-
1 drying process regulator against psychrometric difference
регулятор процесса сушки по психрометрической разности (для контроля, регулирования и записи температуры и психрометрической разности сушильного агента в лесосушильной камере)Англо-русский словарь промышленной и научной лексики > drying process regulator against psychrometric difference
-
2 разностный процесс
difference process мат.Русско-английский научно-технический словарь Масловского > разностный процесс
-
3 разностный процесс
Mathematics: difference processУниверсальный русско-английский словарь > разностный процесс
-
4 диаграмма потоков данных
уровень развития науки на; данном этапе — state of art
Русско-английский большой базовый словарь > диаграмма потоков данных
-
5 график для трансформирования данных
уровень развития науки на; данном этапе — state of art
Русско-английский военно-политический словарь > график для трансформирования данных
-
6 метод
approach, device, manner, mean, method, mode, practice, procedure, system, technique, technology, theory, way* * *ме́тод м.
method; procedure; techniqueагрегатнопото́чный ме́тод — conveyor-type production [production-line] methodаксиомати́ческий ме́тод — axiomatic [postulational] methodме́тод амплиту́дного ана́лиза — kick-sorting methodанаглифи́ческий ме́тод картогр. — anaglyphic(al) methodме́тод аналити́ческой вста́вки топ. — cantilever extension, cantilever (strip) triangulationме́тод быстре́йшего спу́ска стат. — steepest descent methodвариацио́нный ме́тод — variational methodме́тод Верне́йля радио — Verneuil methodвесово́й ме́тод — gravimetric methodме́тод ветве́й и грани́ц киб. — branch and bound methodме́тод взба́лтывания — shake methodвизуа́льный ме́тод — visual methodме́тод возду́шной прое́кции — aero-projection methodме́тод враще́ния — method of revolutionме́тод вреза́ния — plunge-cut methodме́тод вре́мени пролё́та — time-of-flight methodвре́мя-и́мпульсный ме́тод ( преобразования аналоговой информации в дискретную) — pulse-counting method (of analog-to-digital conversion)ме́тод встре́чного фрезерова́ния — conventional [cut-up] milling methodме́тод вы́бега эл. — retardation methodме́тод вымета́ния мат. — sweep(ing)-out methodме́тод гармони́ческого бала́нса киб., автмт. — describing function methodме́тод гармони́ческой линеариза́ции — describing function methodголографи́ческий ме́тод — holographic methodгравиметри́ческий ме́тод — gravimetric(al) methodграфи́ческий ме́тод — graphical methodме́тод графи́ческого трансформи́рования топ. — grid methodграфоаналити́ческий ме́тод — semigraphical methodме́тод гра́фов мат. — graph methodгруппово́й ме́тод ( в высокочастотной телефонии) — grouped-frequency basisсисте́ма рабо́тает групповы́м ме́тодом — the system operates on the grouped-frequency basisме́тод двух ре́ек геод., топ. — two-staff [two-base] methodме́тод двух узло́в ( в анализе электрических цепей) — nodal-pair methodме́тод дирекцио́нных угло́в геод. — method of gisementsме́тод запа́са про́чности ( в расчетах конструкции) — load factor methodме́тод засе́чек афс. — resection methodме́тод зерка́льных изображе́ний эл. — method of electrical imagesме́тод зо́нной пла́вки ( в производстве монокристаллов полупроводниковых материалов) — floating-zone method, floating-zone techniqueме́тод избы́точных концентра́ций ( для опробования гипотетического механизма реакции) — isolation method (of the testing the rate equations)ме́тод измере́ния, абсолю́тный — absolute [fundamental] method of measurementме́тод измере́ния, конта́ктный — contact method of measurementме́тод измере́ния, ко́свенный — indirect method of measurementме́тод измере́ния, относи́тельный — relative method of measurementме́тод измере́ния по то́чкам — point-by-point methodме́тод измере́ния, прямо́й — direct method of measurementме́тод измере́ния угло́в по аэросни́мкам — photogoniometric methodме́тод изображе́ний эл. — method of images, image methodме́тод изото́пных индика́торов — tracer methodиммерсио́нный ме́тод — immersion methodи́мпульсный ме́тод свар. — pulse methodме́тод и́мпульсов — momentum-transfer methodме́тод инве́рсии — inversion methodи́ндексно-после́довательный ме́тод до́ступа, основно́й вчт. — basic indexed sequential access method, BISAMи́ндексно-после́довательный ме́тод до́ступа с очередя́ми вчт. — queued indexed sequential access method, BISAMинтерференцио́нный ме́тод — interferometric methodме́тод испыта́ний — testing procedure, testing methodме́тод испыта́ний, кисло́тный — acid testме́тод испыта́ний, пане́льный — panel-spalling testме́тод испыта́тельной строки́ тлв. — test-line methodме́тод иссле́дований напряже́ний, опти́ческий — optical stress analysisме́тод истече́ния — efflux methodме́тод итера́ции — iteration method, iteration techniqueме́тод итера́ции приво́дит к сходи́мости проце́сса — the iteration (process) converges to a solutionме́тод итера́ции приво́дит к (бы́строй или ме́дленной) сходи́мости проце́сса — the iteration (process) converges quickly or slowlyме́тод картосоставле́ния — map-compilation [plotting] methodме́тод кача́ющегося криста́лла ( в рентгеноструктурном анализе) — rotating-crystal methodка́чественный ме́тод — qualitative methodкессо́нный ме́тод — caisson methodколи́чественный ме́тод — quantitative methodколориметри́ческий ме́тод — colorimetric methodме́тод кольца́ и ша́ра — ball-and-ring methodкомплексометри́ческий ме́тод ( для определения жёсткости воды) — complexometric methodкондуктометри́ческий ме́тод — conductance-measuring methodме́тод коне́чных ра́зностей — finite difference methodме́тод консерви́рования — curing methodме́тод контро́ля, дифференци́рованный — differential control methodме́тод контро́ля ка́чества — quality control methodме́тод ко́нтурных то́ков — mesh-current [loop] methodме́тод ко́нуса — cone methodме́тод корнево́го годо́графа киб., автмт. — root-locus methodкорреляцио́нный ме́тод — correlation methodко́свенный ме́тод — indirect methodме́тод кра́сок ( в дефектоскопии) — dye-penetrant methodлаборато́рный ме́тод — laboratory methodме́тод ла́ковых покры́тий ( в сопротивлении материалов) — brittle-varnish methodме́тод лине́йной интерполя́ции — method of proportional partsме́тод Ляпуно́ва аргд. — Lyapunov's methodме́тод магни́тного порошка́ ( в дефектоскопии) — magnetic particle [magnetic powder] methodмагни́тно-люминесце́нтный ме́тод ( в дефектоскопии) — fluorescent magnetic particle methodме́тод ма́лого пара́метра киб., автмт. — perturbation theory, perturbation methodме́тод ма́лых возмуще́ний аргд. — perturbation methodме́тод мгнове́нной равносигна́льной зо́ны рлк. — simultaneous lobing [monopulse] methodме́тод механи́ческой обрабо́тки — machining methodме́тод ме́ченых а́томов — tracer methodме́тод микрометри́рования — micrometer methodме́тод мно́жителей Лагра́нжа — Lagrangian multiplier method, Lagrange's method of undetermined multipliersме́тод моме́нтных площаде́й мех. — area moment methodме́тод Мо́нте-Ка́рло мат. — Monte Carlo methodме́тод навига́ции, дальноме́рный ( пересечение двух окружностей) — rho-rho [r-r] navigationме́тод навига́ции, угломе́рный ( пересечение двух линий пеленга) — theta-theta [q-q] navigationме́тод наиме́ньших квадра́тов — method of least squares, least-squares techniqueме́тод наискоре́йшего спу́ска мат. — method of steepest descentме́тод нака́чки ( лазера) — pumping [excitation] methodме́тод накопле́ния яд. физ. — “backing-space” methodме́тод наложе́ния — method of superpositionме́тод напыле́ния — evaporation techniqueме́тод нару́жных заря́дов горн. — adobe blasting methodме́тод незави́симых стереопа́р топ. — method of independent image pairsненулево́й ме́тод — deflection methodме́тод неопределё́нных мно́жителей Лагра́нжа — Lagrangian multiplier method, Lagrange's method of undetermined multipliersме́тод неподви́жных то́чек — method of fixed pointsнеразруша́ющий ме́тод — non-destructive method, non-destructive testingнерекурси́вный ме́тод — non-recursive methodнето́чный ме́тод — inexact methodнефелометри́ческий ме́тод — nephelometric methodме́тод нивели́рования по частя́м — method of fraction levellingнулево́й ме́тод — null [zero(-deflection) ] methodме́тод нулевы́х бие́ний — zero-beat methodме́тод нулевы́х то́чек — neutral-points methodме́тод обеспе́чения надё́жности — reliability methodме́тод обрабо́тки — processing [working, tooling] methodме́тод обра́тной простра́нственной засе́чки топ. — method of pyramidобра́тно-ступе́нчатый ме́тод свар. — step-back methodме́тод объединё́нного а́тома — associate atom methodобъекти́вный ме́тод — objective methodобъё́мный ме́тод — volumetric methodме́тод одного́ отсчё́та ( преобразование непрерывной информации в дискретную) — the total value method (of analog-to-digital conversion)окисли́тельно-восстанови́тельный ме́тод — redox methodопера́торный ме́тод — operational methodме́тод определе́ния ме́ста, дальноме́рно-пеленгацио́нный ( пересечение прямой и окружности) — rho-theta [r-q] fixingме́тод определе́ния ме́ста, дальноме́рный ( пересечение двух окружностей) — rho-rho [r-r] fixingме́тод определе́ния ме́ста, пеленгацио́нный ( пересечение двух линий пеленга) — theta-theta [q-q] fixingме́тод определе́ния отбе́ливаемости и цве́тности ма́сел — bleach-and-colour methodме́тод определе́ния положе́ния ли́нии, двукра́тный геод. — double-line methodме́тод опти́ческой корреля́ции — optical correlation techniqueме́тод осажде́ния — sedimentation methodме́тод осо́бых возмуще́ний аргд. — singular perturbation methodме́тод осредне́ния — averaging [smoothing] methodме́тод отбо́ра проб — sampling method, sampling techniqueме́тод отклоне́ния — deflection methodме́тод отопле́ния метал. — fuel practiceме́тод отраже́ния — reflection methodме́тод отражё́нных и́мпульсов — pulse-echo methodме́тод отыска́ния произво́дной, непосре́дственный — delta methodме́тод па́дающего те́ла — falling body methodме́тод парамагни́тного резона́нса — paramagnetic-resonance methodме́тод пе́рвого приближе́ния — first approximation methodме́тод перева́ла мат. — saddle-point methodме́тод перено́са коли́чества движе́ния аргд. — momentum-transfer methodме́тод перераспределе́ния моме́нтов ( в расчёте конструкций) — moment distribution methodме́тод пересека́ющихся луче́й — crossed beam methodме́тод перехо́дного состоя́ния ( в аналитической химии) — transition state methodме́тод перпендикуля́ров — offset methodме́тод перспекти́вных се́ток топ. — grid methodме́тод пескова́ния с.-х. — sanding methodпикнометри́ческий ме́тод — bottle methodме́тод площаде́й физ. — area methodме́тод повторе́ний геод. — method of reiteration, repetition methodме́тод подбо́ра — trial-and-error [cut-and-try] methodме́тод подо́бия — similitude methodме́тод подориенти́рования топ. — setting on points of controlме́тод по́лной деформа́ции — total-strain methodме́тод полови́нных отклоне́ний — half-deflection methodме́тод положе́ния геод. — method of bearings, method of gisementsполуколи́чественный ме́тод — semiquantitative methodме́тод поля́рных координа́т — polar methodме́тод попу́тного фрезерова́ния — climb [cut-down] milling methodпорошко́вый ме́тод ( в рентгеноструктурном анализе) — powder [Debye-Scherer-Hull] methodме́тод посе́ва — seeding techniqueме́тод после́довательного счё́та ( преобразования аналоговой информации в дискретную) — incremental method (of analog-to-digital conversion)ме́тод после́довательных исключе́ний — successive exclusion methodме́тод после́довательных подстано́вок — method of successive substitution, substitution processме́тод после́довательных попра́вок — successive correction methodме́тод после́довательных приближе́ний — successive approximation methodме́тод после́довательных элимина́ций — method of exhaustionме́тод послесплавно́й диффу́зии полупр. — post-alloy-diffusion techniqueпотенциометри́ческий компенсацио́нный ме́тод — potentiometric methodпото́чно-конве́йерный ме́тод — flow-line conveyor methodпото́чный ме́тод — straight-line flow methodме́тод прерыва́ний ( для измерения скорости света) — chopped-beam methodприближё́нный ме́тод — approximate methodме́тод проб и оши́бок — trial-and-error [cut-and-try] methodме́тод программи́рующих програ́мм — programming program methodме́тод продолже́ния топ. — setting on points on controlме́тод проекти́рования, моде́льно-маке́тный — model-and-mock-up method of designме́тод простра́нственного коди́рования ( преобразования аналоговой информации в дискретную) — coded pattern method (OF analog-to-digital conversion)ме́тод простра́нственной самофикса́ции — self-fixation space methodпрямо́й ме́тод — direct methodме́тод псевдослуча́йных чи́сел — pseudorandom number methodме́тод равносигна́льной зо́ны рлк. — lobing, beam [lobe] switchingме́тод равносигна́льной зо́ны, мгнове́нный рлк. — simultaneous lobing, monopulseме́тод ра́вных высо́т геод. — equal-altitude methodме́тод ра́вных деформа́ций ( в проектировании бетонных конструкций) — equal-strain methodме́тод ра́вных отклоне́ний — equal-deflection methodрадиацио́нный ме́тод — radiation methodме́тод радиоавтогра́фии — radioautograph techniqueме́тод радиоакти́вных индика́торов — tracer methodрадиометри́ческий ме́тод — radiometric methodме́тод разбавле́ния — dilution methodме́тод разделе́ния тлв. — separation methodме́тод разделе́ния переме́нных — method of separation of variablesме́тод разли́вки метал. — teeming [pouring, casting] practiceме́тод разме́рностей — dimensional methodра́зностный ме́тод — difference methodме́тод разруша́ющей нагру́зки — load-factor methodразруша́ющий ме́тод — destructive checkме́тод рассе́яния Рэле́я — Rayleigh scattering methodме́тод ра́стра тлв. — grid methodме́тод ра́стрового скани́рования — raster-scan methodме́тод расчё́та по допусти́мым нагру́зкам — working stress design [WSD] methodме́тод расчё́та по разруша́ющим нагру́зкам стр. — ultimate-strength design [USD] methodме́тод расчё́та при по́мощи про́бной нагру́зки стр. — trial-load methodме́тод расчё́та, упру́гий стр. — elastic methodрезона́нсный ме́тод — resonance methodме́тод реитера́ций геод. — method of reiteration, repetition methodрентгенострукту́рный ме́тод — X-ray diffraction methodме́тод реше́ния зада́чи о четвё́ртой то́чке геод. — three-point methodме́тод решета́ мат. — sieve methodру́порно-ли́нзовый ме́тод радио — horn-and-lens methodме́тод самоторможе́ния — retardation methodме́тод сви́лей — schlieren technique, schlieren methodме́тод сдви́нутого сигна́ла — offset-signal methodме́тод секу́щих — secant methodме́тод се́рого кли́на физ. — gray-wedge methodме́тод се́ток мат., вчт. — net(-point) methodме́тод сече́ний ( в расчёте напряжений в фермах) — method of sectionsме́тод сил ( определение усилий в статически неопределимой системе) — work methodсимволи́ческий ме́тод — method of complex numbersме́тод симметри́чных составля́ющих — method of symmetrical components, symmetrical component methodме́тод синхро́нного накопле́ния — synchronous storage methodме́тод скани́рования полосо́й — single-line-scan television methodме́тод скани́рования пятно́м — spot-scan photomultiplier methodме́тод смеще́ния отде́льных узло́в стр. — method of separate joint displacementме́тод совпаде́ний — coincidence methodме́тод сосредото́ченных пара́метров — lumped-parameter methodме́тод спада́ния заря́да — fall-of-charge methodспектроскопи́ческий ме́тод — spectroscopic methodме́тод спира́льного скани́рования — spiral-scan methodме́тод сплавле́ния — fusion methodме́тод сплошны́х сред ( в моделировании) — continuous field analog techniqueме́тод сре́дних квадра́тов — midsquare methodстатисти́ческий ме́тод — statistical techniqueстатисти́ческий ме́тод оце́нки — statistical estimationме́тод статисти́ческих испыта́ний — Monte Carlo methodстробоголографи́ческий ме́тод — strobo-holographic methodстробоскопи́ческий ме́тод — stroboscopic methodстру́йный ме́тод метал. — jet testступе́нчатый ме́тод ( сварки или сверления) — step-by-step methodсубъекти́вный ме́тод — subjective methodме́тод сухо́го озоле́ния — dry combustion methodме́тод сухо́го порошка́ ( в дефектоскопии) — dry methodсчё́тно-и́мпульсный ме́тод — pulse-counting methodтабли́чный ме́тод — diagram methodтелевизио́нный ме́тод электро́нной аэросъё́мки — television methodтелевизио́нный ме́тод электро́нной фотограмме́трии — television methodтенево́й ме́тод — (direct-)shadow methodтермоанемометри́ческий ме́тод — hot-wire methodтопологи́ческий ме́тод — topological methodме́тод то́чечного вплавле́ния полупр. — dot alloying methodто́чный ме́тод — exact [precision] methodме́тод травле́ния, гидри́дный — sodium hydride descalingме́тод трапецеида́льных характери́стик — Floyd's trapezoidal approximation method, approximation procedureме́тод трёх баз геод. — three-base methodме́тод триангуля́ции — triangulation methodме́тод трилатера́ции геод. — trilateration methodме́тод углово́й деформа́ции — slope-deflection methodме́тод углово́й модуля́ции — angular modulation methodме́тод удаля́емого трафаре́та полупр. — rejection mask methodме́тод удаля́емой ма́ски рад. — rejection mask methodме́тод узло́в ( в расчёте напряжении в фермах) — method of jointsме́тод узловы́х потенциа́лов — node-voltage methodме́тод ура́внивания по направле́ниям геод. — method of directions, direction methodме́тод ура́внивания по угла́м геод. — method of angles, angle methodме́тод уравнове́шивания — balancing methodме́тод усредне́ния — averaging [smoothing] methodме́тод фа́зового контра́ста ( в микроскопии) — phase contrastнаблюда́ть ме́тодом фа́зового контра́ста — examine [study] by phase contrastме́тод фа́зовой пло́скости — phase plane methodме́тод факториза́ции — factorization methodфлотацио́нный ме́тод — floatation methodме́тод формирова́ния сигна́лов цве́тности тлв. — colour-processing methodме́тод центрифуги́рования — centrifuge methodцепно́й ме́тод астр. — chain methodчи́сленный ме́тод — numerical methodме́тод Чохра́льского ( в выращивании полупроводниковых кристаллов) — Czochralski method, vertical pulling techniqueме́тод Шо́ра — Shore hardnessщупово́й ме́тод — stylus methodме́тод электрофоре́за — electrophoretic methodэмпири́ческий ме́тод — trial-and-error [cut-and-try] methodэнергети́ческий ме́тод1. косм. energy method2. стр. strain energy methodме́тод энергети́ческого бала́нса — power balance methodэргати́ческий ме́тод ( при общении человека с ЭВМ) — interactive [conversational] technique -
7 разность между
Разность между - difference between, difference in, difference of; residual betweenAs the difference between С e and Cs approaches s, some measurements of Ce will exceed Cs.The admissible heat flux contribution of the freezing process is a residual between conduction in the solid and natural convection.Русско-английский научно-технический словарь переводчика > разность между
-
8 уравнение
equation, formula* * *уравне́ние с.
equationуравне́ние ви́да … — an equation of the form …входи́ть в уравне́ние — appear in the equation, enter into the equationвыводи́ть уравне́ние — derive an equationзапи́сывать уравне́ние относи́тельно, напр. ста́ршей произво́дной — write an equation to solve for, e. g., the highest derivativeуравне́ние име́ет еди́нственное реше́ние — the equation has a unique solutionопро́бовать уравне́ние по о́пытным да́нным — check [test] an equation against experimental dataуравне́ние относи́тельно, напр. х — an equation in, e. g., xпо уравне́нию — according to the equationподбира́ть уравне́ние, напр. к гипотети́ческому механи́зму реа́кции — fit an equation, e. g., to a postulated reaction mechanismпревраща́ть уравне́ние в то́ждество — reduce an equation to an identityприводи́ть уравне́ние к сле́дующему ви́ду — reduce an equation to the following formуравне́ние, разреши́мое относи́тельно, напр. х — an equation solvable for, e. g., xразреши́ть уравне́ние относи́тельно, напр. ста́ршей произво́дной — re-write an equation to solve for, e. g., the highest derivative; re-write an equation with, e. g., the highest derivative (on the left-hand side)разреши́ть уравне́ние относи́тельно, напр. х — re-arrange an equation to solve for, e. g., xреша́ть уравне́ние относи́тельно, напр. х — solve the equation for, e. g., xреша́ть уравне́ния совме́стно — solve equations simultaneouslyреша́ть с по́мощью уравне́ния — solve by equationуравне́ние с одни́м неизве́стным — an equation in one unknownсоотве́тствовать уравне́нию — fit an equationсоставля́ть уравне́ние — formulate [form, set up, write] an equationуравне́ние сте́пени n — an equation of degree n [of the nth degree], an nth -degree equationтранспони́ровать уравне́ния — transpose equationsудовлетворя́ть уравне́нию — satisfy an equationуравне́ние адиаба́ты — adiabatic equationалгебраи́ческое уравне́ние — algebraic equationуравне́ние бала́нса — balance (equation)уравне́ние бари́ческой тенде́нции — tendency equationуравне́ние Берну́лли — Bernoulli's theoremбиквадра́тное уравне́ние — biquadratic, biquadratic [quartic] equationуравне́ние Бо́льцмана — Boltzmann equationуравне́ние Ван-дер-Ваа́льса — Van der Waals' equationвеково́е уравне́ние — secular equationве́кторное уравне́ние — vector equationуравне́ние в коне́чных ра́зностях — difference equationуравне́ние во́дного бала́нса — hydrologic [hydrolicity] equationволново́е уравне́ние — wave equationуравне́ние в по́лных дифференциа́лах — total [exact differential] equationуравне́ние второ́й сте́пени — quadratic [second-degree] equationуравне́ние Га́мильтона — canonical equation of motionуравне́ние Ги́ббса-Гельмго́льца — equation of maximum workуравне́ние горе́ния — combustion equationуравне́ние да́льности де́йствия рлк ста́нции, основно́е — (radar) range equationуравне́ние движе́ния — equation of motionуравне́ние движе́ния жи́дкости — flow equationуравне́ние дина́мики — equation of motion, dynamic(al) equationдиофа́нтово уравне́ние — Diophantine equationдифференциа́льное уравне́ние — differential equationдифференциа́льное уравне́ние в по́лных дифференциа́лах — exact (differential) equationдифференциа́льное уравне́ние второ́го поря́дка — second-order differential equationдифференциа́льное уравне́ние в ча́стных произво́дных — partial differential equationдифференциа́льное, обыкнове́нное уравне́ние — ordinary differential equationдифференциа́льное уравне́ние пе́рвого поря́дка — first-order differential equationдифференциа́льное, стохасти́ческое уравне́ние — stochastic differential equationдифференциа́льное уравне́ние управле́ния — control differential equationдифференциа́льно-ра́зностное уравне́ние — differential-difference equationуравне́ние диффу́зии — diffusion equationинтегра́льное уравне́ние — integral equationинтегра́льное уравне́ние пе́рвого ро́да — integral equation of the first kindинтегра́льное уравне́ние Фредхо́льма — Fredholm equationинтегродифференциа́льное уравне́ние — integro-differential equationисхо́дное уравне́ние — input [original] equationкалибро́вочно-инвариа́нтное уравне́ние — gauge-invariant equationканони́ческое уравне́ние — canonical equationквадра́тное уравне́ние — quadratic equationквадра́тное, непо́лное уравне́ние — pure quadratic (equation), incomplete quadratic (equation)квадра́тное, по́лное уравне́ние — affected quadratic (equation), general form of a quadratic equationуравне́ние кинети́ческое уравне́ние — rate [kinetic] equationуравне́ние Клапейро́на — Clapeyron equationуравне́ние коли́чества движе́ния — momentum equationконе́чно-дифференци́руемое уравне́ние — finitely differentiable equationуравне́ние ко́нтурных то́ков — mesh-current [loop-current] equationкуби́ческое уравне́ние — cubic equationлине́йное уравне́ние — linear equationуравне́ние стано́вится лине́йным относи́тельно, напр. вре́мени — the equation becomes linear in, e. g., timeлогарифми́ческое уравне́ние — logarithmic equationуравне́ние Ма́ксвелла — Maxwell's equationмасшта́бное уравне́ние вчт. — transformation equationматериа́льное уравне́ние элк. — constitutive relationма́тричное уравне́ние — matrix equationмаши́нное уравне́ние вчт. — machine equationуравне́ние n [m2]-го поря́дка — equation of the nth order, nth -order equationуравне́ние n [m2]-й сте́пени — nth -degree equation, equation of degree nнеодноро́дное уравне́ние — inhomogeneous [nonhomogeneous] equationнеопределё́нное уравне́ние — indeterminate equationуравне́ние непреры́вности — continuity equationнеприводи́мое уравне́ние — irreducible equationуравне́ние неразры́вности — continuity equationодноро́дное уравне́ние — homogeneous equationокисли́тельно-восстанови́тельное уравне́ние — oxidation-reducton equationопера́торное уравне́ние — operator equationосновно́е уравне́ние — basic equationуравне́ние параболи́ческого ти́па — parabolic equationпараметри́ческое уравне́ние — parametric equationуравне́ние пе́рвого поря́дка — first-order equationуравне́ние пе́рвой сте́пени — simple equationуравне́ние переме́нного то́ка — equation for an alternating currentуравне́ние перено́са — transport [transfer] equationуравне́ние пограни́чного сло́я — boundary-layer equationуравне́ние по́ля — field equationуравне́ние правдоподо́бия — likelihood equationуравне́ние преобразова́ния — transformation equationпрове́рочное уравне́ние ( на чётность) — parity(-check) equationуравне́ние прямо́й в отре́зках — intercept form of [for] the equation of a straight lineуравне́ние прямо́й с угловы́м коэффицие́нтом — slope-intercept form of [for] the equation of a straight lineуравне́ние Пуассо́на — adiabatic equationуравне́ние равнове́сия — equilibrium equationуравне́ние радиолока́ции, основно́е — radar equationуравне́ние радиолока́ции, основно́е, для свобо́дного простра́нства — free-space radar equationуравне́ние разме́рностей — dimensional equationра́зностное уравне́ние — difference equationуравне́ние регре́ссии — regression equationпроверя́ть уравне́ние регре́ссии на адеква́тность по крите́рию Фи́шера — test the adequacy [validity] of the regression equation on the basis of Fisher's variance ratioуравне́ние регули́руемого объе́кта автмт. — plant [process] equationрелятиви́стское уравне́ние — relativistic equationуравне́ние свя́зи — constraint equationскаля́рное уравне́ние — scalar equationскоростно́е уравне́ние — rate [kinetic] equationуравне́ние согласова́ния цвето́в — colour match equationсопряжё́нное уравне́ние — adjoint equationуравне́ние состоя́ния — equation of state, characteristic equationуравне́ние состоя́ния идеа́льного га́за — Clapeyron equationуравне́ние сохране́ния — conservation equationуравне́ние сохране́ния моме́нта коли́чества движе́ния — angular momentum [moment-of-momentum] equationуравне́ние сохране́ния эне́ргии — energy equationуравне́ние с разделя́ющими(ся) переме́нными — equation with variables separable, separable equationуравне́ние сте́пени n — an equation of degree n, an nth -degree equation, an equation of the nth degreeстепенно́е уравне́ние — exponential equationстехиометри́ческое уравне́ние — stoichiometric equationтелегра́фное уравне́ние — telegraphers equationте́нзорное уравне́ние — tensor equationуравне́ние теплово́го бала́нса — heat balance equationуравне́ние теплопрово́дности — heat [heat conduction, heat transfer] equationуравне́ние тече́ния — flow equationто́чное уравне́ние — exact equationуравне́ние траекто́рии — path equationтрансценде́нтное уравне́ние — transcendental equationтригонометри́ческое уравне́ние — trigonometric equationуравне́ние узловы́х потенциа́лов эл. — nodal-voltage equationфункциона́льное уравне́ние — functional equationхарактеристи́ческое уравне́ние — characteristic equationхими́ческое уравне́ние — chemical equationуравне́ние хо́да луче́й опт. — ray-tracing equationцветово́е уравне́ние — trichromatic equationуравне́ние Шре́дингера — Schrцdinger (wave) equationуравне́ние Э́йлера для тре́ния кана́та по цили́ндру — capstan equationуравне́ние Эйнште́йна для вне́шнего фотоэффе́кта — Einstein photoelectric equationэллипти́ческое уравне́ние — elliptic(al) equationэмпири́ческое уравне́ние — empirical equation -
9 модульный центр обработки данных (ЦОД)
модульный центр обработки данных (ЦОД)
-
[Интент]Параллельные тексты EN-RU
[ http://dcnt.ru/?p=9299#more-9299]
Data Centers are a hot topic these days. No matter where you look, this once obscure aspect of infrastructure is getting a lot of attention. For years, there have been cost pressures on IT operations and this, when the need for modern capacity is greater than ever, has thrust data centers into the spotlight. Server and rack density continues to rise, placing DC professionals and businesses in tighter and tougher situations while they struggle to manage their IT environments. And now hyper-scale cloud infrastructure is taking traditional technologies to limits never explored before and focusing the imagination of the IT industry on new possibilities.
В настоящее время центры обработки данных являются широко обсуждаемой темой. Куда ни посмотришь, этот некогда малоизвестный аспект инфраструктуры привлекает все больше внимания. Годами ИТ-отделы испытывали нехватку средств и это выдвинуло ЦОДы в центр внимания, в то время, когда необходимость в современных ЦОДах стала как никогда высокой. Плотность серверов и стоек продолжают расти, все больше усложняя ситуацию для специалистов в области охлаждения и организаций в их попытках управлять своими ИТ-средами. И теперь гипермасштабируемая облачная инфраструктура подвергает традиционные технологии невиданным ранее нагрузкам, и заставляет ИТ-индустрию искать новые возможности.
At Microsoft, we have focused a lot of thought and research around how to best operate and maintain our global infrastructure and we want to share those learnings. While obviously there are some aspects that we keep to ourselves, we have shared how we operate facilities daily, our technologies and methodologies, and, most importantly, how we monitor and manage our facilities. Whether it’s speaking at industry events, inviting customers to our “Microsoft data center conferences” held in our data centers, or through other media like blogging and white papers, we believe sharing best practices is paramount and will drive the industry forward. So in that vein, we have some interesting news to share.
В компании MicroSoft уделяют большое внимание изучению наилучших методов эксплуатации и технического обслуживания своей глобальной инфраструктуры и делятся результатами своих исследований. И хотя мы, конечно, не раскрываем некоторые аспекты своих исследований, мы делимся повседневным опытом эксплуатации дата-центров, своими технологиями и методологиями и, что важнее всего, методами контроля и управления своими объектами. Будь то доклады на отраслевых событиях, приглашение клиентов на наши конференции, которые посвящены центрам обработки данных MicroSoft, и проводятся в этих самых дата-центрах, или использование других средств, например, блоги и спецификации, мы уверены, что обмен передовым опытом имеет первостепенное значение и будет продвигать отрасль вперед.
Today we are sharing our Generation 4 Modular Data Center plan. This is our vision and will be the foundation of our cloud data center infrastructure in the next five years. We believe it is one of the most revolutionary changes to happen to data centers in the last 30 years. Joining me, in writing this blog are Daniel Costello, my director of Data Center Research and Engineering and Christian Belady, principal power and cooling architect. I feel their voices will add significant value to driving understanding around the many benefits included in this new design paradigm.
Сейчас мы хотим поделиться своим планом модульного дата-центра четвертого поколения. Это наше видение и оно будет основанием для инфраструктуры наших облачных дата-центров в ближайшие пять лет. Мы считаем, что это одно из самых революционных изменений в дата-центрах за последние 30 лет. Вместе со мной в написании этого блога участвовали Дэниел Костелло, директор по исследованиям и инжинирингу дата-центров, и Кристиан Белади, главный архитектор систем энергоснабжения и охлаждения. Мне кажется, что их авторитет придаст больше веса большому количеству преимуществ, включенных в эту новую парадигму проектирования.
Our “Gen 4” modular data centers will take the flexibility of containerized servers—like those in our Chicago data center—and apply it across the entire facility. So what do we mean by modular? Think of it like “building blocks”, where the data center will be composed of modular units of prefabricated mechanical, electrical, security components, etc., in addition to containerized servers.
Was there a key driver for the Generation 4 Data Center?Наши модульные дата-центры “Gen 4” будут гибкими с контейнерами серверов – как серверы в нашем чикагском дата-центре. И гибкость будет применяться ко всему ЦОД. Итак, что мы подразумеваем под модульностью? Мы думаем о ней как о “строительных блоках”, где дата-центр будет состоять из модульных блоков изготовленных в заводских условиях электрических систем и систем охлаждения, а также систем безопасности и т.п., в дополнение к контейнеризованным серверам.
Был ли ключевой стимул для разработки дата-центра четвертого поколения?
If we were to summarize the promise of our Gen 4 design into a single sentence it would be something like this: “A highly modular, scalable, efficient, just-in-time data center capacity program that can be delivered anywhere in the world very quickly and cheaply, while allowing for continued growth as required.” Sounds too good to be true, doesn’t it? Well, keep in mind that these concepts have been in initial development and prototyping for over a year and are based on cumulative knowledge of previous facility generations and the advances we have made since we began our investments in earnest on this new design.Если бы нам нужно было обобщить достоинства нашего проекта Gen 4 в одном предложении, это выглядело бы следующим образом: “Центр обработки данных с высоким уровнем модульности, расширяемости, и энергетической эффективности, а также возможностью постоянного расширения, в случае необходимости, который можно очень быстро и дешево развертывать в любом месте мира”. Звучит слишком хорошо для того чтобы быть правдой, не так ли? Ну, не забывайте, что эти концепции находились в процессе начальной разработки и создания опытного образца в течение более одного года и основываются на опыте, накопленном в ходе развития предыдущих поколений ЦОД, а также успехах, сделанных нами со времени, когда мы начали вкладывать серьезные средства в этот новый проект.
One of the biggest challenges we’ve had at Microsoft is something Mike likes to call the ‘Goldilock’s Problem’. In a nutshell, the problem can be stated as:
The worst thing we can do in delivering facilities for the business is not have enough capacity online, thus limiting the growth of our products and services.Одну из самых больших проблем, с которыми приходилось сталкиваться Майкрософт, Майк любит называть ‘Проблемой Лютика’. Вкратце, эту проблему можно выразить следующим образом:
Самое худшее, что может быть при строительстве ЦОД для бизнеса, это не располагать достаточными производственными мощностями, и тем самым ограничивать рост наших продуктов и сервисов.The second worst thing we can do in delivering facilities for the business is to have too much capacity online.
А вторым самым худшим моментом в этой сфере может слишком большое количество производственных мощностей.
This has led to a focus on smart, intelligent growth for the business — refining our overall demand picture. It can’t be too hot. It can’t be too cold. It has to be ‘Just Right!’ The capital dollars of investment are too large to make without long term planning. As we struggled to master these interesting challenges, we had to ensure that our technological plan also included solutions for the business and operational challenges we faced as well.
So let’s take a high level look at our Generation 4 designЭто заставило нас сосредоточиваться на интеллектуальном росте для бизнеса — refining our overall demand picture. Это не должно быть слишком горячим. И это не должно быть слишком холодным. Это должно быть ‘как раз, таким как надо!’ Нельзя делать такие большие капиталовложения без долгосрочного планирования. Пока мы старались решить эти интересные проблемы, мы должны были гарантировать, что наш технологический план будет также включать решения для коммерческих и эксплуатационных проблем, с которыми нам также приходилось сталкиваться.
Давайте рассмотрим наш проект дата-центра четвертого поколенияAre you ready for some great visuals? Check out this video at Soapbox. Click here for the Microsoft 4th Gen Video.
It’s a concept video that came out of my Data Center Research and Engineering team, under Daniel Costello, that will give you a view into what we think is the future.
From a configuration, construct-ability and time to market perspective, our primary goals and objectives are to modularize the whole data center. Not just the server side (like the Chicago facility), but the mechanical and electrical space as well. This means using the same kind of parts in pre-manufactured modules, the ability to use containers, skids, or rack-based deployments and the ability to tailor the Redundancy and Reliability requirements to the application at a very specific level.
Посмотрите это видео, перейдите по ссылке для просмотра видео о Microsoft 4th Gen:
Это концептуальное видео, созданное командой отдела Data Center Research and Engineering, возглавляемого Дэниелом Костелло, которое даст вам наше представление о будущем.
С точки зрения конфигурации, строительной технологичности и времени вывода на рынок, нашими главными целями и задачами агрегатирование всего дата-центра. Не только серверную часть, как дата-центр в Чикаго, но также системы охлаждения и электрические системы. Это означает применение деталей одного типа в сборных модулях, возможность использования контейнеров, салазок, или стоечных систем, а также возможность подстраивать требования избыточности и надежности для данного приложения на очень специфичном уровне.Our goals from a cost perspective were simple in concept but tough to deliver. First and foremost, we had to reduce the capital cost per critical Mega Watt by the class of use. Some applications can run with N-level redundancy in the infrastructure, others require a little more infrastructure for support. These different classes of infrastructure requirements meant that optimizing for all cost classes was paramount. At Microsoft, we are not a one trick pony and have many Online products and services (240+) that require different levels of operational support. We understand that and ensured that we addressed it in our design which will allow us to reduce capital costs by 20%-40% or greater depending upon class.
Нашими целями в области затрат были концептуально простыми, но трудно реализуемыми. В первую очередь мы должны были снизить капитальные затраты в пересчете на один мегаватт, в зависимости от класса резервирования. Некоторые приложения могут вполне работать на базе инфраструктуры с резервированием на уровне N, то есть без резервирования, а для работы других приложений требуется больше инфраструктуры. Эти разные классы требований инфраструктуры подразумевали, что оптимизация всех классов затрат имеет преобладающее значение. В Майкрософт мы не ограничиваемся одним решением и располагаем большим количеством интерактивных продуктов и сервисов (240+), которым требуются разные уровни эксплуатационной поддержки. Мы понимаем это, и учитываем это в своем проекте, который позволит нам сокращать капитальные затраты на 20%-40% или более в зависимости от класса.For example, non-critical or geo redundant applications have low hardware reliability requirements on a location basis. As a result, Gen 4 can be configured to provide stripped down, low-cost infrastructure with little or no redundancy and/or temperature control. Let’s say an Online service team decides that due to the dramatically lower cost, they will simply use uncontrolled outside air with temperatures ranging 10-35 C and 20-80% RH. The reality is we are already spec-ing this for all of our servers today and working with server vendors to broaden that range even further as Gen 4 becomes a reality. For this class of infrastructure, we eliminate generators, chillers, UPSs, and possibly lower costs relative to traditional infrastructure.
Например, некритичные или гео-избыточные системы имеют низкие требования к аппаратной надежности на основе местоположения. В результате этого, Gen 4 можно конфигурировать для упрощенной, недорогой инфраструктуры с низким уровнем (или вообще без резервирования) резервирования и / или температурного контроля. Скажем, команда интерактивного сервиса решает, что, в связи с намного меньшими затратами, они будут просто использовать некондиционированный наружный воздух с температурой 10-35°C и влажностью 20-80% RH. В реальности мы уже сегодня предъявляем эти требования к своим серверам и работаем с поставщиками серверов над еще большим расширением диапазона температур, так как наш модуль и подход Gen 4 становится реальностью. Для подобного класса инфраструктуры мы удаляем генераторы, чиллеры, ИБП, и, возможно, будем предлагать более низкие затраты, по сравнению с традиционной инфраструктурой.
Applications that demand higher level of redundancy or temperature control will use configurations of Gen 4 to meet those needs, however, they will also cost more (but still less than traditional data centers). We see this cost difference driving engineering behavioral change in that we predict more applications will drive towards Geo redundancy to lower costs.
Системы, которым требуется более высокий уровень резервирования или температурного контроля, будут использовать конфигурации Gen 4, отвечающие этим требованиям, однако, они будут также стоить больше. Но все равно они будут стоить меньше, чем традиционные дата-центры. Мы предвидим, что эти различия в затратах будут вызывать изменения в методах инжиниринга, и по нашим прогнозам, это будет выражаться в переходе все большего числа систем на гео-избыточность и меньшие затраты.
Another cool thing about Gen 4 is that it allows us to deploy capacity when our demand dictates it. Once finalized, we will no longer need to make large upfront investments. Imagine driving capital costs more closely in-line with actual demand, thus greatly reducing time-to-market and adding the capacity Online inherent in the design. Also reduced is the amount of construction labor required to put these “building blocks” together. Since the entire platform requires pre-manufacture of its core components, on-site construction costs are lowered. This allows us to maximize our return on invested capital.
Еще одно достоинство Gen 4 состоит в том, что он позволяет нам разворачивать дополнительные мощности, когда нам это необходимо. Как только мы закончим проект, нам больше не нужно будет делать большие начальные капиталовложения. Представьте себе возможность более точного согласования капитальных затрат с реальными требованиями, и тем самым значительного снижения времени вывода на рынок и интерактивного добавления мощностей, предусматриваемого проектом. Также снижен объем строительных работ, требуемых для сборки этих “строительных блоков”. Поскольку вся платформа требует предварительного изготовления ее базовых компонентов, затраты на сборку также снижены. Это позволит нам увеличить до максимума окупаемость своих капиталовложений.
Мы все подвергаем сомнениюIn our design process, we questioned everything. You may notice there is no roof and some might be uncomfortable with this. We explored the need of one and throughout our research we got some surprising (positive) results that showed one wasn’t needed.
В своем процессе проектирования мы все подвергаем сомнению. Вы, наверное, обратили внимание на отсутствие крыши, и некоторым специалистам это могло не понравиться. Мы изучили необходимость в крыше и в ходе своих исследований получили удивительные результаты, которые показали, что крыша не нужна.
Серийное производство дата центров
In short, we are striving to bring Henry Ford’s Model T factory to the data center. http://en.wikipedia.org/wiki/Henry_Ford#Model_T. Gen 4 will move data centers from a custom design and build model to a commoditized manufacturing approach. We intend to have our components built in factories and then assemble them in one location (the data center site) very quickly. Think about how a computer, car or plane is built today. Components are manufactured by different companies all over the world to a predefined spec and then integrated in one location based on demands and feature requirements. And just like Henry Ford’s assembly line drove the cost of building and the time-to-market down dramatically for the automobile industry, we expect Gen 4 to do the same for data centers. Everything will be pre-manufactured and assembled on the pad.Мы хотим применить модель автомобильной фабрики Генри Форда к дата-центру. Проект Gen 4 будет способствовать переходу от модели специализированного проектирования и строительства к товарно-производственному, серийному подходу. Мы намерены изготавливать свои компоненты на заводах, а затем очень быстро собирать их в одном месте, в месте строительства дата-центра. Подумайте о том, как сегодня изготавливается компьютер, автомобиль или самолет. Компоненты изготавливаются по заранее определенным спецификациям разными компаниями во всем мире, затем собираются в одном месте на основе спроса и требуемых характеристик. И точно так же как сборочный конвейер Генри Форда привел к значительному уменьшению затрат на производство и времени вывода на рынок в автомобильной промышленности, мы надеемся, что Gen 4 сделает то же самое для дата-центров. Все будет предварительно изготавливаться и собираться на месте.
Невероятно энергоэффективный ЦОД
And did we mention that this platform will be, overall, incredibly energy efficient? From a total energy perspective not only will we have remarkable PUE values, but the total cost of energy going into the facility will be greatly reduced as well. How much energy goes into making concrete? Will we need as much of it? How much energy goes into the fuel of the construction vehicles? This will also be greatly reduced! A key driver is our goal to achieve an average PUE at or below 1.125 by 2012 across our data centers. More than that, we are on a mission to reduce the overall amount of copper and water used in these facilities. We believe these will be the next areas of industry attention when and if the energy problem is solved. So we are asking today…“how can we build a data center with less building”?А мы упоминали, что эта платформа будет, в общем, невероятно энергоэффективной? С точки зрения общей энергии, мы получим не только поразительные значения PUE, но общая стоимость энергии, затраченной на объект будет также значительно снижена. Сколько энергии идет на производство бетона? Нам нужно будет столько энергии? Сколько энергии идет на питание инженерных строительных машин? Это тоже будет значительно снижено! Главным стимулом является достижение среднего PUE не больше 1.125 для всех наших дата-центров к 2012 году. Более того, у нас есть задача сокращения общего количества меди и воды в дата-центрах. Мы думаем, что эти задачи станут следующей заботой отрасли после того как будет решена энергетическая проблема. Итак, сегодня мы спрашиваем себя…“как можно построить дата-центр с меньшим объемом строительных работ”?
Строительство дата центров без чиллеровWe have talked openly and publicly about building chiller-less data centers and running our facilities using aggressive outside economization. Our sincerest hope is that Gen 4 will completely eliminate the use of water. Today’s data centers use massive amounts of water and we see water as the next scarce resource and have decided to take a proactive stance on making water conservation part of our plan.
Мы открыто и публично говорили о строительстве дата-центров без чиллеров и активном использовании в наших центрах обработки данных технологий свободного охлаждения или фрикулинга. Мы искренне надеемся, что Gen 4 позволит полностью отказаться от использования воды. Современные дата-центры расходуют большие объемы воды и так как мы считаем воду следующим редким ресурсом, мы решили принять упреждающие меры и включить экономию воды в свой план.
By sharing this with the industry, we believe everyone can benefit from our methodology. While this concept and approach may be intimidating (or downright frightening) to some in the industry, disclosure ultimately is better for all of us.
Делясь этим опытом с отраслью, мы считаем, что каждый сможет извлечь выгоду из нашей методологией. Хотя эта концепция и подход могут показаться пугающими (или откровенно страшными) для некоторых отраслевых специалистов, раскрывая свои планы мы, в конечном счете, делаем лучше для всех нас.
Gen 4 design (even more than just containers), could reduce the ‘religious’ debates in our industry. With the central spine infrastructure in place, containers or pre-manufactured server halls can be either AC or DC, air-side economized or water-side economized, or not economized at all (though the sanity of that might be questioned). Gen 4 will allow us to decommission, repair and upgrade quickly because everything is modular. No longer will we be governed by the initial decisions made when constructing the facility. We will have almost unlimited use and re-use of the facility and site. We will also be able to use power in an ultra-fluid fashion moving load from critical to non-critical as use and capacity requirements dictate.
Проект Gen 4 позволит уменьшить ‘религиозные’ споры в нашей отрасли. Располагая базовой инфраструктурой, контейнеры или сборные серверные могут оборудоваться системами переменного или постоянного тока, воздушными или водяными экономайзерами, или вообще не использовать экономайзеры. Хотя можно подвергать сомнению разумность такого решения. Gen 4 позволит нам быстро выполнять работы по выводу из эксплуатации, ремонту и модернизации, поскольку все будет модульным. Мы больше не будем руководствоваться начальными решениями, принятыми во время строительства дата-центра. Мы сможем использовать этот дата-центр и инфраструктуру в течение почти неограниченного периода времени. Мы также сможем применять сверхгибкие методы использования электрической энергии, переводя оборудование в режимы критической или некритической нагрузки в соответствии с требуемой мощностью.
Gen 4 – это стандартная платформаFinally, we believe this is a big game changer. Gen 4 will provide a standard platform that our industry can innovate around. For example, all modules in our Gen 4 will have common interfaces clearly defined by our specs and any vendor that meets these specifications will be able to plug into our infrastructure. Whether you are a computer vendor, UPS vendor, generator vendor, etc., you will be able to plug and play into our infrastructure. This means we can also source anyone, anywhere on the globe to minimize costs and maximize performance. We want to help motivate the industry to further innovate—with innovations from which everyone can reap the benefits.
Наконец, мы уверены, что это будет фактором, который значительно изменит ситуацию. Gen 4 будет представлять собой стандартную платформу, которую отрасль сможет обновлять. Например, все модули в нашем Gen 4 будут иметь общепринятые интерфейсы, четко определяемые нашими спецификациями, и оборудование любого поставщика, которое отвечает этим спецификациям можно будет включать в нашу инфраструктуру. Независимо от того производите вы компьютеры, ИБП, генераторы и т.п., вы сможете включать свое оборудование нашу инфраструктуру. Это означает, что мы также сможем обеспечивать всех, в любом месте земного шара, тем самым сводя до минимума затраты и максимальной увеличивая производительность. Мы хотим создать в отрасли мотивацию для дальнейших инноваций – инноваций, от которых каждый сможет получать выгоду.
Главные характеристики дата-центров четвертого поколения Gen4To summarize, the key characteristics of our Generation 4 data centers are:
Scalable
Plug-and-play spine infrastructure
Factory pre-assembled: Pre-Assembled Containers (PACs) & Pre-Manufactured Buildings (PMBs)
Rapid deployment
De-mountable
Reduce TTM
Reduced construction
Sustainable measuresНиже приведены главные характеристики дата-центров четвертого поколения Gen 4:
Расширяемость;
Готовая к использованию базовая инфраструктура;
Изготовление в заводских условиях: сборные контейнеры (PAC) и сборные здания (PMB);
Быстрота развертывания;
Возможность демонтажа;
Снижение времени вывода на рынок (TTM);
Сокращение сроков строительства;
Экологичность;Map applications to DC Class
We hope you join us on this incredible journey of change and innovation!
Long hours of research and engineering time are invested into this process. There are still some long days and nights ahead, but the vision is clear. Rest assured however, that we as refine Generation 4, the team will soon be looking to Generation 5 (even if it is a bit farther out). There is always room to get better.
Использование систем электропитания постоянного тока.
Мы надеемся, что вы присоединитесь к нам в этом невероятном путешествии по миру изменений и инноваций!
На этот проект уже потрачены долгие часы исследований и проектирования. И еще предстоит потратить много дней и ночей, но мы имеем четкое представление о конечной цели. Однако будьте уверены, что как только мы доведем до конца проект модульного дата-центра четвертого поколения, мы вскоре начнем думать о проекте дата-центра пятого поколения. Всегда есть возможность для улучшений.So if you happen to come across Goldilocks in the forest, and you are curious as to why she is smiling you will know that she feels very good about getting very close to ‘JUST RIGHT’.
Generations of Evolution – some background on our data center designsТак что, если вы встретите в лесу девочку по имени Лютик, и вам станет любопытно, почему она улыбается, вы будете знать, что она очень довольна тем, что очень близко подошла к ‘ОПИМАЛЬНОМУ РЕШЕНИЮ’.
Поколения эволюции – история развития наших дата-центровWe thought you might be interested in understanding what happened in the first three generations of our data center designs. When Ray Ozzie wrote his Software plus Services memo it posed a very interesting challenge to us. The winds of change were at ‘tornado’ proportions. That “plus Services” tag had some significant (and unstated) challenges inherent to it. The first was that Microsoft was going to evolve even further into an operations company. While we had been running large scale Internet services since 1995, this development lead us to an entirely new level. Additionally, these “services” would span across both Internet and Enterprise businesses. To those of you who have to operate “stuff”, you know that these are two very different worlds in operational models and challenges. It also meant that, to achieve the same level of reliability and performance required our infrastructure was going to have to scale globally and in a significant way.
Мы подумали, что может быть вам будет интересно узнать историю первых трех поколений наших центров обработки данных. Когда Рэй Оззи написал свою памятную записку Software plus Services, он поставил перед нами очень интересную задачу. Ветра перемен двигались с ураганной скоростью. Это окончание “plus Services” скрывало в себе какие-то значительные и неопределенные задачи. Первая заключалась в том, что Майкрософт собиралась в еще большей степени стать операционной компанией. Несмотря на то, что мы управляли большими интернет-сервисами, начиная с 1995 г., эта разработка подняла нас на абсолютно новый уровень. Кроме того, эти “сервисы” охватывали интернет-компании и корпорации. Тем, кому приходится всем этим управлять, известно, что есть два очень разных мира в области операционных моделей и задач. Это также означало, что для достижения такого же уровня надежности и производительности требовалось, чтобы наша инфраструктура располагала значительными возможностями расширения в глобальных масштабах.
It was that intense atmosphere of change that we first started re-evaluating data center technology and processes in general and our ideas began to reach farther than what was accepted by the industry at large. This was the era of Generation 1. As we look at where most of the world’s data centers are today (and where our facilities were), it represented all the known learning and design requirements that had been in place since IBM built the first purpose-built computer room. These facilities focused more around uptime, reliability and redundancy. Big infrastructure was held accountable to solve all potential environmental shortfalls. This is where the majority of infrastructure in the industry still is today.
Именно в этой атмосфере серьезных изменений мы впервые начали переоценку ЦОД-технологий и технологий вообще, и наши идеи начали выходить за пределы общепринятых в отрасли представлений. Это была эпоха ЦОД первого поколения. Когда мы узнали, где сегодня располагается большинство мировых дата-центров и где находятся наши предприятия, это представляло весь опыт и навыки проектирования, накопленные со времени, когда IBM построила первую серверную. В этих ЦОД больше внимания уделялось бесперебойной работе, надежности и резервированию. Большая инфраструктура была призвана решать все потенциальные экологические проблемы. Сегодня большая часть инфраструктуры все еще находится на этом этапе своего развития.
We soon realized that traditional data centers were quickly becoming outdated. They were not keeping up with the demands of what was happening technologically and environmentally. That’s when we kicked off our Generation 2 design. Gen 2 facilities started taking into account sustainability, energy efficiency, and really looking at the total cost of energy and operations.
Очень быстро мы поняли, что стандартные дата-центры очень быстро становятся устаревшими. Они не поспевали за темпами изменений технологических и экологических требований. Именно тогда мы стали разрабатывать ЦОД второго поколения. В этих дата-центрах Gen 2 стали принимать во внимание такие факторы как устойчивое развитие, энергетическая эффективность, а также общие энергетические и эксплуатационные.
No longer did we view data centers just for the upfront capital costs, but we took a hard look at the facility over the course of its life. Our Quincy, Washington and San Antonio, Texas facilities are examples of our Gen 2 data centers where we explored and implemented new ways to lessen the impact on the environment. These facilities are considered two leading industry examples, based on their energy efficiency and ability to run and operate at new levels of scale and performance by leveraging clean hydro power (Quincy) and recycled waste water (San Antonio) to cool the facility during peak cooling months.
Мы больше не рассматривали дата-центры только с точки зрения начальных капитальных затрат, а внимательно следили за работой ЦОД на протяжении его срока службы. Наши объекты в Куинси, Вашингтоне, и Сан-Антонио, Техас, являются образцами наших ЦОД второго поколения, в которых мы изучали и применяли на практике новые способы снижения воздействия на окружающую среду. Эти объекты считаются двумя ведущими отраслевыми примерами, исходя из их энергетической эффективности и способности работать на новых уровнях производительности, основанных на использовании чистой энергии воды (Куинси) и рециклирования отработанной воды (Сан-Антонио) для охлаждения объекта в самых жарких месяцах.
As we were delivering our Gen 2 facilities into steel and concrete, our Generation 3 facilities were rapidly driving the evolution of the program. The key concepts for our Gen 3 design are increased modularity and greater concentration around energy efficiency and scale. The Gen 3 facility will be best represented by the Chicago, Illinois facility currently under construction. This facility will seem very foreign compared to the traditional data center concepts most of the industry is comfortable with. In fact, if you ever sit around in our container hanger in Chicago it will look incredibly different from a traditional raised-floor data center. We anticipate this modularization will drive huge efficiencies in terms of cost and operations for our business. We will also introduce significant changes in the environmental systems used to run our facilities. These concepts and processes (where applicable) will help us gain even greater efficiencies in our existing footprint, allowing us to further maximize infrastructure investments.
Так как наши ЦОД второго поколения строились из стали и бетона, наши центры обработки данных третьего поколения начали их быстро вытеснять. Главными концептуальными особенностями ЦОД третьего поколения Gen 3 являются повышенная модульность и большее внимание к энергетической эффективности и масштабированию. Дата-центры третьего поколения лучше всего представлены объектом, который в настоящее время строится в Чикаго, Иллинойс. Этот ЦОД будет выглядеть очень необычно, по сравнению с общепринятыми в отрасли представлениями о дата-центре. Действительно, если вам когда-либо удастся побывать в нашем контейнерном ангаре в Чикаго, он покажется вам совершенно непохожим на обычный дата-центр с фальшполом. Мы предполагаем, что этот модульный подход будет способствовать значительному повышению эффективности нашего бизнеса в отношении затрат и операций. Мы также внесем существенные изменения в климатические системы, используемые в наших ЦОД. Эти концепции и технологии, если применимо, позволят нам добиться еще большей эффективности наших существующих дата-центров, и тем самым еще больше увеличивать капиталовложения в инфраструктуру.
This is definitely a journey, not a destination industry. In fact, our Generation 4 design has been under heavy engineering for viability and cost for over a year. While the demand of our commercial growth required us to make investments as we grew, we treated each step in the learning as a process for further innovation in data centers. The design for our future Gen 4 facilities enabled us to make visionary advances that addressed the challenges of building, running, and operating facilities all in one concerted effort.
Это определенно путешествие, а не конечный пункт назначения. На самом деле, наш проект ЦОД четвертого поколения подвергался серьезным испытаниям на жизнеспособность и затраты на протяжении целого года. Хотя необходимость в коммерческом росте требовала от нас постоянных капиталовложений, мы рассматривали каждый этап своего развития как шаг к будущим инновациям в области дата-центров. Проект наших будущих ЦОД четвертого поколения Gen 4 позволил нам делать фантастические предположения, которые касались задач строительства, управления и эксплуатации объектов как единого упорядоченного процесса.
Тематики
Синонимы
EN
Русско-английский словарь нормативно-технической терминологии > модульный центр обработки данных (ЦОД)
-
10 вызывать
. благодаря которому происходит; влечь за собой; возбуждать интерес; заставлять; не вызывать изменений; создавать•The X-rays can also bring about (or cause, or elicit) chemical changes in the environment of the chromosomes.
•Bimolecular processes may be responsible for (or cause, or trigger) reactions at such low temperatures.
•Use of scraper units has brought about (or led to, or resulted in, or produced) a change in the stripping procedures.
•Exposure will cause the tubes to swell.
•The unbalance voltage causes a galvanometer to deflect.
•The use of a driving belt could give rise to vibrations.
•The homogeneous para- to orthohydrogen conversion is induced by paramagnetic molecules.
•Certain fungi are responsible for histoplasmosis, a lung infection.
•It is important to know the conditions that bring on a spin (авиа).
•Resonance destabilization will effect a greater decrease in...
•Fertilization of the eggs elicited a pronounced increase of poly().
•The detonator is a device used to initiate the explosion of a high explosive.
•It is not certain what process triggered the initial collapse of the solar nebula.
•Only a little heating above the glass temperature is needed to provoke crystallization.
•Viscosity sets up (or gives rise to) tangential stress at the body surface.
* * *Вызывать -- to cause, to induce, to be responsible for (быть причиной; синоним: приводить к); to produce, to present, to generate, to create (порождать); to prompt, to motivate (стимулировать); to attract (об интересе, критике); to be (как глагол-связка в ряде сочетаний)These deposits and other accumulations in the furnace caused a loss of 12 percent in boiler generating capacity.This difference of less than one point Rockwell C is not expected to induce such a large fatigue life difference.With thermoplastic polymers several mechanisms are responsible for friction and wear.This environment produces the Type II form of hot corrosion attack.— вызваноРусско-английский научно-технический словарь переводчика > вызывать
-
11 ввод в эксплуатацию
- startup
- start-up service
- start-up
- start up
- putting into operation
- installation
- implementation
- going into operation
- commissioning
- commission
- bringing into service
- breakingin
- breaking-in
- BIS
ввод в эксплуатацию
Событие, фиксирующее готовность изделия к использованию по назначению, документально оформленное в установленном порядке.
Примечание - Для специальных видов техники к вводу в эксплуатацию дополнительно относят подготовительные работы, контроль, приемку и закрепление изделия за эксплуатирующим подразделением
[ ГОСТ 25866-83 Эксплуатация техники. Термины и определения.]FR
Параллельные тексты EN-RU
No more pulleys nor belts to adjust during start up and service
[Lennox]Не нужно регулировать положение шкивов и натяжение ремней при вводе в эксплуатацию и во время технического обслуживания.
[Перевод Интент]
START-UP
Once the equipment has been placed in its definitive location, Schneider Electric CPCS factory-trained service personnel will energize and check the functionality of the equipment in all modes of operation and conduct various tests to obtain internal power supply voltage readings, temperature, pressure and other critical checks.
CPCS - Critical Power & Cooling Services
[Schneider Electric]
Putting into operation vs. Commissioning
Hello!
What is the difference in the use of terms "commissioning" and "putting into operation"?
Are they absolutely interchangeable or there are certain tints in their meaning, which limit their applicatoin in this or that context?
=======================================I am an engineer who works in the field, commissioning equipment.
Commissioning is the process where everything associated with the equipment is fully checked, all items are simulated or caused to happen, all possible events are tested, all methods of failure are accounted for. In other words, the complete design of the equipment is tested. Then, and only then, equipment is run and shown to be according to the design.
This is commissioning.
You could put equipment into operation without fully checking all systems. You can just run equipment and hope that all safety systems work according to plan.
That is the difference. No manufacturer or reputable engineering firm would simply put equipment into operation.
[ http://www.usingenglish.com/forum/threads/136100-Putting-into-operation-vs-Commissioning]Тематики
- система техн. обслуж. и ремонта техники
EN
3.14 ввод в эксплуатацию (commissioning): Действия, которые предпринимаются после испытаний давлением и перед эксплуатацией, включающие в себя удаление воды, очистку, осушку и заполнение продуктом.
Источник: ГОСТ Р 54382-2011: Нефтяная и газовая промышленность. Подводные трубопроводные системы. Общие технические требования оригинал документа
2.121 ввод в эксплуатацию (start up): Действие по подготовке и переводу в эксплуатацию чистого помещения со всеми подсистемами, включая комплект документации, наличие обученного персонала, вспомогательных служб и пр.
[ИСО 14644-4:2001, статья 3.10]
Источник: ГОСТ Р ИСО 14644-6-2010: Чистые помещения и связанные с ними контролируемые среды. Часть 6. Термины оригинал документа
Русско-английский словарь нормативно-технической терминологии > ввод в эксплуатацию
-
12 оптимизация
оптимизация
Процесс отыскания варианта, соответствующего критерию оптимальности
[Терминологический словарь по строительству на 12 языках (ВНИИИС Госстроя СССР)]
оптимизация
1. Процесс нахождения экстремума функции, т.е. выбор наилучшего варианта из множества возможных, процесс выработки оптимальных решений; 2. Процесс приведения системы в наилучшее (оптимальное) состояние. Иначе говоря, первое определение трактует термин «О.» как факт выработки и принятия оптимального решения (в широком смысле этих слов); мы выясняем, какое состояние изучаемой системы будет наилучшим с точки зрения предъявляемых к ней требований (критерия оптимальности) и рассматриваем такое состояние как цель. В этом смысле применяется также термин «субоптимизация» в случаях, когда отыскивается оптимум по какому-либо одному критерию из нескольких в векторной задаче оптимизации (см. Оптимальность по Парето, Векторная оптимизация). Второе определение имеет в виду процесс выполнения этого решения: т.е. перевод системы от существующего к искомому оптимальному состоянию. В зависимости от вида используемых критериев оптимальности (целевых функций или функционалов) и ограничений модели (множества допустимых решений) различают скалярную О., векторную О., мно¬гокритериальную О., стохастическую О (см. Стохастическое программирование), гладкую и негладкую (см. Гладкая функция), дискретную и непрерывную (см. Дискретность, Непрерывность), выпуклую и вогнутую (см. Выпуклость, вогнутость) и др. Численные методы О., т.е. методы построения алгоритмов нахождения оп¬тимальных значений целевых функций и соответствующих точек области допустимых значений — развитой отдел современной вычислительной математики. См. Оптимальная задача.
[ http://slovar-lopatnikov.ru/]Параллельные тексты EN-RU из ABB Review. Перевод компании Интент
The quest for the optimumВопрос оптимизацииThroughout the history of industry, there has been one factor that has spurred on progress more than any other. That factor is productivity. From the invention of the first pump to advanced computer-based optimization methods, the key to the success of new ideas was that they permitted more to be achieved with less. This meant that consumers could, over time and measured in real terms, afford to buy more with less money. Luxuries restricted to a tiny minority not much more than a generation ago are now available to almost everybody in developed countries, with many developing countries rapidly catching up.На протяжении всей истории промышленности существует один фактор, подстегивающий ее развитие сильнее всего. Он называется «производительность». Начиная с изобретения первого насоса и заканчивая передовыми методами компьютерной оптимизации, успех новых идей зависел от того, позволяют ли они добиться большего результата меньшими усилиями. На языке потребителей это значит, что они всегда хотят купить больше, а заплатить меньше. Меньше чем поколение назад, многие предметы считались роскошью и были доступны лишь немногим. Сейчас в развитых странах, число которых быстро увеличивается, подобное может позволить себе почти каждый.With industry and consumers expecting the trend towards higher productivity to continue, engineering companies are faced with the challenge of identifying and realizing further optimization potential. The solution often lies in taking a step back and looking at the bigger picture. Rather than optimizing every step individually, many modern optimization techniques look at a process as a whole, and sometimes even beyond it. They can, for example, take into account factors such as the volatility of fuel quality and price, the performance of maintenance and service practices or even improved data tracking and handling. All this would not be possible without the advanced processing capability of modern computer and control systems, able to handle numerous variables over large domains, and so solve optimization problems that would otherwise remain intractable.На фоне общей заинтересованности в дальнейшем росте производительности, машиностроительные и проектировочные компании сталкиваются с необходимостью определения и реализации возможностей по оптимизации своей деятельности. Для того чтобы найти решение, часто нужно сделать шаг назад, поскольку большое видится на расстоянии. И поэтому вместо того, чтобы оптимизировать каждый этап производства по отдельности, многие современные решения охватывают процесс целиком, а иногда и выходят за его пределы. Например, они могут учитывать такие факторы, как изменение качества и цены топлива, результативность ремонта и обслуживания, и даже возможности по сбору и обработке данных. Все это невозможно без использования мощных современных компьютеров и систем управления, способных оперировать множеством переменных, связанных с крупномасштабными объектами, и решать проблемы оптимизации, которые другим способом решить нереально.Whether through a stunning example of how to improve the rolling of metal, or in a more general overview of progress in optimization algorithms, this edition of ABB Review brings you closer to the challenges and successes of real world computer-based optimization tasks. But it is not in optimization and solving alone that information technology is making a difference: Who would have thought 10 years ago, that a technician would today be able to diagnose equipment and advise on maintenance without even visiting the factory? ABB’s Remote Service makes this possible. In another article, ABB Review shows how the company is reducing paperwork while at the same time leveraging quality control through the computer-based tracking of production. And if you believed that so-called “Internet communities” were just about fun, you will be surprised to read how a spin-off of this idea is already leveraging production efficiency in real terms. Devices are able to form “social networks” and so facilitate maintenance.Рассказывая об ошеломляющем примере того, как был усовершенствован процесс прокатки металла, или давая общий обзор развития алгоритмов оптимизации, этот выпуск АББ Ревю знакомит вас с практическими задачами и достигнутыми успехами оптимизации на основе компьютерных технологий. Но информационные технологии способны не только оптимизировать процесс производства. Кто бы мог представить 10 лет назад, что сервисный специалист может диагностировать производственное оборудование и давать рекомендации по его обслуживанию, не выходя из офиса? Это стало возможно с пакетом Remote Service от АББ. В другой статье этого номера АББ Ревю рассказывается о том, как компания смогла уменьшить бумажный документооборот и одновременно повысить качество управления с помощью компьютерного контроля производства. Если вы считаете, что так называемые «интернет-сообщества» служат только для развлечения,то очень удивитесь, узнав, что на основе этой идеи можно реально повысить производительность. Формирование «социальной сети» из автоматов значительно облегчает их обслуживание.This edition of ABB Review also features several stories of service and consulting successes, demonstrating how ABB’s expertise has helped customers achieve higher levels of productivity. In a more fundamental look at the question of what reliability is really about, a thought-provoking analysis sets out to find the definition of that term that makes the greatest difference to overall production.В этом номере АББ Ревю есть несколько статей, рассказывающих об успешных решениях по организации дистанционного сервиса и консультирования. Из них видно, как опыт АББ помогает нашим заказчикам повысить производительность своих предприятий. Углубленные размышления о самой природе термина «надежность» приводят к парадоксальным выводам, способным в корне изменить представления об оптимизации производства.Robots have often been called “the extended arm of man.” They are continuously advancing productivity by meeting ever-tightening demands on precision and efficiency. This edition of ABB Review dedicates two articles to robots.Робот – это могучее «продолжение» человеческой руки. Применение роботов способствует постоянному повышению производительности, поскольку они отвечают самым строгим требованиям точности и эффективности. Две статьи в этом номере АББ Ревю посвящены роботам.Further technological breakthroughs discussed in this issue look at how ABB is keeping water clean or enabling gas to be shipped more efficiently.Говоря о других технологических достижениях, обсуждаемых на страницах журнала, следует упомянуть о том, как компания АББ обеспечивает чистоту воды, а также более эффективную перевозку сжиженного газа морским транспортом.The publication of this edition of ABB Review is timed to coincide with ABB Automation and Power World 2009, one of the company’s greatest customer events. Readers visiting this event will doubtlessly recognize many technologies and products that have been covered in this and recent editions of the journal. Among the new products ABB is launching at the event is a caliper permitting the flatness of paper to be measured optically. We are proud to carry a report on this product on the very day of its launch.Публикация этого номера АББ Ревю совпала по времени с крупнейшей конференцией для наших заказчиков «ABB Automation and Power World 2009». Читатели, посетившие ее, смогли воочию увидеть многие технологии и изделия, описанные в этом и предыдущих выпусках журнала. Среди новинок, представленных АББ на этой конференции, был датчик, позволяющий измерять толщину бумаги оптическим способом. Мы рады сообщить, что сегодня он готов к выпуску.Тематики
EN
DE
FR
Русско-английский словарь нормативно-технической терминологии > оптимизация
13 понимать
(= понять) mean, understand, comprehend•... можно понять из рис. 2. -... can be understood by reference to Fig. 2.• В подобной неопределенной ситуации экспериментатор понимает, что... - In such an uncertain situation, the experimenter realizes that...• Важно понимать природу этих аппроксимаций. - It is important that we understand the nature of these approximations.• Важно понимать, что... - It is important to realize that...• Во всех случаях важно понять, действительно ли... - It is important in all cases to recognize whether...• Давайте начнем с более точного определения того, что мы понимаем под... - Let us begin by defining more carefully what we mean by...• Данный явный парадокс исчезнет, когда мы поймем, что... - This apparent paradox disappears when we realize that...• Для дальнейшего важно понять, что... - Because of what follows it is important to realize that...• Зная это, мы понимаем, что... - With this framework before us, we realize that...• Исследователи обязаны понимать, что... - Investigators must understand that...• Как мы можем понимать этот результат?... - How can we understand this result?• Как мы можем понимать/интерпретировать этот результат? - How can we understand this result?• Как показывает рис. 1, этот процесс может быть понят в терминах... - As illustrated in Figure 1, this process can be understood in terms of...• Легко понять причину этого (эффекта). - The reason for this is readily understood.• Легко понять, что... - It is easily comprehended that...; It is easy to understand that...• Лучше всего можно понять (= разобрать) ситуацию на графическом примере. - The situation is best considered graphically.• Многие из наших более ранних результатов можно лучше понять, если... - Many of our earlier results can be better understood if...• Можно понять эти результаты, рассматривая... - One can understand these results by considering...• Мы должны ясно понимать, что означает... - We must understand clearly what is meant by...• Мы можем более ясно понять, что здесь применяется... - We may see more clearly what is involved here by...• Наблюдая все это многообразие вероятностей, необходимо хорошо понимать, что... - Amid this diversity of possibilities, it is well to realize that...• Наиболее важно понять причину... - It is most important to understand the reason for...• Проще всего понять эту идею, рассматривая... - The idea is most easily understood by examining...• Необходимо понять и принять во внимание роль процессов, участвующих в... - It is therefore important to understand and appreciate the processes involved in...• Необходимо/следует понять, что... - It is to be understood that...• Нетрудно понять... - It is not difficult to understand (how, what, that)...; There is no difficulty in understanding how...• Однако необходимо понимать, что... - However, it must be understood that...• Под решением данной задачи мы понимаем... - By solving this problem we mean...• С самого начала валено понимать, что... - It is important to realize at the outset that...• Следовательно, безусловно желательно попытаться понять... - It is, therefore, certainly desirable to try to understand...• Сначала мы обязаны сообщить, что мы понимаем под... - First we must say what we mean by...• Такая аналогия помогает нам понять... - This analogy helps us to understand...• Такие действия не приведут к нежелательным результатам, если читатель четко понимает, что... - No harm can come from this practice if one clearly understands that...• Теперь стало возможным понять значение... - It is now possible to see the significance of...• Трудно понять природу... - It is difficult to comprehend the nature of...• Трудности этого экспериментирования становятся явными, когда понимаешь, что... - The experimental difficulties become apparent when one realizes that...• Физики мгновенно поймут (= распознают), что... - Physicists will recognize at once that...• Читатель должен ясно понимать различие между... - The reader must understand clearly the difference between...• Читатель поймет, что данные свойства прямо связаны с... - The reader will realize that these properties are directly connected with...• Чтобы легче понять эти уравнения, мы можем... - In order to understand these equations more easily we may...• Чтобы лучше понять..., представьте (себе)... - То better understand..., imagine....• Чтобы лучше понять физический механизм... - In order to better appreciate the physical mechanism for...• Чтобы понять этот результат и его доказательство, начнем с рассмотрения простейшего случая при d = 1. - То get a feel for this result and how it is proved we begin with the trivial case d = 1.• Чтобы понять, почему это так, мы обязаны... - То understand why this is so, we must...• Чтобы понять это, достаточно рассмотреть... - То see this, it suffices to consider...• Это вполне справедливо, однако необходимо понять, что... - This is quite true, but it should be realized that...• Это легко можно понять, вспоминая, что... - This may readily be understood by remembering that...• Это можно лучше всего понять, используя специальный пример. - This is best understood through a specific example.• Этот метод легко понять, замечая, что... - The process is easily understood by noting that...• Эту идею легко понять, однако... - The idea is easily understood, but...• Необходимо понимать, что... - It should be realized that...14 а не
•These deviations may be manifested in the form of an accelerating instead of a decelerating wave.
•Under such circumstances, the two donor atoms on the same chelate molecule coordinate with different metal atoms rather than with one; thus, a polymeric chain may result rather than [or ( and) not] a ring structure.
•Since the various types of microscope supply different kinds of information, they complement each other rather than compet ing.
•The resulting F-band is dependent upon the particular alkali halide used, not upon the alkali metal vapour.
* * *А не -- rather than; other than; instead of; not, and not; but not; versus; vis-a-visIn this case the process probably involves fatigue rather than abrasion.However, in practice, the measured strains are in a numerical form other than a smooth function.The partial dislocations are separated by stacking-fault, instead of an antiphase boundary.The choice of a finite difference technique ( versus finite element) provides some advantage in this way.Thus the nickel-base superalloys become creep limited by local crack initiation and not total rupture.Thus the Young modulus not annealed surface hardness was definitely shown to be the controlling parameter.The distorted signal is judged to be the result of limitation of the capacitance measuring system, vis-a-vis film rupture.Русско-английский научно-технический словарь переводчика > а не
15 во время
•Some die casting machines are here seen in the process (or course) of assembly.
* * *Во время (не путать с наречием "вовремя") -- during, when, while on; on, while (+ gerund); pending (при, в процессе); as of, with, at the time ofPractically all fastener failures in service can be attributed to improper tightening when the fastener was originally installed. (... во время первоначальной установки крепежа.)This primarily is related to the elongation of the MnS inclusions on hot rolling of the steel plate.There would be a significant difference between the orders of ranking, pending the use of measurements of total iron.Русско-английский научно-технический словарь переводчика > во время
16 давать представление о
•The difference in... gives an estimate of the resonance energy.
•The last three chapters have given us an insight into the workings of the fluvial denudation process.
•The foregoing discussion gives an idea of the error that would...
•Figure 6 gives an indication of the variation of specific weight with engine size.
•The respiratory quotient provides a rough idea of the chemical nature of a material being oxidized.
Русско-английский научно-технический словарь переводчика > давать представление о
17 стационарный в первых разностях процесс
General subject: difference-stationary processУниверсальный русско-английский словарь > стационарный в первых разностях процесс
18 режим
( работы) behavior, condition, duty, operation, mode, performance, run, use, process, regime, schedule, state* * *режи́м м.1. regime, condition; вчт. operation, modeвключа́ть режи́м ( работы) — turn on a conditionвыключа́ть [снима́ть] режи́м ( работы) — remove a conditionпереводи́ть в режи́м, напр. пе́редачи радио — place in, e. g., the TRANSMIT conditionпереходи́ть в режи́м ре́верса — go into reverse (operation)переходи́ть с, напр. одного́ режи́ма управле́ния на друго́й — change between, e. g., control modesрабо́тать в режи́ме, бли́зком к преде́льному [крити́ческому] — be in marginal operation2. ( совокупность параметров) conditionsавари́йный режи́м — emergency operationавтоколеба́тельный режи́м рад., элк. — free-running (operation)автоно́мный режи́м — off-line operation, off-line mode, off-line conditionрабо́тать в автоно́мном режи́ме — operate off-lineрежи́м авторота́ции ав. — autorotation [windmilling] regimeакти́вный режи́м ( транзистора) — active regionба́зисный режи́м ( в энергетике) — base load operationрежи́м больши́х сигна́лов радио, элк. — large-signal operationбу́ферный режи́м ( аккумуляторной батареи) — floating serviceрежи́м бы́стрых электро́нов тлв. — high-velocity scanning, high-velocity-beam operationрежи́м ва́рки цел.-бум. — cooking conditionвзлё́тный режи́м — take-off regimeрежи́м висе́ния ав. — hovering, hover modeвихрево́й режи́м — eddy flowво́дный режи́м — water regime, hydrolycityгаранти́йный режи́м — warranted performance, warranted conditionрежи́м гига́нтских колеба́ний — giant oscillationsрежи́м горе́ния, детонацио́нный — knocking combustionрежи́м горе́ния, кинети́ческий — kinetic combustionрежи́м движе́ния жи́дкости, напо́рный — forced flowрежи́м движе́ния жи́дкости, поршнево́й — plug flowрежи́м движе́ния жи́дкости, пузы́рчатый — bubble flowрежи́м движе́ния жи́дкости, расслоё́нный — stratified flowрежи́м заполне́ния ( водохранилища ГЭС) — rate of inflowрежи́м заря́да ( аккумуляторной батареи) — charging rateрежи́м заря́да, коне́чный — finishing rateрежи́м заря́д — разря́д ( аккумуляторной батареи) — cycle serviceиспо́льзовать батаре́ю в режи́ме заря́д — разря́д — operate a battery on cycle serviceи́мпульсный режи́м — pulsed operationрежи́м кипе́ния — boiling condition, boiling regimeрежи́м кипе́ния, плё́ночный — film boilingрежи́м кипе́ния, пузы́рчатый — nucleate boilingкре́йсерский режи́м — cruising regime, cruising mode, cruising conditionsкрити́ческий режи́м — criticality, critical conditionsрежи́м ма́лого га́за, земно́го ав. — ground idling conditionsрежи́м ма́лых сигна́лов — small-signal conditionрежи́м ме́дленных электро́нов тлв. — low-velocity scanning, low-velocity-beam operationмногомо́довый режи́м — multimoding, multimode operationрежи́м модуля́ции добро́тности — Q-spoiled [Q-switched] modeрежи́м молча́ния ( работы усилителя) — no-signal condition, no-signal stateмонои́мпульсный режи́м — giant oscillationsрежи́м нагру́зки — under-load operationнадкрити́ческий режи́м ( ядерного реактора) — supercriticalityнапряжё́нный режи́м — heavy dutyрежи́м незатуха́ющих колеба́ний — CW modeненорма́льный режи́м — abnormal [defective, faulty] conditionнерасчё́тный режи́м — off-design conditionнестациона́рный режи́м — unsteady conditionномина́льный режи́м — design conditionрежи́м обедне́ния ( транзистора) — depletion modeрежи́м обжа́тий метал. — draughting scheduleрежи́м обогаще́ния ( транзистора) — enhancement modeрежи́м ожида́ния ав. — holding patternвыполня́ть полё́т в режи́ме ожида́ния — fly the holding patternоконе́чный режи́м ( в радиорелейной связи) — terminal operationоперати́вный режи́м вчт. — on-line operationрежи́м остано́вки — shutdown conditionрежи́м отка́чки — exhaust scheduleрежи́м переда́чи радио — transmit conditionрежи́м переключе́ния добро́тности — Q-spoiled modeперехо́дный режи́м — transient conditionпериоди́ческий режи́м — periodic dutyпи́ковый режи́м — peaking operationрежи́м пласта́, водонапо́рный нефт. — water driveпласт рабо́тает в водонапо́рном режи́ме — the oil pool produces [operates] under water driveрежи́м пласта́ га́зовой ша́пки нефт. — gas-cap driveпласт рабо́тает в режи́ме га́зовой ша́пки — the oil pool produces [operates] under gas-cap driveрежи́м пласта́, гравитацио́нный нефт. — gravity drainageпласт рабо́тает в гравитацио́нном режи́ме — the oil pool produces [operates] under gravity drainageрежи́м пласта́ расшире́ния га́за нефт. — gas-expansion driveпласт рабо́тает в режи́ме расшире́ния га́за — the oil pool produces [operates] under gas-expansion driveрежи́м поко́я — quiescent conditionsрежи́м полё́та (напр. по маршруту) — regime of flight, flight condition (e. g., cruise, climb, or descent)режи́м по́лной нагру́зки — full-load conditionsпони́женный режи́м радио — reduced power conditionsла́мпа рабо́тает на пони́женном режи́ме — the tube is under-runпереда́тчик рабо́тает на пони́женном режи́ме — the transmitter operates at reduced powerрежи́м пото́ка — flow condition, flow regime, flow patternрежи́м приё́ма радио — receive conditionрежи́м прогре́ва — warm-upрежи́м проду́вки — blow-downрежи́м прока́тки — rolling scheduleпромысло́вый режи́м — fishing procedureпусково́й режи́м — starting regime, start-up proceduresрежи́м рабо́ты — mode [type] of operationрежи́м рабо́ты, беспи́чковый — nonspiking modeрежи́м рабо́ты дви́гателей ав. — power conditionsрежи́м рабо́ты на ра́зностной частоте́ ( параметрического усилителя) — difference modeрежи́м рабо́ты на сумма́рной частоте́ ( параметрического усилителя) — sum modeрежи́м рабо́ты, номина́льный — rated dutyрежи́м рабо́ты, переме́нный — varying dutyрежи́м рабо́ты, периоди́ческий — periodic dutyрежи́м рабо́ты, пи́чковый — spiking modeрежи́м рабо́ты, повто́рно-кратковре́менный — intermittent cycle, intermittent dutyрежи́м рабо́ты, полуду́плексный — semi-duplex operationRBS режи́м рабо́ты самолё́тного отве́тчика — ATC radar-beacon system operationрежи́м рабо́ты с мно́гими мо́дами — multimoding, multimode operationрежи́м рабо́ты с мно́гими ти́пами колеба́ний — multimoding, multimode operationрежи́м рабо́ты, холосто́й — no-load operationрабо́чий режи́м — (вид работы, функция) operating condition; ( совокупность параметров) operating variables, operating conditionsрежи́м приё́ма явля́ется норма́льным рабо́чим режи́мом радиоприё́мника — the receive condition is the normal operating conditions of the radio setрежи́м разделе́ния вре́мени вчт. — timesharingрасчё́тный режи́м — design conditionрежи́мы ре́зания — cutting conditions, cutting speeds, feeds and depthsскользя́щий режи́м автмт. — zero-overshoot responseрежи́м сма́зки — relubrication intervalsрежи́м срабо́тки ( водохранилища) — rate of usageрежи́м сто́ка — regime of run-offтемперату́рный режи́м — temperature [heat] conditionтемперату́рный режи́м транзи́стора — temperature (rise) of a transistorтеплофикацио́нный режи́м — heat-extraction modeрежи́м тече́ния — flow (condition)типово́й режи́м — standard conditionsтранзи́тный режи́м свз. — through-line operationтяжё́лый режи́м — heavy dutyустанови́вшийся режи́м — steady state, steady-state conditionsрежи́м холосто́го хо́да — no-load conditionsчистоконденсацио́нный режи́м — nonextraction operationэксплуатацио́нный режи́м — operating [working] conditions* * *19 объясняться
(= объясниться, см. также объяснить) be explained, be clarified, be accounted for by, be due to, result from, be attributed, be explicable on the basis of, be caused by, be explained by, be brought about by, result from• Возможно, что это лучше всего объясняется... - Perhaps this is best explained by...• Возможно, что этот процесс более ясно объясняется (чем-л). - The process is perhaps explained more clearly by...• Данный результат объясняется и качественно, и количественно предположением, что... - This result both qualitatively and quantitatively explained by the assumption that...• Ошибка объясняется наличием... - This error is accounted for...• Ранее объяснялось, что... - It has been argued earlier that...• Расхождение объясняется разностью в... - This discrepancy is accounted for by the difference in...• Такое проявление свойств объясняется за счет... - We attribute this phenomenon to the formation of...• Теория тензоров объясняется подробно в главе 3. - The subject of tensors is explained at length in Chapter• Частично это объясняется тем, что... - This is parti;, because...• Чрезвычайно широкая область явления объясняется... - A very great range of phenomena is explained by...• Эта идея будет объясняться ниже. - This idea will be clarified below.• Это объясняется продолжительным использованием... - This accounts for the continued use of...• Этот рост объясняется тем фактом, что... - This growth is explained by the fact that...• Явная аномалия объясняется (чем-л). - This apparent anomaly is explained by...20 ход
course, ( доменной печи) drive, driving, excursion, computation line геод., line, ( механизма) move, movement, ( шагающих балок) pitch метал., run, process, route, running, stroke, (напр. поршня) throw, trace, tracing, traverse, way* * *ход м.1. ( движение) motion, move, movementво вре́мя хо́да су́дна — while the ship is underwayна ходу́ (напр. регулировать) — (e. g., adjust) on the goсвои́м хо́дом (о судне, автомобиле и т. п.) — under its own power3. (работа, эксплуатация) operation, service, actionпуска́ть в ход — put into operation, put into service, put into actionрабо́тать на холосто́м ходу́ — idle, run idle, run without loadсодержа́ть на ходу́ (напр. машины и т. п.) — keep (e. g., machines, etc.) in operation [in service, on the go]4. ( в теплообменном устройстве) pass5. (развитие чего-л.) progress, course6. ( скорость) rate, speed7. (место, через которое проходят) passage; ( вход) entrance, entry8. (изменение или характер изменения какой-л. физической величины, как правило, в зависимости от другой) behaviour, change, dependence, variation9. геод., топ. computation course, computation line, route, traverse10. (вид движения в транспортных средствах; существует только в сочетаниях с определяющими словами):на гу́сеничном ходу́ — on tracks, tracked, track-layingна колё́сном ходу́ — on wheels, wheeledазимута́льный ход — azimuth(al) motionход амортиза́тора — travelпри хо́де растяже́ния амортиза́тора — during extension …при хо́де сжа́тия амортиза́тора — during contraction …ход бата́на текст. — path of lay, stroke of latheход без толчко́в — smooth motionбесшу́мный ход — silent [noiseless] runningход вверх — upstroke, upward [ascending] strokeход вниз — downstroke, downward [inward, descending] strokeход впу́ска двс. — suction [admission, intake, charging] strokeвременно́й ход — time dependence, time variation, variation (of smth.) with timeход вса́сывания двс. — suction [admission, charging, intake] strokeход вы́пуска двс. — outstroke, exhaust strokeвысо́тный ход физ. — altitude curve, height dependence, altitudinal variationsдвойно́й ход — double strokeход до́менной пе́чи — run [operation] of a blast furnaceход зави́симости — variation, dependenceход зави́симости, напр. x от y — plot of x as a function of y, behaviour of x with (variations in) y, variations in x with yза́дний ход — reverse movement; reverse [backward] running; ж.-д. moving back, return motion; (поршня, ползуна) back strokeза́мкнутый ход геод. — closed circuitзо́льный ход кож. — line roundход иглы́ ( распылителя в топливной аппаратуре дизелей) — needle liftход каре́тки1. вчт. carriage movement2. текст. pitch of the coilход конта́ктов — contact travelход криво́й — ( имеется в виду кривая как таковая) trend [shape, run] of a curve; (имеется в виду какая-л. физическая величина, представленная кривой):ход криво́й ано́дного то́ка в зави́симости от се́точного напряже́ния пока́зывает, что … — a plot of anode current against grid voltage shows that …, the manner in which anode current varies with grid voltage shows that …, the behaviour of anode current with (variations in) grid voltage shows that …лесоспла́вный ход — floating routeли́тниковый ход — sprueход луча́ опт. — ray path (length)стро́ить ход луча́ — set up [trace] a rayмагистра́льный ход геод. — main [primary, principal] traverseма́лый ход мор. — low [slow] speedход маши́ны — machine runningмё́ртвый ход ( зазор в механизме) — backlash, lost motion, play, free travel, slackход нагнета́ния двс. — pressure strokeнеравноме́рный ход — irregular [discontinuous, uneven] runningнивели́рный ход — line of levels, level(ling) lineобра́тный ход — reverse [return] motion; reverse [backward] running; back strokeодина́рный ход — single strokeход педа́ли авто — pedal stroke, pedal travelход педа́ли сцепле́ния, свобо́дный — clutch pedal clearance, free travel of the clutch pedalпере́дний ход — forward motion; forward running; мор. advancing, aheadingперекидно́й ход ( коксовой печи) — cross-over flueход пе́чи — run [operation, working] of a furnaceрасстро́ить ход пе́чи — disturb [upset] the operation of a furnaceход пе́чи, горя́чий — hot run of a furnaceход пе́чи, неро́вный — erratic [irregular] operation of a furnaceход пе́чи, расстро́енный — disturbed operation of a furnaceход пе́чи, ро́вный — smooth [regular] operation of a furnaceход пе́чи, сты́лый — cold working of a furnaceход пе́чи, ти́хий — slow run [slow operation] of a furnaceход пе́чи, холо́дный — cold run of a furnaceход пилообра́зного напряже́ния элк. — stroke of a sawtooth voltageход пилообра́зного напряже́ния, обра́тный элк. — return stroke of a sawtooth voltageход пилообра́зного напряже́ния, прямо́й элк. — forward stroke of a sawtooth voltageход пилообра́зного напряже́ния, рабо́чий элк. — working stroke of a sawtooth voltageход пла́вки — progress of a heatпла́вный ход — smooth runningход плу́га — plough travel, plough draughtход подве́ски — suspension movementполигонометри́ческий ход — traverse, polygon(al) [polygonometric] traverse, polygonal courseпо́лный ход мор. — full speedрабо́чий ход двс. — working [power] strokeход развё́ртки (осциллоскопа, индикатора и т. п) — sweep motionход (развё́ртки), обра́тный — retrace (motion) of the sweep, flybackход (развё́ртки), прямо́й — forward motion of the sweep, active phase of the sweep scanход расшире́ния — двс. expansion [working, combustion, firing] stroke; ( амортизатора) extensionса́мый ма́лый ход мор. — dead slow speedса́мый по́лный ход мор. — flank speedсвобо́дный ход — free (easy) running, free travel; free wheelingход сжа́тия — compression [pressure] stroke; ( рессоры или пружины) bump stroke; ( амортизатора) contractionспоко́йный ход — smooth [quiet] runningсре́дний ход мор. — half [moderate] speedсу́точный ход — day [diurnal] variationсу́точный ход магни́тного склоне́ния — diurnal changes in magnetic variaticsтеодоли́тный ход — field [theodolite] traverseто́почный ход — (furnace) flueхолосто́й ход — idle [free, light, loose, no-load] running, idle [no-load] strokeпри холосто́м хо́де эл. — at no-loadход часо́в — daily rate (of a time niece)ход часо́в, отрица́тельный — rate of losingход часо́в, положи́тельный — rate of gainingчасто́тный ход (какой-л. физической величины) — variations with frequencyперепа́д мо́щности определя́ется часто́тным хо́дом перехо́дного ослабле́ния ответви́теля — the change in power is determined by variations in the dynamic attenuation of the coupler with frequencyчасто́тный ход оши́бки — the difference in error between the limiting frequenciesчасто́тный ход усиле́ния — plot of gain as a function of frequency, frequency dependence of gain, variations in gain with frequencyшу́мный ход — noisy runningход электро́нного луча́, обра́тный — flyback, return trace, retraceгаси́ть обра́тный ход электро́нного луча́ — eliminate [suppress, blank] the flyback [return trace, retrace]ход электро́нного луча́, обра́тный по вертика́ли — vertical flybackход электро́нного луча́, обра́тный по горизонта́ли — horizontal flybackход электро́нного луча́, обра́тный по ка́дру — frame flybackход электро́нного луча́, обра́тный по строке́ — line flybackход я́коря — armature travelСтраницы- 1
- 2
См. также в других словарях:
Difference (philosophy) — Difference is a key concept of continental philosophy, denoting the process or set of properties by which one entity is distinguished from another within a relational field or a given conceptual system. In the Western philosophical system,… … Wikipedia
Difference and Repetition — … Wikipedia
Difference due to Memory — (Dm) indexes differences in neural activity during the study phase of an experiment for items that subsequently are remembered compared to items that are later forgotten. It is mainly discussed as an event related potential (ERP) effect that… … Wikipedia
Process control — is a statistics and engineering discipline that deals with architectures, mechanisms, and algorithms for controlling the output of a specific process. See also control theory.For example, heating up the temperature in a room is a process that has … Wikipedia
Process Manufacturing — is the branch of manufacturing that is associated with formulas or manufacturing recipes as compared to bills of material routing as in the case of Discrete manufacturing. Defining Process Manufacturing The simplest and easiest way to grasp the… … Wikipedia
difference + politics — by Paul Patton Deleuze s ontological conception of a world of free differences suggests a defence of the particular against all forms of universalisation or representation. Every time there is representation, he argues, there is an… … The Deleuze dictionary
difference + politics — by Paul Patton Deleuze s ontological conception of a world of free differences suggests a defence of the particular against all forms of universalisation or representation. Every time there is representation, he argues, there is an… … The Deleuze dictionary
Difference engine — For the novel by William Gibson and Bruce Sterling, see The Difference Engine. The London Science Museum s difference engine, built from Babbage s design. The design has the same precision on all columns, but when calculating converging… … Wikipedia
difference — by Cliff Stagoll Deleuze is often labelled as a philosopher of difference , an assessment that highlights the critical place of difference in his work. He is concerned to overturn the primacy accorded identity and representation in western… … The Deleuze dictionary
difference — by Cliff Stagoll Deleuze is often labelled as a philosopher of difference , an assessment that highlights the critical place of difference in his work. He is concerned to overturn the primacy accorded identity and representation in western… … The Deleuze dictionary
Process calculus — In computer science, the process calculi (or process algebras) are a diverse family of related approaches to formally modelling concurrent systems. Process calculi provide a tool for the high level description of interactions, communications, and … Wikipedia
Перевод: с русского на английский
с английского на русский- С английского на:
- Русский
- С русского на:
- Все языки
- Английский
- Немецкий
- Французский