwright's. When he died the following year, he is said to have left property valued at £7,000 and his widow received £400 for her share in the business. Once the jenny had been made public, it was quickly improved by other inventors and the number of spindles per machine increased. In 1784, there were reputed to be 20,000 jennies of 80 spindles each at work. The jenny greatly eased the shortage of cotton weft for weavers.[br]Bibliography1770, British patent no. 962 (spinning jenny).Further ReadingC.Aspin and S.D.Chapman, 1964, James Hargreaves and the Spinning Jenny, Helmshore Local History Society (the fullest account of Hargreaves's life and inventions).For descriptions of his invention, see W.English, 1969, The Textile Industry, London; R.L. Hills, 1970, Power in the Industrial Revolution, Manchester; and W.A.Hunter, 1951–3, "James Hargreaves and the invention of the spinning jenny", Transactions ofthe Newcomen Society 28.A.P.Wadsworth and J. de L.Mann, 1931, The Cotton Trade and Industrial Lancashire, Manchester (a good background to the whole of this period).RLH -
74 Hoover, William Henry
SUBJECT AREA: Domestic appliances and interiors[br]b. 1849 New Berlin (now North Canton), Ohio, USAd. 25 February 1932 North Canton, Ohio, USA[br]American founder of the Electric Suction Company, which manufactured and successfully marketed the first practical and portable suction vacuum cleaner.[br]Hoover was descended from a Swiss farming family called Hofer who emigrated from Basle and settled in Lancaster County, Pennsylvania, in the early eighteenth century. By 1832 the family had become tanners and lived near North Berlin in Ohio. In 1870 William Henry Hoover, who had studied at Mount Union College, bought the tannery with his brothers and soon expanded the business to make horse collars and saddlery. The firm expanded to become W.H.Hoover \& Co. In the early years of the first decade of the twentieth century, horses were beginning to be replaced by the internal combustion engine, so Hoover needed a new direction for his firm. This he found in the suction vacuum cleaner devised in 1907 by J.Murray Spangler, a cousin of Hoover's wife. The first successful cleaner of this type had been operating in England since 1901 (see Booth), but was not a portable model. Attracted by the development of the small electric motor, Spangler produced a vertical cleaner with such a motor that sucked the dust through the machine and blew it into a bag attached to the handle. Spangler applied for a patent for his invention on 14 September in the same year; it was granted for a carpet sweeper and cleaner on 2 June 1908, but Spangler was unable to market it himself and sold the rights to Hoover. The Model O machine, which ran on small wheels, was immediately manufactured and marketed. Hoover's model was the first electric, one-person-operated, domestic vacuum cleaner and was instantly successful, although the main expansion of the business was delayed for some time until the greater proportion of houses were wired for electricity. The Hoover slogan, "it beats as it sweeps as it cleans", came to be true in 1926 with the introduction of the Model 700, which was the first cleaner to offer triple-action cleaning, a process which beat, swept and sucked at the carpet. Further advances in the 1930s included the use of magnesium and the early plastics.[br]Further ReadingG.Adamson, 1969, Machines at Home, Lutterworth Press.How it Works: The Universal Encyclopaedia of Machines, Paladin. D.Yarwood, 1981, The British Kitchen, Batsford, Ch. 6.DY -
75 Wedgwood, Josiah
SUBJECT AREA: Domestic appliances and interiors[br]baptized 12 July 1730 Burslem, Staffordshire, Englandd. 3 January 1795 Etruria Hall, Staffordshire, England[br]English potter and man of science.[br]Wedgwood came from prolific farming stock who, in the seventeenth century, had turned to pot-making. At the age of 9 his education was brought to an end by his father's death and he was set to work in one of the family potteries. Two years later an attack of smallpox left him with a weakness in his right knee which prevented him from working the potter's wheel. This forced his attention to other aspects of the process, such as design and modelling. He was apprenticed to his brother Thomas in 1744, and in 1752 was in partnership with Thomas Whieldon, a leading Staffordshire potter, until probably the first half of 1759, when he became a master potter and set up in business on his own account at Ivy House Works in Burslem.Wedgwood was then able to exercise to the full his determination to improve the quality of his ware. This he achieved by careful attention to all aspects of the work: artistic judgement of form and decoration; chemical study of the materials; and intelligent management of manufacturing processes. For example, to achieve greater control over firing conditions, he invented a pyrometer, a temperature-measuring device by which the shrinkage of prepared clay cylinders in the furnace gave an indication of the temperature. Wedgwood was the first potter to employ steam power, installing a Boulton \& Watt engine for crushing and other operations in 1782. Beyond the confines of his works, Wedgwood concerned himself in local issues such as improvements to the road and canal systems to facilitate transport of raw materials and products.During the first ten years, Wedgwood steadily improved the quality of his cream ware, known as "Queen's ware" after a set of ware was presented to Queen Charlotte in 1762. The business prospered and his reputation grew. In 1766 he was able to purchase an estate on which he built new works, a mansion and a village to which he gave the name Etruria. Four years after the Etruria works were opened in 1769, Wedgwood began experimenting with a barium compound combined in a fine-textured base allied to a true porcelain. The result was Wedgwood's most original and distinctive ware similar to jasper, made in a wide variety of forms.Wedgwood had many followers and imitators but the merit of initiating and carrying through a large-scale technical and artistic development of English pottery belongs to Wedgwood.[br]Principal Honours and DistinctionsFRS 1783.BibliographyWedgwood contributed five papers to the Philosophical Transactions of the Royal Society, two in 1783 and 1790 on chemical subjects and three in 1782, 1784 and 1786 on his pyrometer.Further ReadingMeteyard, 1865, Life of Josiah Wedgwood, London (biography).A.Burton, 1976, Josiah Wedgwood: Biography, London: André Deutsch (a very readable account).LRD -
76 Wöhler, August
SUBJECT AREA: Metallurgy[br]b. 22 June 1819 Soltau, Germanyd. 21 June 1914 Hannover, Germany[br]German railway engineer who first established the fatigue fracture of metals.[br]Wöhler, the son of a schoolteacher, was born at Soltau on the Luneburg Heath and received his early education at his father's school, where his mathematical abilities soon became apparent. He completed his studies at the Technical High School, Hannover.In 1840 he obtained a position at the Borsig Engineering Works in Berlin and acquired there much valuable experience in railway technology. He trained as an engine driver in Belgium and in 1843 was appointed as an engineer to the first Hannoverian Railway, then being constructed between Hannover and Lehrte. In 1847 he became Chief Superintendent of rolling stock on the Lower Silesian-Brandenhurg Railway, where his technical abilities influenced the Prussian Minister of Commerce to appoint him to a commission set up to investigate the reasons for the unusually high incidence of axle failures then being encountered on the railways. This was in 1852, and by 1854, when the Brandenburg line had been nationalized, Wöhler had already embarked on the long, systematic programme of mechanical testing which eventually provided him with a clear insight into the process of what is now referred to as "fatigue failure". He concentrated initially on the behaviour of machined iron and steel specimens subjected to fluctuating direct, bending and torsional stresses that were imposed by testing machines of his own design.Although Wöhler was not the first investigator in this area, he was the first to recognize the state of "fatigue" induced in metals by the repeated application of cycles of stress at levels well below those that would cause immediate failure. His method of plotting the fatigue stress amplitude "S" against the number of stress cycles necessary to cause failure "N" yielded the well-known S-N curve which described very precisely the susceptibility to fatigue failure of the material concerned. Engineers were thus provided with an invaluable testing technique that is still widely used in the 1990s.Between 1851 and 1898 Wöhler published forty-two papers in German technical journals, although the importance of his work was not initially fully appreciated in other countries. A display of some of his fracture fatigue specimens at the Paris Exposition in 1867, however, stimulated a short review of his work in Engineering in London. Four years later, in 1871, Engineering published a series of nine articles which described Wöhler's findings in considerable detail and brought them to the attention of engineers. Wöhler became a member of the newly created management board of the Imperial German Railways in 1874, an appointment that he retained until 1889. He is also remembered for his derivation in 1855 of a formula for calculating the deflections under load of lattice girders, plate girders, and other continuous beams resting on more than two supports. This "Three Moments" theorem appeared two years before Clapeyron independently advanced the same expression. Wöhler's other major contribution to bridge design was to use rollers at one end to allow for thermal expansion and contraction.[br]Bibliography1855, "Theorie rechteckiger eiserner Brückenbalken", Zeitschrift für Bauwesen 5:122–66. 1870, "Über die Festigkeitversuche mit Eisen und Stahl", Zeitschrift für Bauwesen 20:73– 106.Wöhler's experiments on the fatigue of metals were reported in Engineering (1867) 2:160; (1871) 11:199–200, 222, 243–4, 261, 299–300, 326–7, 349–50, 397, 439–41.Further ReadingR.Blaum, 1918, "August Wöhler", Beiträge zur Geschichte der Technik und Industrie 8:35–55.——1925, "August Wöhler", Deutsches biographisches Jahrbuch, Vol. I, Stuttgart, pp. 103–7.K.Pearson, 1890, "On Wöhler's experiments on alternating stress", Messeng. Math.20:21–37.J.Gilchrist, 1900, "On Wöhler's Laws", Engineer 90:203–4.ASD -
77 сгорание
блок камеры сгорания1. combustion section2. combustion assembly быстрое сгораниеrapid combustionгорловина камеры сгоранияexpansion chamberдвигатель внутреннего сгорания1. internal combustion2. combustion engine камера сгорания1. burner2. combustor камера сгорания трубчатого типаcan-type combustion chamberкожух камеры сгорания1. combustion chamber casing2. combustion chamber housing кольцевая камера сгоранияannular combustion chamberмгновенное сгораниеdeflagrationмедленное сгораниеslow combustionнеполное сгораниеincomplete combustionохлаждение камеры сгоранияcombustion chamber coolingполное сгораниеcomplete combustionпрогар камеры сгоранияcombustion chamber burnoutпротивоточная камера сгоранияreverse-flow combustion chamberпроцесс сгоранияcombustion processпрямоточная камера сгоранияstraight-flow combustion chamberстойка кожуха камеры сгоранияchamber casing supportтрубчатая камера сгоранияtubular combustion chamberтрубчато-кольцевая камера сгоранияcannular combustion chamberускоренное сгораниеaccelerated combustionфронтовое устройство камеры сгоранияflame tube head
См. также в других словарях:
Engine City Technical Institute — is an accredited, diesel technology school located in South Plainfield, New Jersey, a short distance off of Interstate 287. It is currently the only such school in the Northeastern United States, and, as such, its graduates are in high demand… … Wikipedia
Process Manufacturing — is the branch of manufacturing that is associated with formulas or manufacturing recipes as compared to bills of material routing as in the case of Discrete manufacturing. Defining Process Manufacturing The simplest and easiest way to grasp the… … Wikipedia
Process-driven application — A process driven application is an application that is driven by an underlying process engine where the process can be exposed and reused. In effect all applications are process driven and the logic of any application can be extrapolated into a… … Wikipedia
Engine control unit — An engine control unit (ECU) is an electronic control unit which controls various aspects of an internal combustion engine s operation. The simplest ECUs control only the quantity of fuel injected into each cylinder each engine cycle. More… … Wikipedia
Engine — This article is about a machine to convert energy into useful mechanical motion. For other uses of engine, see Engine (disambiguation). For other uses of motor, see Motor (disambiguation). A V6 internal combustion engine from a Mercedes car An… … Wikipedia
Engine knocking — Pinging redirects here. For other uses, see Ping (disambiguation). Knocking (also called knock, detonation, spark knock, pinging or pinking) in spark ignition internal combustion engines occurs when combustion of the air/fuel mixture in the… … Wikipedia
Process Explorer — Infobox Software caption = Process Explorer v10.21 running in Windows XP name = Process Explorer developer = Sysinternals, Microsoft latest release version = 11.21 latest release date = release date and age|2008|08|08 operating system = Windows… … Wikipedia
Engine swap — Warning: in some jurisdictions with strict smog rules it may not be possible to register a late model vehicle with an engine swap, even if it can be proven that it produces less pollution than the original engine (owing to visual inspection… … Wikipedia
Engine (disambiguation) — An engine is a device that converts potential energy into mechanical work. Engine may also refer to:In thermodynamics: * Heat engine, a physical or theoretical device that converts thermal energy to mechanical output * Reciprocating engine, a… … Wikipedia
Process improvement — In organizational development (OD), Process improvement is a series of actions taken to identify, analyze and improve existing processes within an organization to meet new goals and objectives. These actions often follow a specific methodology or … Wikipedia
engine */*/*/ — UK [ˈendʒɪn] / US noun [countable] Word forms engine : singular engine plural engines 1) a machine with moving parts that uses a fuel to produce movement, for example in a road vehicle or aircraft a jet/diesel/steam engine 2) a vehicle that pulls … English dictionary