-
41 Edison, Thomas Alva
SUBJECT AREA: Architecture and building, Automotive engineering, Electricity, Electronics and information technology, Metallurgy, Photography, film and optics, Public utilities, Recording, Telecommunications[br]b. 11 February 1847 Milan, Ohio, USAd. 18 October 1931 Glenmont[br]American inventor and pioneer electrical developer.[br]He was the son of Samuel Edison, who was in the timber business. His schooling was delayed due to scarlet fever until 1855, when he was 8½ years old, but he was an avid reader. By the age of 14 he had a job as a newsboy on the railway from Port Huron to Detroit, a distance of sixty-three miles (101 km). He worked a fourteen-hour day with a stopover of five hours, which he spent in the Detroit Free Library. He also sold sweets on the train and, later, fruit and vegetables, and was soon making a profit of $20 a week. He then started two stores in Port Huron and used a spare freight car as a laboratory. He added a hand-printing press to produce 400 copies weekly of The Grand Trunk Herald, most of which he compiled and edited himself. He set himself to learn telegraphy from the station agent at Mount Clements, whose son he had saved from being run over by a freight car.At the age of 16 he became a telegraphist at Port Huron. In 1863 he became railway telegraphist at the busy Stratford Junction of the Grand Trunk Railroad, arranging a clock with a notched wheel to give the hourly signal which was to prove that he was awake and at his post! He left hurriedly after failing to hold a train which was nearly involved in a head-on collision. He usually worked the night shift, allowing himself time for experiments during the day. His first invention was an arrangement of two Morse registers so that a high-speed input could be decoded at a slower speed. Moving from place to place he held many positions as a telegraphist. In Boston he invented an automatic vote recorder for Congress and patented it, but the idea was rejected. This was the first of a total of 1180 patents that he was to take out during his lifetime. After six years he resigned from the Western Union Company to devote all his time to invention, his next idea being an improved ticker-tape machine for stockbrokers. He developed a duplex telegraphy system, but this was turned down by the Western Union Company. He then moved to New York.Edison found accommodation in the battery room of Law's Gold Reporting Company, sleeping in the cellar, and there his repair of a broken transmitter marked him as someone of special talents. His superior soon resigned, and he was promoted with a salary of $300 a month. Western Union paid him $40,000 for the sole rights on future improvements on the duplex telegraph, and he moved to Ward Street, Newark, New Jersey, where he employed a gathering of specialist engineers. Within a year, he married one of his employees, Mary Stilwell, when she was only 16: a daughter, Marion, was born in 1872, and two sons, Thomas and William, in 1876 and 1879, respectively.He continued to work on the automatic telegraph, a device to send out messages faster than they could be tapped out by hand: that is, over fifty words per minute or so. An earlier machine by Alexander Bain worked at up to 400 words per minute, but was not good over long distances. Edison agreed to work on improving this feature of Bain's machine for the Automatic Telegraph Company (ATC) for $40,000. He improved it to a working speed of 500 words per minute and ran a test between Washington and New York. Hoping to sell their equipment to the Post Office in Britain, ATC sent Edison to England in 1873 to negotiate. A 500-word message was to be sent from Liverpool to London every half-hour for six hours, followed by tests on 2,200 miles (3,540 km) of cable at Greenwich. Only confused results were obtained due to induction in the cable, which lay coiled in a water tank. Edison returned to New York, where he worked on his quadruplex telegraph system, tests of which proved a success between New York and Albany in December 1874. Unfortunately, simultaneous negotiation with Western Union and ATC resulted in a lawsuit.Alexander Graham Bell was granted a patent for a telephone in March 1876 while Edison was still working on the same idea. His improvements allowed the device to operate over a distance of hundreds of miles instead of only a few miles. Tests were carried out over the 106 miles (170 km) between New York and Philadelphia. Edison applied for a patent on the carbon-button transmitter in April 1877, Western Union agreeing to pay him $6,000 a year for the seventeen-year duration of the patent. In these years he was also working on the development of the electric lamp and on a duplicating machine which would make up to 3,000 copies from a stencil. In 1876–7 he moved from Newark to Menlo Park, twenty-four miles (39 km) from New York on the Pennsylvania Railway, near Elizabeth. He had bought a house there around which he built the premises that would become his "inventions factory". It was there that he began the use of his 200- page pocket notebooks, each of which lasted him about two weeks, so prolific were his ideas. When he died he left 3,400 of them filled with notes and sketches.Late in 1877 he applied for a patent for a phonograph which was granted on 19 February 1878, and by the end of the year he had formed a company to manufacture this totally new product. At the time, Edison saw the device primarily as a business aid rather than for entertainment, rather as a dictating machine. In August 1878 he was granted a British patent. In July 1878 he tried to measure the heat from the solar corona at a solar eclipse viewed from Rawlins, Wyoming, but his "tasimeter" was too sensitive.Probably his greatest achievement was "The Subdivision of the Electric Light" or the "glow bulb". He tried many materials for the filament before settling on carbon. He gave a demonstration of electric light by lighting up Menlo Park and inviting the public. Edison was, of course, faced with the problem of inventing and producing all the ancillaries which go to make up the electrical system of generation and distribution-meters, fuses, insulation, switches, cabling—even generators had to be designed and built; everything was new. He started a number of manufacturing companies to produce the various components needed.In 1881 he built the world's largest generator, which weighed 27 tons, to light 1,200 lamps at the Paris Exhibition. It was later moved to England to be used in the world's first central power station with steam engine drive at Holborn Viaduct, London. In September 1882 he started up his Pearl Street Generating Station in New York, which led to a worldwide increase in the application of electric power, particularly for lighting. At the same time as these developments, he built a 1,300yd (1,190m) electric railway at Menlo Park.On 9 August 1884 his wife died of typhoid. Using his telegraphic skills, he proposed to 19-year-old Mina Miller in Morse code while in the company of others on a train. He married her in February 1885 before buying a new house and estate at West Orange, New Jersey, building a new laboratory not far away in the Orange Valley.Edison used direct current which was limited to around 250 volts. Alternating current was largely developed by George Westinghouse and Nicola Tesla, using transformers to step up the current to a higher voltage for long-distance transmission. The use of AC gradually overtook the Edison DC system.In autumn 1888 he patented a form of cinephotography, the kinetoscope, obtaining film-stock from George Eastman. In 1893 he set up the first film studio, which was pivoted so as to catch the sun, with a hinged roof which could be raised. In 1894 kinetoscope parlours with "peep shows" were starting up in cities all over America. Competition came from the Latham Brothers with a screen-projection machine, which Edison answered with his "Vitascope", shown in New York in 1896. This showed pictures with accompanying sound, but there was some difficulty with synchronization. Edison also experimented with captions at this early date.In 1880 he filed a patent for a magnetic ore separator, the first of nearly sixty. He bought up deposits of low-grade iron ore which had been developed in the north of New Jersey. The process was a commercial success until the discovery of iron-rich ore in Minnesota rendered it uneconomic and uncompetitive. In 1898 cement rock was discovered in New Village, west of West Orange. Edison bought the land and started cement manufacture, using kilns twice the normal length and using half as much fuel to heat them as the normal type of kiln. In 1893 he met Henry Ford, who was building his second car, at an Edison convention. This started him on the development of a battery for an electric car on which he made over 9,000 experiments. In 1903 he sold his patent for wireless telegraphy "for a song" to Guglielmo Marconi.In 1910 Edison designed a prefabricated concrete house. In December 1914 fire destroyed three-quarters of the West Orange plant, but it was at once rebuilt, and with the threat of war Edison started to set up his own plants for making all the chemicals that he had previously been buying from Europe, such as carbolic acid, phenol, benzol, aniline dyes, etc. He was appointed President of the Navy Consulting Board, for whom, he said, he made some forty-five inventions, "but they were pigeonholed, every one of them". Thus did Edison find that the Navy did not take kindly to civilian interference.In 1927 he started the Edison Botanic Research Company, founded with similar investment from Ford and Firestone with the object of finding a substitute for overseas-produced rubber. In the first year he tested no fewer than 3,327 possible plants, in the second year, over 1,400, eventually developing a variety of Golden Rod which grew to 14 ft (4.3 m) in height. However, all this effort and money was wasted, due to the discovery of synthetic rubber.In October 1929 he was present at Henry Ford's opening of his Dearborn Museum to celebrate the fiftieth anniversary of the incandescent lamp, including a replica of the Menlo Park laboratory. He was awarded the Congressional Gold Medal and was elected to the American Academy of Sciences. He died in 1931 at his home, Glenmont; throughout the USA, lights were dimmed temporarily on the day of his funeral.[br]Principal Honours and DistinctionsMember of the American Academy of Sciences. Congressional Gold Medal.Further ReadingM.Josephson, 1951, Edison, Eyre \& Spottiswode.R.W.Clark, 1977, Edison, the Man who Made the Future, Macdonald \& Jane.IMcN -
42 Florey, Howard Walter
SUBJECT AREA: Medical technology[br]b. 24 September 1898 Adelaide, Australiad. 21 February 1968 Oxford, England[br]Australian pathologist who contributed to the research and technology resulting in the practical clinical availability of penicillin.[br]After graduating MB and BS from Adelaide University in 1921, he went to Oxford University, England, as a Rhodes Scholar in 1922. Following a period at Cambridge and as a Rockefeller Fellow in the USA, he returned to Cambridge as Lecturer in Pathology. He was appointed to the Chair of Pathology at Sheffield at the age of 33, and to the Sir William Dunne Chair of Pathology at Oxford in 1935.Although historically his name is inseparable from that of penicillin, his experimental interests and achievements covered practically the whole range of general pathology. He was a determined advocate of the benefits to research of maintaining close contact between different disciplines. He was an early believer in the need to study functional changes in cells as much as the morphological changes that these brought about.With E. Chain, Florey perceived the potential of Fleming's 1929 note on the bacteria-inhibiting qualities of Penicillium mould. His forthright and dynamic character played a vital part in developing what was perceived to be not just a scientific and medical discovery of unparalleled importance, but a matter of the greatest significance in a war of survival. Between them, Florey and Chain were able to establish the technique of antibiotic isolation and made their findings available to those implementing large-scale fermentation production processes in the USA.Despite being domiciled in England, he played an active role in Australian medical and educational affairs and was installed as Chancellor of the Australian National University in 1966.[br]Principal Honours and DistinctionsLife peer 1965. Order of Merit 1965. Knighted 1944. FRS 1941. President, Royal Society 1960–5. Nobel Prize for Medicine or Physiology (jointly with E.B.Chain and A.Fleming) 1945. Copley Medal 1957. Commander, Légion d'honneur 1946. British Medical Association Gold Medal 1964.Bibliography1940, "Penicillin as a chemotherapeutic agent", Lancet (with Chain). 1949, Antibiotics, Oxford (with Chain et al.).1962, General Pathology, Oxford.MG -
43 Gestetner, David
SUBJECT AREA: Paper and printing[br]b. March 1854 Csorna, Hungaryd. 8 March 1939 Nice, France[br]Hungarian/British pioneer of stencil duplicating.[br]For the first twenty-five years of his life, Gestetner was a rolling stone and accordingly gathered no moss. Leaving school in 1867, he began working for an uncle in Sopron, making sausages. Four years later he apprenticed himself to another uncle, a stockbroker, in Vienna. The financial crisis of 1873 prompted a move to a restaurant, also in the family, but tiring of a menial existence, he emigrated to the USA, travelling steerage. He began to earn a living by selling Japanese kites: these were made of strong Japanese paper coated with lacquer, and he noted their long fibres and great strength, an observation that was later to prove useful when he was searching for a suitable medium for stencil duplicating. However, he did not prosper in the USA and he returned to Europe, first to Vienna and finally to London in 1879. He took a job with Fairholme \& Co., stationers in Shoe Lane, off Holborn; at last Gestetner found an outlet for his inventive genius and he began his life's work in developing stencil duplicating. His first patent was in 1879 for an application of the hectograph, an early method of duplicating documents. In 1881, he patented the toothed-wheel pen, or Cyclostyle, which made good ink-passing perforations in the stencil paper, with which he was able to pioneer the first practicable form of stencil duplicating. He then adopted a better stencil tissue of Japanese paper coated with wax, and later an improved form of pen. This assured the success of Gestetner's form of stencil duplicating and it became established practice in offices in the late 1880s. Gestetner began to manufacture the apparatus in premises in Sun Street, at first under the name of Fairholme, since they had defrayed the patent expenses and otherwise supported him financially, in return for which Gestetner assigned them his patent rights. In 1882 he patented the wheel pen in the USA and appointed an agent to sell the equipment there. In 1884 he moved to larger premises, and three years later to still larger premises. The introduction of the typewriter prompted modifications that enabled stencil duplicating to become both the standard means of printing short runs of copy and an essential piece of equipment in offices. Before the First World War, Gestetner's products were being sold around the world; in fact he created one of the first truly international distribution networks. He finally moved to a large factory to the north-east of London: when his company went public in 1929, it had a share capital of nearly £750,000. It was only with the development of electrostatic photocopying and small office offset litho machines that stencil duplicating began to decline in the 1960s. The firm David Gestetner had founded adapted to the new conditions and prospers still, under the direction of his grandson and namesake.[br]Further ReadingW.B.Proudfoot, 1972, The Origin of Stencil Duplicating London: Hutchinson (gives a good account of the method and the development of the Gestetner process, together with some details of his life).H.V.Culpan, 1951, "The House of Gestetner", in Gestetner 70th Anniversary Celebration Brochure, London: Gestetner.LRD -
44 MacGregor, Robert
SUBJECT AREA: Ports and shipping[br]b. 1873 Hebburn-on-Tyne, Englandd. 4 October 1956 Whitley Bay, England[br]English naval architect who, working with others, significantly improved the safety of life at sea.[br]On leaving school in 1894, MacGregor was apprenticed to a famous local shipyard, the Palmers Shipbuilding and Iron Company of Jarrow-on-Tyne. After four years he was entered for the annual examination of the Worshipful Company of Shipwrights, coming out top and being nominated Queen's Prizeman. Shortly thereafter he moved around shipyards to gain experience, working in Glasgow, Hull, Newcastle and then Dunkirk. His mastery of French enabled him to obtain in 1906 the senior position of Chief Draughtsman at an Antwerp shipyard, where he remained until 1914. On his return to Britain, he took charge of the small yard of Dibbles in Southampton and commenced a period of great personal development and productivity. His fertile mind enabled him to register no fewer than ten patents in the years 1919 to 1923.In 1924 he started out on his own as a naval architect, specializing in the coal trade of the North Sea. At that time, colliers had wooden hatch covers, which despite every caution could be smashed by heavy seas, and which in time of war added little to hull integrity after a torpedo strike. The International Loadline Committee of 1932 noted that 13 per cent of ship losses were through hatch failures. In 1927, designs for selftrimming colliers were developed, as well as designs for steel hatch covers. In 1928 the first patents were under way and the business was known for some years as MacGregor and King. During this period, steel hatch covers were fitted to 105 ships.In 1937 MacGregor invited his brother Joseph (c. 1883–1967) to join him. Joseph had wide experience in ship repairs and had worked for many years as General Manager of the Prince of Wales Dry Docks in Swansea, a port noted for its coal exports. By 1939 they were operating from Whitley Bay with the name that was to become world famous: MacGregor and Company (Naval Architects) Ltd. The new company worked in association with the shipyards of Austin's of Sunderland and Burntisland of Fife, which were then developing the "flatiron" colliers for the up-river London coal trade. The MacGregor business gained a great boost when the massive coastal fleet of William Cory \& Son was fitted with steel hatches.In 1945 the brothers appointed Henri Kummerman (b. 1908, Vienna; d. 1984, Geneva) as their sales agent in Europe. Over the years, Kummerman effected greater control on the MacGregor business and, through his astute business dealings and his well-organized sales drives worldwide, welded together an international company in hatch covers, cargo handling and associated work. Before his death, Robert MacGregor was to see mastery of the design of single-pull steel hatch covers and to witness the acceptance of MacGregor hatch covers worldwide. Most important of all, he had contributed to great increases in the safety and the quality of life at sea.[br]Further ReadingL.C.Burrill, 1931, "Seaworthiness of collier types", Transactions of the Institution of Naval Architechts.S.Sivewright, 1989, One Man's Mission-20,000 Ships, London: Lloyd's of London Press.See also: Ayre, Sir Amos LowreyFMW
См. также в других словарях:
Developing agent — Проявляющее вещество, проявитель … Краткий толковый словарь по полиграфии
Agent-based model — An agent based model (ABM) (also sometimes related to the term multi agent system or multi agent simulation) is a class of computational models for simulating the actions and interactions of autonomous agents (both individual or collective… … Wikipedia
Agent Orange — thumb|right|250px|A UH 1D helicopter from the336th Aviation Company sprays a defoliation agent on a dense jungle area in the Mekong Delta. 07/26/1969/National Archives photograph. Agent Orange is the code name for a powerful herbicide and… … Wikipedia
Agent (jeu vidéo) — Pour les articles homonymes, voir Agent. Agent Éditeur … Wikipédia en Français
Agent — This is a rare surname of French origins. It derives from the 14th century French word agent of which the nearest modern equivalent meaning is a policeman. In medieval times the word probably described a watch keeper, one who may also have… … Surnames reference
Comparison of agent-based modeling software — In the last few years, the agent based modeling (ABM) community has developed several practical agent based modeling toolkits that enable individuals to develop agent based applications. More and more such toolkits are coming into existence, and… … Wikipedia
Java Agent Development Framework — Java Agent DEvelopment Framework, or JADE, is a software framework for multi agent systems, implemented in Java that has been in development since at least 2001. [cite web |url=http://jade.tilab.com/news txt.php?anno=2001 |title=Jade News Archive … Wikipedia
Deliberative agent — (also known as intentional agent) is a sort of software agent used mainly in multi agent system simulations. According to Wooldridge s definition, a deliberative agent is one that possesses an explicitly represented, symbolic model of the world,… … Wikipedia
Talent agent — A talent agent, or booking agent, is a person who finds jobs for actors, authors, film directors, musicians, models, producers, professional athletes, writers and other people in various entertainment businesses. Having an agent is not required,… … Wikipedia
Multi-agent system — Simple reflex agent Learning agent … Wikipedia
Evidence-based pharmacy in developing countries — Pharmaceutical services in developing countries face particular challenges that are significantly different from those faced by pharmacists in the so called developed world.Medicines that are normally restricted to prescription in the developed… … Wikipedia