Перевод: со всех языков на английский

с английского на все языки

electric+valve

  • 101 Campbell-Swinton, Alan Archibald

    [br]
    b. 18 October 1863 Kimmerghame, Berwickshire, Scotland
    d. 19 February 1930 London, England
    [br]
    Scottish electrical engineer who correctly predicted the development of electronic television.
    [br]
    After a time at Cargilfield Trinity School, Campbell-Swinton went to Fettes College in Edinburgh from 1878 to 1881 and then spent a year abroad in France. From 1882 until 1887 he was employed at Sir W.G.Armstrong's works in Elswick, Newcastle, following which he set up his own electrical contracting business in London. This he gave up in 1904 to become a consultant. Subsequently he was an engineer with many industrial companies, including the W.T.Henley Telegraph Works Company, Parson Marine Steam Turbine Company and Crompton Parkinson Ltd, of which he became a director. During this time he was involved in electrical and scientific research, being particularly associated with the development of the Parson turbine.
    In 1903 he tried to realize distant electric vision by using a Braun oscilloscope tube for the. image display, a second tube being modified to form a synchronously scanned camera, by replacing the fluorescent display screen with a photoconductive target. Although this first attempt at what was, in fact, a vidicon camera proved unsuccessful, he was clearly on the right lines and in 1908 he wrote a letter to Nature with a fairly accurate description of the principles of an all-electronic television system using magnetically deflected cathode ray tubes at the camera and receiver, with the camera target consisting of a mosaic of photoconductive elements that were scanned and discharged line by line by an electron beam. He expanded on his ideas in a lecture to the Roentgen Society, London, in 1911, but it was over twenty years before the required technology had advanced sufficiently for Shoenberg's team at EMI to produce a working system.
    [br]
    Principal Honours and Distinctions
    FRS (Member of Council 1927 and 1929). Freeman of the City of London. Liveryman of Goldsmiths' Company. First President, Wireless Society 1920–1. Vice-President, Royal Society of Arts, and Chairman of Council 1917–19,1920–2. Chairman, British Scientific Research Association. Vice-President, British Photographic Research Association. Member of the Broadcasting Board 1924. Vice-President, Roentgen Society 1911–12. Vice-President, Institution of Electrical Engineers 1921–5. President, Radio Society of Great Britain 1913–21. Manager, Royal Institution 1912–15.
    Bibliography
    1908, Nature 78:151; 1912, Journal of the Roentgen Society 8:1 (both describe his original ideas for electronic television).
    1924, "The possibilities of television", Wireless World 14:51 (gives a detailed description of his proposals, including the use of a threestage valve video amplifier).
    1926, Nature 118:590 (describes his early experiments of 1903).
    Further Reading
    The Proceedings of the International Conference on the History of Television. From Early Days to the Present, November 1986, Institution of Electrical Engineers Publication No. 271 (a report of some of the early developments in television). A.A.Campbell-Swinton FRS 1863–1930, Royal Television Society Monograph, 1982, London (a biography).
    KF

    Biographical history of technology > Campbell-Swinton, Alan Archibald

  • 102 De Forest, Lee

    [br]
    b. 26 August 1873 Council Bluffs, Iowa, USA
    d. 30 June 1961 Hollywood, California, USA
    [br]
    American electrical engineer and inventor principally known for his invention of the Audion, or triode, vacuum tube; also a pioneer of sound in the cinema.
    [br]
    De Forest was born into the family of a Congregational minister that moved to Alabama in 1879 when the father became President of a college for African-Americans; this was a position that led to the family's social ostracism by the white community. By the time he was 13 years old, De Forest was already a keen mechanical inventor, and in 1893, rejecting his father's plan for him to become a clergyman, he entered the Sheffield Scientific School of Yale University. Following his first degree, he went on to study the propagation of electromagnetic waves, gaining a PhD in physics in 1899 for his thesis on the "Reflection of Hertzian Waves from the Ends of Parallel Wires", probably the first US thesis in the field of radio.
    He then joined the Western Electric Company in Chicago where he helped develop the infant technology of wireless, working his way up from a modest post in the production area to a position in the experimental laboratory. There, working alone after normal working hours, he developed a detector of electromagnetic waves based on an electrolytic device similar to that already invented by Fleming in England. Recognizing his talents, a number of financial backers enabled him to set up his own business in 1902 under the name of De Forest Wireless Telegraphy Company; he was soon demonstrating wireless telegraphy to interested parties and entering into competition with the American Marconi Company.
    Despite the failure of this company because of fraud by his partners, he continued his experiments; in 1907, by adding a third electrode, a wire mesh, between the anode and cathode of the thermionic diode invented by Fleming in 1904, he was able to produce the amplifying device now known as the triode valve and achieve a sensitivity of radio-signal reception much greater than possible with the passive carborundum and electrolytic detectors hitherto available. Patented under the name Audion, this new vacuum device was soon successfully used for experimental broadcasts of music and speech in New York and Paris. The invention of the Audion has been described as the beginning of the electronic era. Although much development work was required before its full potential was realized, the Audion opened the way to progress in all areas of sound transmission, recording and reproduction. The patent was challenged by Fleming and it was not until 1943 that De Forest's claim was finally recognized.
    Overcoming the near failure of his new company, the De Forest Radio Telephone Company, as well as unsuccessful charges of fraudulent promotion of the Audion, he continued to exploit the potential of his invention. By 1912 he had used transformer-coupling of several Audion stages to achieve high gain at radio frequencies, making long-distance communication a practical proposition, and had applied positive feedback from the Audion output anode to its input grid to realize a stable transmitter oscillator and modulator. These successes led to prolonged patent litigation with Edwin Armstrong and others, and he eventually sold the manufacturing rights, in retrospect often for a pittance.
    During the early 1920s De Forest began a fruitful association with T.W.Case, who for around ten years had been working to perfect a moving-picture sound system. De Forest claimed to have had an interest in sound films as early as 1900, and Case now began to supply him with photoelectric cells and primitive sound cameras. He eventually devised a variable-density sound-on-film system utilizing a glow-discharge modulator, the Photion. By 1926 De Forest's Phonofilm had been successfully demonstrated in over fifty theatres and this system became the basis of Movietone. Though his ideas were on the right lines, the technology was insufficiently developed and it was left to others to produce a system acceptable to the film industry. However, De Forest had played a key role in transforming the nature of the film industry; within a space of five years the production of silent films had all but ceased.
    In the following decade De Forest applied the Audion to the development of medical diathermy. Finally, after spending most of his working life as an independent inventor and entrepreneur, he worked for a time during the Second World War at the Bell Telephone Laboratories on military applications of electronics.
    [br]
    Principal Honours and Distinctions
    Institute of Electronic and Radio Engineers Medal of Honour 1922. President, Institute of Electronic and Radio Engineers 1930. Institute of Electrical and Electronics Engineers Edison Medal 1946.
    Bibliography
    1904, "Electrolytic detectors", Electrician 54:94 (describes the electrolytic detector). 1907, US patent no. 841,387 (the Audion).
    1950, Father of Radio, Chicago: WIlcox \& Follett (autobiography).
    De Forest gave his own account of the development of his sound-on-film system in a series of articles: 1923. "The Phonofilm", Transactions of the Society of Motion Picture Engineers 16 (May): 61–75; 1924. "Phonofilm progress", Transactions of the Society of Motion Picture Engineers 20:17–19; 1927, "Recent developments in the Phonofilm", Transactions of the Society of Motion Picture Engineers 27:64–76; 1941, "Pioneering in talking pictures", Journal of the Society of Motion Picture Engineers 36 (January): 41–9.
    Further Reading
    G.Carneal, 1930, A Conqueror of Space (biography).
    I.Levine, 1964, Electronics Pioneer, Lee De Forest (biography).
    E.I.Sponable, 1947, "Historical development of sound films", Journal of the Society of Motion Picture Engineers 48 (April): 275–303 (an authoritative account of De Forest's sound-film work, by Case's assistant).
    W.R.McLaurin, 1949, Invention and Innovation in the Radio Industry.
    C.F.Booth, 1955, "Fleming and De Forest. An appreciation", in Thermionic Valves 1904– 1954, IEE.
    V.J.Phillips, 1980, Early Radio Detectors, London: Peter Peregrinus.
    KF / JW

    Biographical history of technology > De Forest, Lee

  • 103 Poulsen, Valdemar

    [br]
    b. 23 November 1869 Copenhagen, Denmark
    d. 23 July 1942 Gentofte, Denmark
    [br]
    Danish engineer who developed practical magnetic recording and the arc generator for continuous radio waves.
    [br]
    From an early age he was absorbed by phenomena of physics to the exclusion of all other subjects, including mathematics. When choosing his subjects for the final three years in Borgedydskolen in Christianshavn (Copenhagen) before university, he opted for languages and history. At the University of Copenhagen he embarked on the study of medicine in 1889, but broke it off and was apprenticed to the machine firm of A/S Frichs Eftf. in Aarhus. He was employed between 1893 and 1899 as a mechanic and assistant in the laboratory of the Copenhagen Telephone Company KTAS. Eventually he advanced to be Head of the line fault department. This suited his desire for experiment and measurement perfectly. After the invention of the telegraphone in 1898, he left the laboratory and with responsible business people he created Aktieselskabet Telegrafonen, Patent Poulsen in order to develop it further, together with Peder Oluf Pedersen (1874– 1941). Pedersen brought with him the mathematical background which eventually led to his professorship in electronic engineering in 1922.
    The telegraphone was the basis for multinational industrial endeavours after it was demonstrated at the 1900 World's Exhibition in Paris. It must be said that its strength was also its weakness, because the telegraphone was unique in bringing sound recording and reproduction to the telephone field, but the lack of electronic amplifiers delayed its use outside this and the dictation fields (where headphones could be used) until the 1920s. However, commercial interest was great enough to provoke a number of court cases concerning patent infringement, in which Poulsen frequently figured as a witness.
    In 1903–4 Poulsen and Pedersen developed the arc generator for continuous radio waves which was used worldwide for radio transmitters in competition with Marconi's spark-generating system. The inspiration for this work came from the research by William Duddell on the musical arc. Whereas Duddell had proposed the use of the oscillations generated in his electric arc for telegraphy in his 1901 UK patent, Poulsen contributed a chamber of hydrogen and a transverse magnetic field which increased the efficiency remarkably. He filed patent applications on these constructions from 1902 and the first publication in a scientific forum took place at the International Electrical Congress in St Louis, Missouri, in 1904.
    In order to use continuous waves efficiently (the high frequency constituted a carrier), Poulsen developed both a modulator for telegraphy and a detector for the carrier wave. The modulator was such that even the more primitive spark-communication receivers could be used. Later Poulsen and Pedersen developed frequency-shift keying.
    The Amalgamated Radio-Telegraph Company Ltd was launched in London in 1906, combining the developments of Poulsen and those of De Forest Wireless Telegraph Syndicate. Poulsen contributed his English and American patents. When this company was liquidated in 1908, its assets were taken over by Det Kontinentale Syndikat for Poulsen Radio Telegrafi, A/S in Copenhagen (liquidated 1930–1). Some of the patents had been sold to C.Lorenz AG in Berlin, which was very active.
    The arc transmitting system was in use worldwide from about 1910 to 1925, and the power increased from 12 kW to 1,000 kW. In 1921 an exceptional transmitter rated at 1,800 kW was erected on Java for communications with the Netherlands. More than one thousand installations had been in use worldwide. The competing systems were initially spark transmitters (Marconi) and later rotary converters ( Westinghouse). Similar power was available from valve transmitters only much later.
    From c. 1912 Poulsen did not contribute actively to further development. He led a life as a well-respected engineer and scientist and served on several committees. He had his private laboratory and made experiments in the composition of matter and certain resonance phenomena; however, nothing was published. It has recently been suggested that Poulsen could not have been unaware of Oberlin Smith's work and publication in 1888, but his extreme honesty in technical matters indicates that his development was indeed independent. In the case of the arc generator, Poulsen was always extremely frank about the inspiration he gained from earlier developers' work.
    [br]
    Bibliography
    1899, British patent no. 8,961 (the first British telegraphone patent). 1903, British patent no. 15,599 (the first British arc-genera tor patent).
    His scientific publications are few, but fundamental accounts of his contribution are: 1900, "Das Telegraphon", Ann. d. Physik 3:754–60; 1904, "System for producing continuous oscillations", Trans. Int. El. Congr. St. Louis, Vol. II, pp. 963–71.
    Further Reading
    A.Larsen, 1950, Telegrafonen og den Traadløse, Ingeniørvidenskabelige Skrifter no. 2, Copenhagen (provides a very complete, although somewhat confusing, account of Poulsen's contributions; a list of his patents is given on pp. 285–93).
    F.K.Engel, 1990, Documents on the Invention of Magnetic Re cor ding in 1878, New York: Audio Engineering Society, reprint no. 2,914 (G2) (it is here that doubt is expressed about whether Poulsen's ideas were developed independently).
    GB-N

    Biographical history of technology > Poulsen, Valdemar

  • 104 Westinghouse, George

    [br]
    b. 6 October 1846 Central Bridge, New York, USA
    d. 12 March 1914 New York, New York, USA
    [br]
    American inventor and entrepreneur, pioneer of air brakes for railways and alternating-current distribution of electricity.
    [br]
    George Westinghouse's father was an ingenious manufacturer of agricultural implements; the son, after a spell in the Union Army during the Civil War, and subsequently in the Navy as an engineer, went to work for his father. He invented a rotary steam engine, which proved impracticable; a rerailing device for railway rolling stock in 1865; and a cast-steel frog for railway points, with longer life than the cast-iron frogs then used, in 1868–9. During the same period Westinghouse, like many other inventors, was considering how best to meet the evident need for a continuous brake for trains, i.e. one by which the driver could apply the brakes on all vehicles in a train simultaneously instead of relying on brakesmen on individual vehicles. By chance he encountered a magazine article about the construction of the Mont Cenis Tunnel, with a description of the pneumatic tools invented for it, and from this it occurred to him that compressed air might be used to operate the brakes along a train.
    The first prototype was ready in 1869 and the Westinghouse Air Brake Company was set up to manufacture it. However, despite impressive demonstration of the brake's powers when it saved the test train from otherwise certain collision with a horse-drawn dray on a level crossing, railways were at first slow to adopt it. Then in 1872 Westinghouse added to it the triple valve, which enabled the train pipe to charge reservoirs beneath each vehicle, from which the compressed air would apply the brakes when pressure in the train pipe was reduced. This meant that the brake was now automatic: if a train became divided, the brakes on both parts would be applied. From then on, more and more American railways adopted the Westinghouse brake and the Railroad Safety Appliance Act of 1893 made air brakes compulsory in the USA. Air brakes were also adopted in most other parts of the world, although only a minority of British railway companies took them up, the remainder, with insular reluctance, preferring the less effective vacuum brake.
    From 1880 Westinghouse was purchasing patents relating to means of interlocking railway signals and points; he combined them with his own inventions to produce a complete signalling system. The first really practical power signalling scheme, installed in the USA by Westinghouse in 1884, was operated pneumatically, but the development of railway signalling required an awareness of the powers of electricity, and it was probably this that first led Westinghouse to become interested in electrical processes and inventions. The Westinghouse Electric Company was formed in 1886: it pioneered the use of electricity distribution systems using high-voltage single-phase alternating current, which it developed from European practice. Initially this was violently opposed by established operators of direct-current distribution systems, but eventually the use of alternating current became widespread.
    [br]
    Principal Honours and Distinctions
    Légion d'honneur. Order of the Crown of Italy. Order of Leopold.
    Bibliography
    Westinghouse took out some 400 patents over forty-eight years.
    Further Reading
    H.G.Prout, 1922, A Life of "George Westinghouse", London (biography inclined towards technicalities).
    F.E.Leupp, 1918, George Westinghouse: His Life and Achievements, Boston (London 1919) (biography inclined towards Westinghouse and his career).
    J.F.Stover, 1961, American Railroads, Chicago: University of Chicago Press, pp. 152–4.
    PJGR

    Biographical history of technology > Westinghouse, George

  • 105 Schütz

    n
    [Elektrotechnik]
    1. contactor
    2. electric contactor
    n
    [Wasserbau]
    1. control gate
    2. sluice-valve Br.
    3. sluice gate Am.
    4. sluice Br.

    Deutsch-Englisches Wörterbuch > Schütz

  • 106 запорный

    Русско-английский научный словарь > запорный

  • 107 сборка

    сборка (группа, напр. контактов) — assemblage, bank, set
    ▪ In automatic switching, a bank is an assemblage of fixed contacts over which one or more wipers or brushes move establish electric connections.
    сборка (процесс) — assembly, assembling (procedure), erecting, erection, installation, setting-up, fitting, joining, mounting
    ▪ Do not tighten up on the turnbuckles until the setup is complete.
    сборка, монтаж и регулировка (радиоэлектронной аппаратуры) — assembly, wiring and adjustment (of electronic equipment)
    сборка, регулировка и настройка — assembly, adjustment and tuning
    в сборе — as an assembly, as a unit

    Поставки машин и оборудования. Русско-английский словарь > сборка

  • 108 затвор

    Русско-английский словарь по информационным технологиям > затвор

  • 109 параллельный стык

    Русско-английский словарь по информационным технологиям > параллельный стык

  • 110 первичный двигатель

    1. prime mover

     

    первичный двигатель
    Любое устройство, обеспечивающее создание механической энергии, необходимой для выполнения управляющим устройством функции передачи; таким устройством может быть электрическое управляющее устройство, электрический клапан, механизм с электрическим приводом или управляющее устройство с отсчетом времени.
    Примечание. Это может быть механизм, накапливающий механическую энергию (например, часовая пружина), электромагнитное устройство (например, электромотор или шаговый соленоид), электротермическое устройство (например, нагревательный элемент регулятора энергии) или любой другой механизм, создающий механическую энергию.
    [ГОСТ IЕС 60730-1-2011]

    EN

    prime mover
    any device used to produce the mechanical energy required to provide the transmission for an automatic control, such as an electrically operated control, an electrically operated valve, an electrically operated mechanism or a timebased control
    Note 1 to entry: It may be a mechanical storage device (for example, a clockwork spring), an electromagnetic device (for example, an electric motor, or stepping solenoid), an electrothermal device (for example, the heating element of an energy regulator) or any other mechanism producing mechanical energy.
    [IEC 60730-1, ed. 5.0 (2013-11)]

    FR

    moteur primaire
    tout dispositif fournissant l'énergie mécanique nécessaire à la transmission pour un dispositif de commande automatique, tel qu'un dispositif de commande à fonctionnement électrique, une électrovanne, un mécanisme à fonctionnement électrique ou un dispositif de commande à base de temps
    Note 1 à l'article: Ce peut être un mécanisme à accumulation d'énergie (tel qu'un moteur à ressort), un dispositif électromagnétique (tel qu'un moteur électrique, un électro-aimant pas à pas), un dispositif électrothermique (tel que l'élément chauffant d'un régulateur d'énergie), ou toute autre source d'énergie mécanique
    [IEC 60730-1, ed. 5.0 (2013-11)]

    Тематики

    • электротехника, основные понятия

    EN

    FR

    Русско-английский словарь нормативно-технической терминологии > первичный двигатель

См. также в других словарях:

  • electric valve — elektromagnetinis vožtuvas statusas T sritis automatika atitikmenys: angl. electric valve vok. Magnetventil, n rus. электромагнитный клапан, m pranc. valve électromagnétique, f …   Automatikos terminų žodynas

  • English Electric Valve Company — English Electric Valve Company, currently known as E2V, is an English electronics company.The company was founded in Chelmsford, Essex in 1947 under Serge Eisenstein. [http://www.firedirect.net/Profiles/0802 e2v/0802 001.htm Fire Direct company… …   Wikipedia

  • valve électromagnétique — elektromagnetinis vožtuvas statusas T sritis automatika atitikmenys: angl. electric valve vok. Magnetventil, n rus. электромагнитный клапан, m pranc. valve électromagnétique, f …   Automatikos terminų žodynas

  • valve´like´ — valve «valv», noun, verb, valved, valv|ing. –n. 1. a movable part that controls the flow of a liquid or gas through a pipe or out of an enclosed space by opening or closing the passage. A faucet contains a valve. 2. a part of the body that works… …   Useful english dictionary

  • Electric actuator — Actuators are used for the automation of industrial valves and can be found in all kinds of technical process plants: they are used in wastewater treatment plants, power plants and even refineries. This is where they play a major part in… …   Wikipedia

  • Electric Line — The term wireline usually refers to a cabling technology used by operators of oil and gas wells to lower equipment or measurement devices into the well for the purposes of well intervention and reservoir evaluation. Braided line can contain an… …   Wikipedia

  • Valve audio amplifier — A valve (UK) audio amplifier or vacuum tube (US) audio amplifier is a valve amplifier used for sound recording, reinforcement, or reproduction. Until the invention of solid state devices such as the transistor, all electronic amplification was… …   Wikipedia

  • valve — A device used to either open or close an opening to allow or prevent the flow of a liquid or gas from one place to another. There are many different types. See ABS relay valve accumultor valve air valve carburetor air control valve air gulp valve …   Dictionary of automotive terms

  • Valve — This article is about the flow control device. For the game developer, see Valve Corporation. For the electronic component, see Vacuum tube. For other uses, see Valve (disambiguation). These water valves are operated by handles. A valve is a… …   Wikipedia

  • Valve amplifier — A valve amplifier or tube amplifier is a type of electronic amplifier that make use of vacuum tubes instead of solid state semiconductor devices (such as transistors). As any other electronic amplifier they serve to increase the power and/or… …   Wikipedia

  • Valve RF amplifier — A valve RF amplifier (UK and Aus.) or tube amplifier (U.S.), is a device for electrically amplifying the power of an electrical , typically (but not exclusively) radio frequency signals.Low to medium power valve amplifiers for frequencies below… …   Wikipedia

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»